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ABSTRACT

Aims. We analyse the oscillatory properties of resonantly damped transverse kink oscillations in two-dimensional prominence threads.
Methods. The fine structures are modelled as cylindrically symmetric magnetic flux tubes with a dense central part with prominence
plasma properties and an evacuated part, both surrounded by coronal plasma. The equilibrium density is allowed to vary non-uniformly
in both the transverse and the longitudinal directions. We examine the influence of longitudinal density structuring on periods, damping
times, and damping rates for transverse kink modes computed by numerically solving the linear resistive magnetohydrodynamic
(MHD) equations.
Results. The relevant parameters are the length of the thread and the density in the evacuated part of the tube, two quantities that
are difficult to directly estimate from observations. We find that both of them strongly influence the oscillatory periods and damping
times, and to a lesser extent the damping ratios. The analysis of the spatial distribution of perturbations and of the energy flux into the
resonances allows us to explain the obtained damping times.
Conclusions. Implications for prominence seismology, the physics of resonantly damped kink modes in two-dimensional magnetic
flux tubes, and the heating of prominence plasmas are discussed.
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1. Introduction

Quiescent filaments/prominences are cool and dense magnetic
and plasma structures suspended against gravity by forces
thought to be of magnetic origin. In spite of their physical prop-
erties, with temperatures and densities that are akin to those
in the chromosphere, some as yet not well determined mecha-
nisms provide the required thermal isolation from the surround-
ing coronal plasma and mechanical support during typical life-
times from few days to weeks. The magnetic field that pervades
these structures is believed to play a key role in the nature and the
thermodynamic and mechanical stability of prominences. Early
observations carried out with good seeing conditions pointed out
that prominences consist of fine threads (de Jager 1959; Kuperus
& Tandberg-Hanssen 1967). More recent high-resolution Hα ob-
servations obtained with the Swedish Solar Telescope (SST)
in La Palma (Lin et al. 2005) and the Dutch Open Telescope
(DOT) in Tenerife (Heinzel & Anzer 2006) have allowed to
firmly establish the filament sub-structuring and the basic ge-
ometrical and physical properties of threads (see also Engvold
1998; Lin et al. 2005, 2008; Lin 2011). The sub-structure of
quiescent prominences is often composed by a myriad of hor-
izontal, dark and fine threads, made of cool absorbing material,
believed to outline magnetic flux tubes (Engvold 1998, 2008;
Lin 2004; Lin et al. 2005, 2008; Martin et al. 2008). The tubes
are only partially filled with cool and dense plasma and their

total length is probably much larger (∼105 km) than the threads
themselves. The measured average width of resolved threads is
about 0.3 arcsec (∼210 km) while their length is between 5 and
40 arcsec (∼3500−28 000 km). The absorbing cool material is
usually visible for up to 20 min (Lin et al. 2005). The measured
widths are close to the current resolution limit, ∼0.16 arcsec at
the SST, hence thinner structures are likely to exist.

Small amplitude oscillations in prominence threads are fre-
quently observed (see reviews by Oliver & Ballester 2002;
Engvold 2004; Wiehr 2004; Ballester 2006; Banerjee et al.
2007; Engvold 2008; Oliver 2009; Ballester 2010). Early two-
dimensional observations of filaments (Yi & Engvold 1991; Yi
et al. 1991) revealed that individual threads or groups of them os-
cillate with periods that range between 3 and 20 min. Recent rel-
evant examples are traveling waves propagating along a number
of threads with average phase speed of 12 km s−1, wavelength of
4 arcsec, and oscillatory periods that vary from 3 to 9 min (Lin
et al. 2007), the both propagating and standing oscillations de-
tected over large areas of prominences by Terradas et al. (2002)
and Lin (2004), as well as observations from instruments on-
board space-crafts, such as SoHO (Blanco et al. 1999; Régnier
et al. 2001; Pouget et al. 2006) and Hinode (Okamoto et al. 2007;
Terradas et al. 2008b; Ning et al. 2009). The transverse oscilla-
tion nature of some of these events has been clearly established
by Lin et al. (2009) by combining Hα filtergrams in the plane of
the sky with Hα Dopplergrams which allow to detect oscillations
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in the line-of-sight direction. A recurrently observed property of
prominence oscillations is their rapid temporal damping, with
perturbations decaying in time-scales of only a few oscilla-
tory periods (Landman et al. 1977; Tsubaki & Takeuchi 1986;
Tsubaki 1988; Wiehr et al. 1989; Molowny-Horas et al. 1999;
Terradas et al. 2002; Lin 2004; Ning et al. 2009).

Transverse thread oscillations are commonly interpreted in
terms of standing or propagating magnetohydrodynamic (MHD)
kink waves. The measured periods are of the order of a few min-
utes and the wavelengths are in between 3000−20 000 km, al-
though Okamoto et al. (2007) report larger wavelengths more
consistent with the standing wave interpretation. The measured
wave quantities allow us to derive phase speeds that are consis-
tent with the kink speed in magnetic and plasma configurations
with typical properties of prominence plasmas. The MHD wave
interpretation of thread oscillations has allowed the development
of theoretical models (see Ballester 2005, 2006, for recent re-
views). Joarder et al. (1997); Díaz et al. (2001, 2003) considered
the MHD eigenmodes supported by a filament thread modelled
in Cartesian geometry. More realistic studies using cylindri-
cal configurations have extended the initial investigations (Díaz
et al. 2002; Dymova & Ruderman 2005; Díaz & Roberts 2006).
These studies have determined the frequencies and confinement
properties of the perturbations as functions of the length and the
width of the threads. Theoretical damping mechanisms have also
been developed (see Ballester 2010; Arregui & Ballester 2011,
for recent reviews). A systematic comparative study of different
mechanisms has been presented by Soler (2010), who assesses
the ability of each mechanism to reproduce the observed attenu-
ation time-scales. The considered mechanisms include non-ideal
effects, such as radiation and thermal conduction, partial ionisa-
tion through ion-neutral collisions, ion-electron collisions, and
resonant absorption due to coupling to Alfvén and slow waves.
Non-ideal effects do not seem to provide the required attenu-
ation time-scales for kink oscillations (Ballai 2003; Carbonell
et al. 2004; Terradas et al. 2001, 2005; Soler et al. 2007, 2008).
Soler (2010) finds that resonant absorption in the Alfvén con-
tinuum is the only mechanism able to produce the observed at-
tenuation time-scales (see Soler et al. 2008, 2009a,b,c, for de-
tails). Resonant damping was first considered in this context by
Arregui et al. (2008), and has been subsequently studied in com-
bination with damping in the slow continuum and partial ioni-
sation by Soler et al. (2009a,b,c). These studies have considered
one-dimensional models with a density variation in the trans-
verse direction only. On the other hand, theoretical studies that
take into account the longitudinal density structuring, hence in-
corporating the fact that magnetic tubes supporting threads are
only partially filled with cool plasma, consider piece-wise ho-
mogeneous models in the transverse direction, and hence rule
out resonant damping.

