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ABSTRACT

Aims. We investigate the spatial damping of propagating kink waves in an inhomogeneous plasma. In the limit of a thin tube sur-
rounded by a thin transition layer, an analytical formulation for kink waves driven in from the bottom boundary of the corona is
presented.
Methods. The spatial form for the damping of the kink mode was investigated using various analytical approximations. When the
density ratio between the internal density and the external density is not too large, a simple differential-integral equation was used.
Approximate analytical solutions to this equation are presented.
Results. For the first time, the form of the spatial damping of the kink mode is shown analytically to be Gaussian in nature near the
driven boundary. For several wavelengths, the amplitude of the kink mode is proportional to (1+exp(−z2/L2

g))/2, where L2
g = 16/εκ2k2.

Although the actual value of 16 in Lg depends on the particular form of the driver, this form is very general and its dependence on
the other parameters does not change. For large distances, the damping profile appears to be roughly linear exponential decay. This is
shown analytically by a series expansion when the inhomogeneous layer width is small enough.
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1. Introduction

Coronal multi-channel polarimeter (CoMP) observations have
revealed periodic Doppler shift oscillations propagating along
large, off-limb coronal loops (Tomczyk et al. 2007; Tomczyk
& McIntosh 2009). From the analysis of the ratio of outward
and inward propagating power along loop structures, Tomczyk
& McIntosh (2009) found a strong decay in the wave amplitudes
as they travelled along the loop. Indeed, only shorter loops show
evidence of inward power, implying the presence of either very
efficient dissipation or mode conversion. Furthermore, McIntosh
et al. (2011) demonstrated that these propagating, transverse
loop displacements carry a significant amount of energy and
hence could potentially play an important role in coronal heat-
ing (Parnell & De Moortel 2012) and/or the solar wind accel-
eration (Ofman 2010). Finally, the ubiquitous nature of these
waves makes them very attractive as a potential seismological
tool (De Moortel & Nakariakov 2012). Similar transverse os-
cillations have also been reported in spicules (De Pontieu et al.
2007; He et al. 2009), X-ray jets (Cirtain et al. 2007) and promi-
nence fibrils (Okamoto et al. 2007).

The observed waves show clear, periodic variations in
Doppler shifts (velocities) but only very weak signatures in
intensity. This incompressible nature, together with the fact
that the observed speeds are generally of the order of the lo-
cal Alfvén speed gives the waves a distinct Alfvénic charac-
ter (Goossens et al. 2009). Motivated by the numerous obser-
vations of waves in coronal loops, for example in Tomczyk
et al. (2007), we recently performed a series of 3D numerical

� Appendix A is available in electronic form at
http://www.aanda.org

simulations (Pascoe et al. 2010, 2011, 2012). Using 3D simula-
tions of loop displacements, Pascoe et al. (2010) clarified the na-
ture of the observed loop displacements as coupled kink-Alfvén
waves: transverse footpoint motions travel along the loop and
through the inhomogeneity at the loop boundary, couple effi-
ciently to (azimuthal) Alfvén waves. This mode coupling takes
place at locations where phase speed of the propagating kink
mode matches the local Alfvén speed (Allan & Wright 2000)
and energy is transferred from the transverse kink modes to the
Alfvén modes in the shell regions of the loop. Hence, the kink
modes are effectively a moving source of Alfvén waves until all
energy is transferred into the Alfvén waves. Pascoe et al. (2010)
showed that this coupling is sufficiently efficient to qualitatively
explain the observed rapid amplitude decay. This mode coupling
takes place even for modest density contrasts or an arbitrary in-
homogeneous medium (Pascoe et al. 2011). Further evidence
for the occurence of the mode coupling presence can be found
in the frequency filtering which is inherent to this mechanism.
Indeed, Terradas et al. (2010) demonstrated that the damping
of the transverse motions through mode coupling is frequency-
dependent, with higher frequencies leading to shorter damp-
ing lengths. Subsequently, Verth et al. (2010) found evidence
for this frequency in the CoMP data of Tomczyk & McIntosh
(2009), strengthening the interpretation of the observed, propa-
gating Doppler shift oscillations as coupled kink-Alfvén waves.
Additional effects such as the presence of a background flow
or gravitational stratification on the mode coupling mechanism
were studied by Soler et al. (2011a,b).

The damping lengths obtained through mode coupling do
not only depend on the frequency of the footpoint displacements
but also on the width of the inhomogeneous layer at the edge
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of the loop. Wider layers lead to more efficient mode coupling
and, hence, shorter damping lengths. The periods observed by
Tomczyk et al. (2007) are of the order of several minutes (peak-
ing at about 5 min) and to achieve the observed strong damping
in this period range, a relatively wide layer, of the order of half
of the loop radius, is required (Pascoe et al. 2010, 2012). Similar
evidence for loops with wide boundary layers was obtained by
seismological estimates derived from the damping rate of stand-
ing, kink mode oscillations by Goossens et al. (2002). Similar
to the mode coupling mechanism described by Pascoe and co-
authors, which operated on open flux tubes, standing, kink mode
oscillations, on closed field lines, also undergo efficient damp-
ing through resonant absorption in the presence of an inhomo-
geneous shell region (e.g. Hollweg & Yang 1988; Goossens et al.
1992; Ruderman & Roberts 2002).

The numerical simulations of Pascoe et al. (2012) revealed a
change in the characteristic damping profile of the transverse ve-
locity displacements: at low distance, a Gaussian profile of the
form exp(−z2) is present, followed by an exponential damping
profile of the form exp(−z) at larger distances. The distance at
which this transition between the two damping profiles occurs
appears to depend on the density profile. For narrow inhomo-
geneous layers, the exponential damping profile is evident after
only a few wavelengths. However, for wider shell regions, the
damping profile is largely Gaussian except at large distances. As
observational evidence (both for propagating and standing kink
mode oscillations) suggests the presence of wide inhomoge-
neous shell regions, Pascoe et al. (2012) suggested the Gaussian
profile might be best suited to the observed CoMP data. A tran-
sition to the exponential damping regime would still occur at
larger distances but, due to the strong damping, the amplitudes
of the Doppler shift oscillations are expected to be too small to
be observationally relevant.

A related study for the time dependent evolution of a stand-
ing kink mode has been undertaken by Ruderman & Terradas
(2012). They find that the temporal behaviour of the kink mode
amplitude is damped in a Gaussian manner for small times, be-
fore approaching a linear exponential damping for large times.

In this paper, we investigate the mode coupling process an-
alytically to clarify the nature of the Gaussian damping profile.
The paper is organised as follows. The analytical problem is for-
mulated in Sect. 2, followed by the derivation of the governing
equations in Sect. 3. The nature of the damping profile is investi-
gated in Sect. 4 by using various approximations. The key point
of this section is to demonstrate when previously used approxi-
mations are valid and when they fail. These approximations are
compared with numerical simulations in Sect. 5. Conclusions are
presented in Sect. 6.

2. Problem formulation

We consider the propagation of kink waves in a semi-infinite
magnetic tube. In cylindrical coordinates r, ϕ, z