A recent investigation by Soler et al. (2010) is the exception.
These authors have obtained analytical and semi-analytical ap-
proximations for periods, damping times, and damping ratios of
standing kink modes in a two-dimensional prominence thread
model. However, the analysis by Soler et al. (2010) is restricted
to the thin tube and thin boundary approximations, radial in-
homogeneity is constrained to the dense cool part of the tube
only, and the density in the evacuated part of the tube is taken
equal to the coronal density, further limiting the prominence
threads that can be theoretically modelled. These limitations are
removed in the present investigation. We adopt a fully inhomo-
geneous two-dimensional prominence thread model. The density
distribution is allowed to vary non-uniformly in both the trans-
verse and longitudinal directions. We also add another relevant

parameter with seismological implications, namely, the density
in the evacuated part of the tube. By combining the two parame-
ters that characterise the longitudinal structuring in prominence
threads, the length of the thread and the density in the evacuated
part of the tube, a wide range of prominence threads with very
different physical conditions can be modelled and their oscilla-
tory properties characterised. In addition, a general parametric
study is numerically performed, that allows us to go beyond the
thin tube and thin boundary approximations.

Besides obtaining the influence of longitudinal structur-
ing on periods and damping times for kink modes in two-
dimensional threads, and extracting conclusions about their
implications for prominence seismology, our study aims at
explaining the obtained results. For this reason, we have per-
formed the analysis of the spatial distribution of perturbations
and the energy flux into the resonances. These two analyses,
which are novel in the context of prominence oscillations, pro-
vide us with a comprehensive explanation for the obtained para-
metric results and add further insights to the physics of res-
onantly damped kink modes in two-dimensional equilibrium
states.

The paper is organised as follows. Section 2 describes
the thread model, the relevant parameters introduced by its
two-dimensional character, the linear MHD wave equations to
be solved, and the numerical method used for that purpose.
Section 3 presents our analysis and results. We first show com-
putations of periods, damping times, and damping ratios as a
function of the length of the thread and the density in the evacu-
ated part of the tube. Implications for the determination of phys-
ical parameters in prominences are discussed. Next, a qualitative
explanation of the obtained results is given by analysing the spa-
tial distribution of perturbations. Finally, we describe our energy
analysis, that in combination with the spatial structure of eigen-
functions fully explains the obtained damping times. In Sect. 4,
our conclusions are presented.

2. Thread model, linear MHD wave equations,
and numerical method

We consider an individual and isolated prominence thread in
a gravity-free static equilibrium in the zero plasma-β approxi-
mation. The fine structure is modelled by means of a cylindri-
cally symmetric flux tube of radius a and length L. In a sys-
tem of cylindrical coordinates (r, ϕ, z) with the z-axis coinciding
with the axis of the tube, the magnetic field is pointing in the
z-direction and has a uniform field strength. Because of the as-
sumed zero-β approximation the density profile can be chosen
arbitrarily. The non-uniform thread is then modelled as a den-
sity enhancement with a two-dimensional distribution of den-
sity, ρ(r, z) (see Fig. 1). The density distribution has two non-
uniform layers, with length l and lz in the r- and z-directions,
respectively. The first is introduced so as to study the resonant
damping of oscillations. The second produces irrelevant phys-
ical results, but enables us to avoid contact discontinuities and
provides us with a continuous background density. Surface plots
of the density distribution for different thread models are shown
in Fig. 2, where we have made use of the symmetry of the sys-
tem in the r- and z-directions and only plot their positive values.
The dense part of the tube with prominence conditions, i.e., the
thread, has a density ρf and occupies only part of the larger mag-
netic flux tube. It extends over a length Lthread in the z-direction.
The rest of the internal part of the tube, with length L − Lthread
in the longitudinal direction, is filled with plasma with a den-
sity ρev, with the subscript “ev” indicating the evacuated part of
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Fig. 1. Schematic representation of the model configuration adopted in this work. The two-dimensional cylindrically symmetric line-tied structure
consist of a dense part, the thread, with length Lthread and density ρf , and two evacuated parts, with density ρev. Both regions are separated by a non-
uniform layer of width lz in the longitudinal direction. Transverse non-uniformity is considered on a layer of width l. The structure is surrounded
by plasma with coronal properties and density ρc.

Fig. 2. Density distribution in the (r, z)-plane in the domain r ∈ [0, rmax], z ∈ [0, L/2] for prominence thread models with non-uniform radial and
longitudinal structuring. The threads are defined by a cool and dense part with density, ρf and length Lthread and an evacuated part of the tube with
density ρev and length L− Lthread. These two regions connect non-uniformly to the coronal surrounding medium with density ρc. Depending on the
value of ρev, three different situations are possible: a) ρev = ρc; b) ρc ≤ ρev ≤ ρf ; and c) ρev ≤ ρc.

the tube. All lengths are normalised by taking a = 1. In con-
trast to Soler et al. (2010), the value of ρev can be different from
the coronal density, ρc, and may have values lower than ρc up
to a value equal to the filament density, ρf , case in which the
full tube is occupied with dense cool plasma and we recover the
one-dimensional case. Both regions along the axis of the tube
are connected by means of a non-uniform transitional layer of
length lz to produce a smooth longitudinal profile. The density
variation at this layer, with Lthread − lz/2 ≤ z ≤ Lthread + lz/2, can
be expressed as

ρz(z) =
ρf

2

[(
1 +
ρev

ρf

)
−

(
1 − ρev

ρf

)
sin
π(z − Lthread)

lz

]
, (1)

for r ≤ a − l/2. As for the radial direction, the internal filament
plasma, with density ρf , is connected to the external coronal
plasma, with density ρc, by means of a non-uniform transitional
layer of thickness l, defined in the interval [a− l/2, a+ l/2], that
can vary in between l/a = 0 (homogeneous tube) and l/a = 2
(fully non-uniform tube). In contrast to the one-dimensional
model used by Arregui et al. (2008) the dense plasma of the
thread does not occupy the full length of the tube, hence the
radial variation of the plasma density for z ≤ Lthread − lz/2 and
a − l/2 ≤ r ≤ a + l/2 is given by

ρr(r) =
ρf

2

[(
1 +
ρc

ρf

)
−

(
1 − ρc

ρf

)
sin
π(r − a)

l

]
· (2)

Radial non-uniformity is not restricted to the dense part, as in
Soler et al. (2010), but can be present also in the evacuated part
of the tube. As a consequence, there is an overlap region of radial
and longitudinal non-uniform layers, for a−l/2 ≤ r ≤ a+l/2 and
Lthread − lz/2 ≤ z ≤ Lthread + lz/2, where the density is given by

ρrz(r, z) =
ρz(z)

2

[(
1 +

ρc

ρz(z)

)
−

(
1 − ρc

ρz(z)

)
sin
π(r − a)

l

]
· (3)

In the evacuated part of the tube, for z ≥ Lthread+lz/2 and a−l/2 ≤
r ≤ a + l/2, the radial density profile is given by

ρr(r) =
ρev

2

[(
1 +
ρc

ρev

)
−

(
1 − ρc

ρev

)
sin
π(r − a)

l

]
· (4)

Note that since the case ρev ≤ ρc is not excluded, the slope of
the radial density profile in the evacuated part of the tube can be
positive (if ρev < ρev), negative (if ρev > ρev) or zero (if ρev =
ρev). Finally, for r ≥ a + l/2 we reach the coronal medium and
ρ(r, z) = ρc. The model adopted in this paper removes unrealistic
discontinuities in the density distribution, considered in previous
works, and allows the theoretical modelling of a large number of
threads by simply considering different geometrical and physical
parameter values for, e.g., the three different situations outlined
in Fig. 2.

This paper is concerned with standing kink waves in promi-
nence threads. To study small amplitude thread oscillations, we
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consider the linear resistive MHD wave equations for perturba-
tions of the form f (r, z) ∼ exp(i(ωt+mϕ)) with constant resistiv-
ity, η. Here m is the azimuthal wave-number and ω = ωR + iωI,
the complex oscillatory frequency. For resonantly damped solu-
tions, the real part of the frequency gives the period of the os-
cillation, P = 2π/ωR, while the imaginary part is related to the
damping time, τd = 1/ωI. Magnetic diffusion is only included
here to avoid the singularity of the MHD equations at the reso-
nant position, but diffusion has no effect on the resonant damping
time-scales. Oscillations are then governed by the following set
of partial differential equations for the two components of the
velocity perturbation, vr and vϕ, and the three components of the
perturbed magnetic field, br, bϕ, and bz,

iωvr =
B
μρ

(
∂br

∂z
− ∂bz

∂r

)
, (5)

iωvϕ = − B
μρ

(
im
r

bz − ∂bϕ
∂z

)
, (6)

iωbr = B
∂vr
∂z
+ η

[
∂2br

∂r2
− m2

r2
br +

∂2br

∂z2
+

1
r
∂br

∂r

− 2
im
r2

bϕ − br

r2

]
, (7)

iωbϕ = B
∂vϕ

∂z
+ η

[
∂2bϕ
∂r2
− m2

r2
bϕ +

∂2bϕ
∂z2
+

1
r

∂bϕ
∂r

+ 2
im
r2

br − bϕ
r2

]
, (8)

iωbz = −B

(
∂vr
∂r
+
vr
r
+

im
r
vϕ

)
+ η

[
∂2bz

∂r2
− m2

r2
bz

+
∂2bz

∂z2
+

1
r
∂bz

∂r

]
· (9)

Equations (5)–(9), together with the appropriate boundary con-
ditions, define an eigenvalue problem for resonantly damped
modes. As the plasma-β = 0, the slow mode is absent and there
are no motions parallel to the equilibrium magnetic field, vz = 0.
We further concentrate on perturbations with m = 1, which rep-
resent kink waves that produce the transverse displacement of
the axis of the tube. The MHD kink wave represents a wave
mode with mixed fast and Alfvén character, its Alfvénic nature
being dominant in and around the resonant position (Goossens
et al. 2009). The problem can be further simplified by making
use of the divergence-free condition for the perturbed magnetic
field

1
r
∂(rbr)
∂r

+
1
r

∂bϕ
∂ϕ
+
∂bz

∂z
= 0, (10)

which reduces the system of equations to be solved to four, upon
expressing bϕ in terms of br and bz. Solutions to these equations
are obtained by performing a normal mode analysis. Because
of the complexity of the problem when a two-dimensional den-
sity ρ(r, z) is considered, numerical solutions to the frequency
and spatial structure of eigenfunctions in the (r, z)-plane are
computed using PDE2D (Sewell 2005), a general-purpose par-
tial differential equation solver. The code uses finite elements
and allows the use of non-uniformly distributed grids, which
are needed to properly resolve the large gradients that arise in
the vicinity of resonant positions. Different grid resolutions have
been tested so as to assure the proper computation of the res-
onant eigenfunctions. Magnetic dissipation has no influence on

the damping of kink modes due to resonant absorption, a condi-
tion that has to be checked in all numerical computations, but
allows us to properly compute the spatial distribution of per-
turbations in the resonance. We have made use of the symme-
try of the system and solutions are computed in the domain
r ∈ [0, rmax], z ∈ [0, L/2]. Non-uniform grids are used in both di-
rections, to properly resolve the regions with r ∈ [a− l/2, a+ l/2]
and z ∈ [Lthread/2 − lz/2, Lthread/2 + lz/2]. The first is located so
as to include the non-uniform transitional layer in the radial di-
rection, while the second embraces the non-uniform transitional
layer along the tube. As for the boundary conditions, we equate
them to the spatial distribution of perturbations for the funda-
mental kink mode. The two perturbed velocity components, vr
and vϕ and the compressive component of the perturbed mag-
netic field, bz have vanishing longitudinal derivatives at z = 0,
which corresponds to the apex of the flux tube, while they van-
ish at z = L/2, because of the line-tying boundary condition at
the photosphere. In the radial direction, vr and vϕ have vanishing
radial derivative and bz = 0 at the axis of the tube, r = 0, while
we impose the vanishing of the perturbed velocity components
far away from the tube in the radial direction, hence (vr, vϕ)→ 0
as r → ∞, a condition that is accomplished by setting the pertur-
bations equal to zero at r = rmax, where rmax, the upper limit of
the domain in the radial direction, has to be chosen to be suffi-
ciently far to properly compute the drop-off rate of perturbations
in the radial direction. In all our computations, we have consid-
ered rmax = 20a.

3. Analysis and results

Arregui et al. (2008), in their analysis of the damping of kink
oscillations in one-dimensional thread models, showed that the
parameters that determine the temporal attenuation of oscilla-
tions are the density contrast, ρf/ρc and the width of the non-
uniform transitional layer, l/a. The damping ratio is rather de-
pendent on the first parameter for low values of the density
contrast, but stops being dependent in the high contrast ratio
regime, typical of prominence plasmas. The strongest influence
comes from the width of the transitional layer, with the damp-
ing time rapidly decreasing for increasing values of l/a. Before
we deal with the additional parameters introduced by the lon-
gitudinal density structuring in two-dimensional thread models,
solutions to Eqs. (5)−(9) have been first obtained by using a two-
dimensional (2D) density distribution with Lthread = L. The pur-
pose of these numerical experiments has been to check the cor-
rect behaviour of the code by reproducing the results obtained
by Arregui et al. (2008). In addition, we have also considered
the magnetic Reynolds number, Rm = vAfa/η, which should
not affect the computed damping times, in the limit of large
Reynolds numbers. Figure 3 displays the obtained results. The
damping time of resonantly damped kink waves is independent
of the magnetic Reynolds number, as long as this quantity is
large enough for resonance absorption to be the operating damp-
ing mechanism. This regime (see the plateau regions) is obtained
for different values of Rm when different transitional layers are
considered. Figure 3a shows a perfect agreement between the
1D results and the current computations using the 2D code. The
perfect correspondence between 1D and 2D computations for
the damping time as a function of the density contrast in the ra-
dial direction is shown in Fig. 3b. Finally, the most important
parameter that determines the damping of transverse thread os-
cillations is the width of the non-uniform transitional layer in the
radial direction. The damping time strongly decreases when this
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Fig. 3. Damping time, in units of the internal filament Alfvén crossing time, τAf = a/vAf , as function of the three relevant parameters for kink
oscillations in one-dimensional thread models: a) the magnetic Reynolds number, Rm = vAfa/η; b) the density contrast, ρf/ρc; and c) the transverse
inhomogeneity length-scale, l/a. Solid lines indicate the 1D solution, while symbols represent the numerical 2D solutions obtained with Lthread = L.
In a) and c) the density contrast is ρf/ρc = 200. In b), l/a = 0.2. In b) and c) Rm = 106. All computations have been performed in a two-dimensional
grid with Nr = 401 and Nz = 51 points, with 250 grid-points in the radial transitional layer. Lengths are normalised to a = 1 and L = 50a.

parameter is increased, as can be seen in Fig. 3c, which again
shows a very good agreement between the values computed in
2D and the previous 1D computations. These results were in
agreement with previous works in the context of the damping of
coronal loop transverse oscillations (e.g. Goossens et al. 1992;
Ruderman & Roberts 2002; Goossens et al. 2002)

Once we are confident about the goodness of the code, we
consider the new ingredients introduced by the two-dimensional
nature of the prominence thread models considered in this work.
These new ingredients are the length of the thread, Lthread,
i.e., the length of the part of the magnetic flux tube filled with
dense absorbing plasma, and the density in the evacuated part of
the tube, ρev. The non-uniform transitional layer in density be-
tween both regions along the tube, lz, has an irrelevant effect on
the oscillatory period for low harmonics in the longitudinal di-
rection, as shown by Díaz et al. (2008). Our computations (not
shown here) confirm the finding by Díaz et al. (2008) on the neg-
ligible importance of this parameter for the oscillatory period
and show a similar irrelevance concerning the damping time by
resonant absorption. For this reason, we have concentrated our
analysis on the remaining two parameters, Lthread and ρev.

3.1. Periods and damping times

We first consider the influence of the length of the thread on the
period and damping of resonantly damped transverse thread os-
cillations. An initial analysis on this subject was presented by
Soler et al. (2010), who considered the thin tube and thin bound-
ary approximations (TTTB) in a two-dimensional thread model
with transverse inhomogeneity only in the dense part of the tube.
Our analysis goes beyond the TTTB approximations by consid-
ering a fully inhomogeneous two-dimensional density distribu-
tion and combining its influence with that of the density in the
evacuated part of the tube, ρev.

We have first analysed the variation of period, damping time,
and damping ratio, τd/P, by setting ρev = ρc, so that we mimic
the case studied by Soler et al. (2010) analytically. We start
with a fully filled tube and gradually decrease the length of
the thread. The obtained results, for two values of the density
contrast between the filament and coronal plasma, are shown
in Figs. 4a−c. The period is strongly dependent on the length
of the thread. It decreases by almost a factor of two when go-
ing from Lthread = L to Lthread = 0.1L. Figure 4a also shows
that the oscillatory period is almost independent of the density

contrast, once this parameter is large enough. As for standing
kink waves in one-dimensional thread models (Arregui et al.
2008), the kink frequency is a weighted mean of the internal
and external Alfvén frequencies. Regardless of the density con-
trast, the period is allowed to vary in a a narrow range deter-
mined by a factor that goes from

√
2 to 1, when going from

ρf/ρc = 1 to ρf/ρc → ∞. For typical density contrasts in promi-
nence plasmas, the period can be considered independent of the
density contrast. The damping time produced by resonant ab-
sorption (Fig. 4b) also decreases remarkably when the length of
the cool and dense part of the tube is decreased. The decrease
is also around a factor of two in the considered range of values
for Lthread. Soler et al. (2010) find that in the TTTB limit the de-
pendence of the period and the damping time with the length of
the thread is exactly the same, hence any influence on the damp-
ing ratio, τd/P, is cancelled out. Outside the TTTB approxima-
tions, we find that this is not the case (see Fig. 4c), although the
damping ratio is almost independent of the length of thread and
only for very short threads a slight increase in the damping ra-
tio is found when further decreasing this parameter. In Fig. 4 we
overplot results obtained by Soler et al. (2010) by solving their
dispersion relation. We see that there is a very good agreement
and the differences, that are due to the simplifying assumptions
of the analytical treatment, are rather small. One can observe an
anomalous behaviour on the damping time computed by Soler
et al. (2010), for small values of Lthread. This is due to the simpli-
fying assumptions considered to obtain the semi-analytic solu-
tion, that might not be entirely valid outside the long-wavelength
limit. Overall, our results confirm the validity of the analyti-
cal approximations obtained by Soler et al. (2010) concerning
the influence of the length of the thread on periods and damp-
ing times. In physical terms, the shortening of the length of the
thread produces shorter period oscillations, since the physical
system is equivalent to a fully filled tube, with the wavelength of
oscillations replaced by a shorter effective wavelength. A physi-
cal explanation of the damping time dependence on the length of
the thread is provided, by using energy arguments, in Sect. 3.3.

Similar conclusions can be extracted from the computa-
tions we have performed by fixing the density contrast and for
three different values of the width of the inhomogeneous layer.
Figures 4d−f show the obtained results. They clearly show how
strongly the damping time and the damping ratio are influenced
by the width of the transitional layer, also in 2D models, while
the period of the oscillations is almost unaffected by the value
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Fig. 4. a)–c): period, damping time, and damping ratio as a function of the length of the thread for thread models with l/a = 0.2 and for two values
of the density contrast. d)−f): the same quantities for thread models with ρf/ρc = 200 and for three values of the transverse inhomogeneity length-
scale. In all figures a = 1, Rm = 106, ρev = ρc, and lz = a. Times are shown in units of the internal filament Alfvén crossing time, τAf = a/vAf .
Symbols correspond to fully numerical 2D computations while the different line styles represent the approximate 2D solutions obtained by Soler
et al. (2010). All computations have been performed in a two-dimensional grid with Nr = 401 and Nz = 51 points, with 250 grid-points in the
resonant layer. Lengths are normalised to a = 1 and L = 50a.

of l/a. In view of the results displayed in Fig. 4, we conclude
that the length of the thread is a very important parameter.
When allowed to vary from the limit of fully filled tube to 10%
filled tube, periods and damping times are decreased as much
as 50% percent. This is very relevant in connection to promi-
nence seismology. We must note that, in principle, the length of
the thread can be estimated directly from observations. However,
the length of the supporting magnetic flux tube is much more dif-
ficult to estimate, since its end points are usually unobservable.

Our general density model enable us to analyse the effect of
the density in the evacuated part of the tube on the oscillatory
properties, as well. The study of the influence of this param-
eter was not undertaken by Soler et al. (2010), and requires a
fully numerical approach. We allow for ρev to be different from
the coronal density, ρc. When changing the density in the evacu-
ated part of the tube, in addition to the radial non-uniform layer
that connects the prominence material to the corona we are in-
troducing an additional radial non-uniform layer in between the
evacuated part of the tube and the corona. The density profile
in this layer and its slope depend on the relative values of ρev
and ρc, as given in Eq. (4) and shown in Figs. 2b and c. Instead of
analysing the effect of ρev on the oscillatory properties in a sepa-
rate manner, we have selected three representative values for the
length of the thread and have computed periods, damping times,
and damping ratios as a function of the density in the evacuated
part of the tube, measured in units of the coronal density. We
have split our analysis into two parts.

First, we consider that ρc ≤ ρev ≤ ρf , hence the parameter
is allowed to vary in between the coronal and prominence densi-
ties. Figure 5 displays the obtained results. For ρev = 200ρc = ρf ,
the tube is fully filled with cool and dense plasma. Then, as we

decrease ρev, periods and damping times have a marked linear
decrease. When 40% of the tube is filled with cool plasma, they
decrease by about a 15%. When a 10% filled tube is consid-
ered a decrease of up to a 50% is obtained. In physical terms,
the period decrease when the density in the evacuated part of
the tube is gradually decreased can be understood if we think
about the different inertia of the system, with or without dense
plasma at those locations along the tube. For explaining the dif-
ferent damping time-scales, energy arguments that combine the
energy of the mode and the energy flux into the resonance have
to be considered, see Sect. 3.3. The decrease in period and damp-
ing time is very similar, but not exactly the same. For instance,
Fig. 5c shows that the damping ratio is slightly dependent on the
density in the evacuated part of the tube, for all the considered
values in the range ρc ≤ ρev ≤ ρf .

Next, we have considered the possibility of the density in the
evacuated part of the tube being lower than the coronal density.
For instance, Díaz et al. (2002) considered a value of ρev = 0.6ρc.
The computations shown in Fig. 5 are extended to lower values
of ρev. The obtained results are displayed in the inset plots of
Fig. 5 and show that the density in the evacuated part of the
tube is irrelevant in relation to the period of the oscillations and
the damping by resonant absorption in the considered range of
values with 0.1ρc ≤ ρev ≤ ρc.

These results show that the density in the evacuated part of
the tube is also a relevant parameter for prominence thread seis-
mology, because of its effect on periods and damping times and
the difficulty in being measured by direct means. When consid-
ered in combination with effects due to the length of the thread,
out computations enable us to perform a more accurate promi-
nence seismology, applicable to a large number of threads.
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Fig. 5. Period, damping time, and damping ratio as a function of the density in the evacuated part of the tube for prominence threads with
ρf/ρc = 200, a = 1, Rm = 106, lz = a, and l/a = 0.2 and three values of the length of the thread. The main plots are for ρc ≤ ρev ≤ ρf , while
the inset plots correspond to the range 0.1ρc ≤ ρev ≤ ρc. Times are shown in units of the internal filament Alfvén crossing time, τAf = a/vAf .
All computations have been performed in a two-dimensional grid with Nr = 401 and Nz = 51 points, with 250 grid-points in the resonant layer.
Lengths are normalised to a = 1 and L = 50a.

Fig. 6. Longitudinal and radial dependence of the eigenfunctions transverse velocity component, vr , azimuthal velocity component, vϕ, and com-
pressive magnetic field component, bz, in prominence threads with ρf/ρc = 200, l/a = 0.2, a = 1, ρev = ρc, and Rm = 106, for different values of
the length of the thread. All computations have been performed in a two-dimensional grid with Nr = 401 and Nz = 51 points, with 250 grid-points
in the resonant layer.

3.2. Spatial distribution of eigenfunctions

Changes in the longitudinal density structuring have a direct
impact on the oscillatory period, which is easy to understand,
but also on the damping time by resonant absorption. Besides
obtaining the parametric behaviour of kink mode periods and
damping times as a function of the longitudinal density structur-
ing, we aim to explain the obtained results. As a first step, we
have analysed the spatial structure of eigenfunctions. The rel-
evant perturbed quantities are the radial and azimuthal veloc-
ity components, vr and vϕ, and the compressive component of
the perturbed magnetic field, bz, directly related to the magnetic
pressure perturbation, PT = Bbz/μ.

We first consider the influence of the length of the thread
on the profiles of the eigenfunctions in the radial and longitudi-
nal directions. Results are given in terms of the modulus of the

complex eigenfunctions. Figure 6 shows one-dimensional cuts
along the longitudinal and radial directions of the eigenfunc-
tions for different values of the length of the thread. The lon-
gitudinal profiles are shown at the axis (r = 0) for vr, and at the
mean radius of the tube (r = a) for vϕ and bz. In the longitu-
dinal direction all three eigenfunctions display a trigonometric
dependence with z, when Lthread = L, i.e., the case that mim-
ics the one-dimensional thread. When the length of the thread is
decreased several interesting effects occur. First, both perturbed
velocity components display a slightly improved confinement.
The maximum values of the velocity perturbations still occur
in the dense part of the tube, but the drop-off rate changes, be-
coming almost linear outside the thread so that they satisfy the
boundary condition at the foot-point of the tube. When eigen-
functions are normalised to the value of |vr | at the apex of the
tube, it is seen that the decrease of the length of the thread
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Fig. 7. Longitudinal and radial dependence of the eigenfunctions transverse velocity component, vr , azimuthal velocity component, vϕ, and com-
pressive magnetic field component, bz in prominence threads with ρf/ρc = 200, l/a = 0.2, a = 1, Lthread = 0.2L, and Rm = 106 for different values
of the density in the evacuated part of the tube. All computations have been performed in a two-dimensional grid with Nr = 401 and Nz = 51 points,
with 250 grid-points in the resonant layer.

produces larger amplitudes of the azimuthal velocity component
(see Fig. 6b), related to the Alfvénic character of the mode. This
amplitude almost doubles its value when going from Lthread = L
to Lthread = 0.04L. The z-component of the magnetic field pertur-
bation gives an indication of the compressibility of the normal
mode. Our results indicate that when the length of the thread
is decreased, the longitudinal profile of bz (Fig. 6c) becomes
strictly confined to the dense part of the tube, where it reaches its
maximum value. As the thread gets shorter, the maximum value
of bz increases, hence the compressibility becomes larger at the
apex of the tube for shorter threads oscillations, though the kink
mode remains being an almost incompressible wave mode. Kink
modes in fully filled magnetic flux tubes are almost incompress-
ible. Longitudinal density structuring by the inclusion of a dense
central part increases (decreases) kink mode compressibility in
the dense (evacuated) parts of the tube, in comparison to the one-
dimensional flux tube kink modes.

A close look at the spatial structure of eigenfunctions in the
radial direction (Figs. 6d−f) provides us with a qualitative expla-
nation on why the change of the length of the thread affects the
damping times computed in the previous subsection (and also
those presented by Soler et al. 2010). First, the change in the pe-
riod produced by the change in the length of the thread affects
the resonant position in the radial direction and hence the damp-
ing time. However, the slope of the density profile in the tran-
sitional layer is very large, because of the high density contrast
ratio typical of filament threads and this effect is not very impor-
tant. Second, the eigenfunctions in the resonant layer are affected
by the value of the length of the thread. Both effects are clearly
seen in Figs. 6d−f, where the radial dependence of vr, vϕ, and bz
is plotted for different thread lengths. We first note that the per-
turbed velocity components at the resonance have a larger am-
plitude the shorter the length of the thread. We interpret this as
an indication of an improved efficiency of the resonant damping

mechanism. This is particularly clear if we look at the azimuthal
velocity profile in the resonant layer (Fig. 6e). Now, not only
the increase of the amplitude for shorter lengths is evident, but
also the transverse length scale is seen to decrease when shorter
threads are considered, hence thinner resonance widths are ob-
tained. This detail of the resonance also shows a slight shift to-
wards the left hand side which is due to the change of the reso-
nant position for different lengths of the threads (hence different
oscillatory periods). Although the resonances are not exactly lo-
cated at rA = a, our numerical results indicate that this approxi-
mation, used by Soler et al. (2010), is fully justified. Finally, the
radial profile of the compressive component of the magnetic field
perturbation (Fig. 6f) shows the increase in its amplitude at the
resonant position mentioned above, when considering shorter
threads. This is another indication of the improved efficiency
of resonant damping. Notice that although our study is limited
to linear MHD waves, in a realistic situation perturbations in-
side the resonant layer become nonlinear, as shown in studies
by e.g., Terradas et al. (2008a); Clack et al. (2009); Ballai &
Ruderman (2011).

We have next examined the spatial distribution of the rel-
evant perturbed quantities as a function of the density in the
evacuated part of the tube. Figure 7 shows the obtained pro-
files in the longitudinal and radial directions for a fixed value
for the length of the thread. As before, the longitudinal profiles
are shown at the axis (r = 0) for vr, and at the mean radius
of the tube (r = a) for vϕ and bz. Our results indicate that the
density in the evacuated part of the tube has also a direct im-
pact on the radial and longitudinal profiles of eigenfunctions.
For the longitudinal profiles, as we decrease the value of ρev
from ρf , we have a slightly improved confinement of the velocity
perturbations and a strict confinement of the longitudinal com-
ponent of the perturbed magnetic field to the dense part of the
tube (see Figs. 7a−c). The amplitude of bz at the apex of the
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tube increases, while in the evacuated part of the tube, and for
a fixed length of the thread, compressibility decreases as ρev is
decreased (see Fig. 7c). Taking a look at the eigenfunctions in
the radial direction (Figs. 7d−f), the amplitude of both perturbed
velocity components increases when the density in the evacuated
part of the tube is decreased. The increase in the resonance peak
and the shortening of the transverse spatial scale are mainly ev-
ident for the azimuthal velocity component, which gives its res-
onantly damped and Alfvénic character to the mode. We find an
increase in the compressibility of the normal mode (Fig. 7f) in
the dense prominence plasma region as the density in the evacu-
ated part of the tube is decreased.

Overall, the decrease of the density in the evacuated part
of the tube, starting from a fully filled tube, produces similar
qualitative effects on the radial and longitudinal profiles for the
eigenfunctions as the ones produced by the shortening of the
length of the thread. In the parameter range studied in this work
those effects are quantitatively more important in the case of the
changes of the length of the thread. The properties of the spa-
tial structure of eigenfunctions give us a qualitative explanation
on why changes in the longitudinal density structuring in promi-
nence threads have a significant effect on the damping time of
kink oscillations in two-dimensional thread models.

3.3. Energy analysis

Our analysis of the spatial structure of eigenfunctions indicates
that the decrease of both the length of the thread and the den-
sity in the evacuated part of the tube produce a strengthening of
the resonance absorption process that becomes apparent through
the appearance of more pronounced resonant profiles and thin-
ner resonance widths in the perturbed velocity components at
the resonance. This would explain the marked decrease of the
damping times found in Sect. 3.1 when varying these two pa-
rameters. This result shows that resonant damping may strongly
depend on the details of the longitudinal density structuring in
rather general two-dimensional density models, such as the ones
used here to model prominence threads.

In order to obtain a quantitative explanation an energy anal-
ysis is carried out. Our analysis involves the energy of the kink
mode and the energy flux into the resonance. The energy of the
mode can directly be computed from the numerical eigenfunc-
tions as

E =
1
2

(
ρv2 + b2

)
. (11)

This expression has to be integrated over the entire (r, z)-plane
except for the resonance layer, easily recognisable from the
eigenfunctions displayed in Figs. 6 and 7, as this region
would include a contribution from the Alfvén waves. In one-
dimensional equilibrium models, the energy flux into the res-
onance is proportional to the magnetic pressure perturbation
squared (Andries et al. 2000; Andries & Goossens 2001), a re-
sult that was used by Arregui et al. (2007b) to analyse the influ-
ence of the internal structuring of coronal loops on the damping
by comparing the efficiency of the process at internal and ex-
ternal layers. In two-dimensional equilibrium states, the energy
flux absorbed at a particular field line is proportional to the over-
lap integral between PT (rA, z), the profile of PT along the tube
at the resonant position, and the resonant Alfvén eigenfunctions
(Thompson & Wright 1993; Tirry & Goossens 1995). This is
why the longitudinal profiles of bz and vϕ, and their modifica-
tion due to changes in the longitudinal density distribution are
so relevant in determining kink mode damping times. A general

mathematical expression, valid in the three-dimensional case,
is given by Wright & Thompson (1994). When adapted to our
cylindrical equilibrium, this expression gives the energy flux at
the resonance per unit ϕ in the form

F = rA

∫ [
S r(r−A) − S r(r+A)

]
dz (12)

=
πm2

4μ2
0

× B2

rA

(
∫
φ bz dz)2∫
φ ρ φ dz

×
(
dωA

dr

)−1

rA

·

In this expression, S r(r−A) and S r(r+A) represent the values of the
radial component of the time-averaged Poynting vector to the
left and to the right of the resonance position, that we approx-
imate by rA = a, φ is the Alfvén eigenfunction along the tube
at the resonant position, and ωA(r) the Alfvén continuum fre-
quency. In order to evaluate the integrals as well as the slope of
the Alfvén continuum at the resonant position in expression (12),
we have first solved the following equation for the Alfvén con-
tinuum modes

d2φ(rA, z)
dz2

+
ω2

A(rA)

v2A(rA, z)
φ(rA, z) = 0, (13)

with boundary conditions

dφ
dz

(z = 0) = 0, φ(z = L/2) = 0.

For each value of rA, this equation is solved for different val-
ues for the relevant parameters Lthread and ρev, that in turn de-
fine different profiles for v2A(rA, z). The Alfvén continua arise
from repeating the procedure for different values of rA in the
range [a− l/2, a+ l/2]. Once this is done, the slope of the Alfvén
continua at the resonant position and the Alfvén eigenfunctions
that correspond to each thread model can be evaluated. By us-
ing the numerically computed profiles for bz(rA, z), in order to
evaluate the overlap integral in Eq. (12), and multiplying by 2π,
the required total energy flux is obtained. The ratio of the en-
ergy of the kink mode to the time-averaged energy flux into the
resonance gives the required damping time, for every considered
value of Lthread and ρev.

Figure 8 shows the obtained results. They have been nor-
malised to the value of the damping time for the fully filled
tube. We see an excellent agreement between the damping times
computed through the energy analysis explained in detail above
and the numerically computed ones for both cases in which we
change the length of the thread and the density in the evacu-
ated part of the tube. The results obtained in Sect. 3.1 can there-
fore be explained in terms of the energetics of the modes and
the resonant energy transfer. These results also show the accu-
racy and utility of the analytical expression derived by Wright
& Thompson (1994) for the time-averaged energy flux in terms
of eigenfunctions. Furthermore, we have just demonstrated that
damping time estimates can be obtained, using energy argu-
ments, without the need to solve the full non-uniform problem,
but instead by solving the much more simpler piece-wise uni-
form problem in order to obtain the real part of the frequency and
the longitudinal profiles for the eigenfunctions for kink modes in
combination with the non-uniform computations for the Alfvén
continuum modes, using this information in combination with
Eqs. (11) and (12). This is possible because the real part of the
frequency and the longitudinal profiles of the eigenfunctions are
only slightly affected by resonant coupling, and because the en-
ergy in Eq. (11) has to be integrated excluding the resonant layer.
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Fig. 8. a) Damping time, normalised to the full tube damping time,
as a function of the length of the thread, for ρev = ρc. b) Damping
time, normalised to the full tube damping time, as a function of the den-
sity in the evacuated part of the tube, for Lthread = 0.2L. In both figures
lines correspond to the numerically computed damping times and the
symbols are the values obtained through the energy analysis described
in Sect. 3.3.

Of course, the full numerical solution provides us with more ac-
curate results, but as Fig. 8 illustrates the agreement between
both methods is excellent.

A convenient way to further understand the energy flux at the
resonance and the dynamics of resonantly damped kink modes is
to compute the spatial distribution of the time-averaged Poynting
flux in our two-dimensional domain by making use of the gen-
eral expression

〈S〉 = 1
2

Re(E × b∗), (14)

with E = −(u × B) + η j the perturbed electric field, b∗ =
(b∗r , b∗ϕ, b∗z ) the complex conjugate of the perturbed magnetic
field, and j = (∇×b)/μ the current. In contrast to the energy anal-
ysis above, we now make use of the full numerical computations.
In terms of the wave fields analysed in Sect. 3.2, the two com-
ponents of the time-averaged Poynting vector in the (r, z)-plane
can be cast as

〈S r〉 = 1
2

B
μ

Re(vrb∗z ) +
η

2μ2
Re

[
b∗z

(
∂br

∂z
− ∂bz

∂r

)

− b∗ϕ

(
∂bϕ
∂r
+

bϕ
r
− im

r
br

)]
, (15)

〈S z〉 = −1
2

B
μ

Re(vrb
∗
r + vϕb

∗
ϕ) +

η

2μ2
Re

[
b∗ϕ

(
im
r

bz − ∂bϕ
∂z

)

− b∗r

(
∂br

∂z
− ∂bz

∂r

)]
· (16)

Fig. 9. a) Spatial distribution in the (r, z)-plane of the time-averaged
Poynting flux given by Eqs. (15) and (16). b) Ohmic heating distri-
bution, in arbitrary units. These results correspond to the transverse os-
cillation of a prominence thread with ρf/ρc = 200, ρev = ρc, l/a = 0.2,
a = 1, and Lthread = 0.2L. The magnetic Reynolds number is Rm = 106.

By making use of the divergence-free condition given by
Eq. (10) to compute bϕ, we have produced an example of the
two-dimensional distribution of the time-averaged Poynting flux
around the resonant layer, for a partially filled thread.

The arrow plot in Fig. 9a shows that energy is fed into the
resonant layer by concentrating it over the dense thread sec-
tion. The amount of energy flux in the radial direction is de-
termined by the jump in < S r > (see Stenuit et al. 1999, for a
one-dimensional example in ideal MHD). The resistive layer is
on a scale where both the ideal and resistive terms of the per-
turbed electric field can be of similar magnitude, but each of
them could be dominant over different regions of the domain.
For instance, the jump in < S r > is determined by the ideal
term in Equation (15) which is dominant in the thread region
and zero in the evacuated part of the tube. Hence the energy in-
flow towards the resonance in the radial direction comes from
the interior of the tube and is determined by the spatial profiles
of the transverse velocity component and the compressive mag-
netic field perturbation. Note that the amplitude of the kink mode
is smaller outside the tube compared to inside and also that the
evacuated part of the tube is much less dense than the thread.

Once in the layer, the energy flow is diverted along the field
lines in a manner determined by < S z >, with a small radial con-
tribution that is due to the resistive terms in Equation (15). Such
as corresponds to the Alfvénic character of the mode inside the
resonant layer, the dominant term in Equation (16) involves the
azimuthal velocity and magnetic field perturbations, vϕb∗ϕ. This
quantity decreases linearly along the field lines, producing the
lessening in the parallel Poynting flux towards the foot-point.
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In our example, the radial non-uniform layer is restricted to the
dense part of the flux tube, since ρev = ρc. However, energy con-
centrated in the resonant layer of the thread because of resonant
wave damping can flow along the field lines and, eventually, sup-
ply heating in the evacuated region, where field aligned currents
are dominant. Although the energy inflow into the resonance,
given by < S r >, and its subsequent divergence along the field
lines, given by < S z >, are mostly determined by ideal terms
in Equations (15) and (16), this does not mean that resistivity is
not important. For instance, the amount of heating, in the form
of Ohmic dissipation, will be determined by those currents, re-
sistivity, and their spatial distribution. For this particular case,
heating is distributed in a constant manner in the evacuated part
of the tube, even if there is no resonant layer in that region (see
Fig. 9b).

4. Summary and conclusions

Quiescent filament fine structures are only partially filled with
cold and dense absorbing material. The length of the threads can
in principle be measured in events showing transverse oscilla-
tions, provided the lifetime of threads is sufficiently large com-
pared to the oscillatory period. The lengths of the supporting
magnetic flux tubes are however much larger, and cannot be ob-
served. Density measurements, both in the thread as in the evac-
uated part of the supporting magnetic tube, are also challeng-
ing from the observational point of view. It is therefore impor-
tant to quantify the variations on wave properties due to changes
in these equilibrium parameters if we aim to perform an accu-
rate prominence seismology. It is essential to have computations
of periods and damping times for a wide range of thread mod-
els to include regimes in which the applicability of simple an-
alytical models could be of limited extent. For this reason we
have computed the oscillatory properties of resonantly damped
transverse kink oscillations in rather general two-dimensional
fully non-uniform prominence thread models. This allows for
a broad range of prominence threads with very different phys-
ical conditions to be modelled and their oscillatory properties
characterised.

The length of the thread and the density in the evacuated part
of the tube define their longitudinal density structuring. We find
that the length of the thread strongly influences the period and
damping time of transverse kink oscillations, while the damping
ratio is rather insensitive to this parameter. These results con-
firm the validity of the analytical approximations made by Soler
et al. (2010). In addition, our modelling has allowed us to iden-
tify a new physical parameter with seismological implications,
the density in the evacuated part of the thread. This quantity
also influences periods and damping times, and to a lesser extent
damping ratios, and must be taken into account in the inversion
of physical parameters in the context of prominence seismology.

Currently available inversion schemes for one-dimensional
coronal loops and prominence threads (Arregui et al. 2007a;
Goossens et al. 2008; Arregui & Ballester 2011; Soler et al.
2010) make use of observed periods and damping ratios. The
first, influence the inferred values for the Alfvén speed, while
the second determine the transverse density structuring. Based
on our results, we can conclude that ignorance on the length of
the thread, the length of the supporting magnetic flux tube, and
the density in the evacuated part of the tube will have a signif-
icant impact on the inferred values for the Alfvén speed (hence
magnetic field strength) in the thread, depending on whether we
use those one-dimensional inversion schemes or the results from
two-dimensional models here obtained. On the contrary, because

of the smaller sensitivity of the damping ratio to changes in the
longitudinal density structuring, seismological estimates of the
transverse density structuring will be less affected by our igno-
rance about the longitudinal density structuring of prominence
threads.

Our study provides additional insight to the physics of res-
onantly damped kink modes in two-dimensional equilibrium
states, by extending previous applications (e.g, Andries et al.
2005; Arregui et al. 2005) to more complex non-separable den-
sity distributions. It also provides an example of the methods
and uses of combining the information from the spatial distribu-
tion of eigenfunctions with that obtained from energy arguments.
In particular, our energy analysis has allowed us to explain the
decrease in damping times for shorter thread lengths found by
Soler et al. (2010). The length of the thread influences the en-
ergy of the kink mode, and hence its oscillatory period, but also
affects the damping by resonant absorption, through the energy
flux into the resonance. In an analogous way, the value of the
density in the evacuated part of the tube also determines periods
and damping times, since both the energy of the kink mode and
the energy flux into the resonance vary. This means that changes
in the equilibrium configuration in a non-resonant direction pro-
duce variations in the damping properties of kink modes, a result
that was qualitatively explained by a detailed examination of the
radial and longitudinal profiles of the eigenfunctions. Both the
shortening of the length of the thread and the decrease of the
density in the evacuated part of the tube produce more marked
resonances, with the amplitude of the velocity perturbations at
the resonance and the compressibility of the mode in the thread
being larger. Inside the resonant layers shorter transverse spa-
tial scales for the Alfvénic velocity component are obtained. In
combination with the analysis of the energy of the kink modes
and the energy flux into the resonances a quantitative explana-
tion was obtained for both the damping properties obtained in
our study and those in Soler et al. (2010).

The damping of kink oscillations in two-dimensional fully
non-uniform equilibrium configurations can be computed by us-
ing energy arguments together with the solution of simpler prob-
lems for kink mode and Alfvén continuum modes. This aspect
is worth to be considered in future studies of resonant absorp-
tion in 2D/3D models of solar atmospheric magnetic structures
involving changes of equilibrium parameters that affect the den-
sity structuring in a non-resonant direction. The use of energy
arguments would allow to have a first indication about how im-
portant a given parameter that modifies the equilibrium in a non-
resonant direction is, while avoiding to solve the full problem
until we are interested in the details.

The two-dimensional distribution of the time-averaged
Poynting flux shows how energy is fed into the resonance and
subsequently flows along the field lines by properties of wave
fields associated to ideal processes. This is the reason why reso-
nant damping is a mechanism for wave energy transfer in which
time-scales are independent of resistivity, in the limit of high
magnetic Reynolds numbers. Magnetic diffusion plays its role
once energy is concentrated at small spatial scales, by provid-
ing heating at locations that, as in our example for a partially
filled thread, are distributed in regions where no resonant layer
is present. This result offers additional insights to the dynamics
of resonantly damped kink modes and the heating of prominence
plasmas by wave transformation processes. It must be consid-
ered in detail and extended to density models relevant to other
solar atmospheric structures.
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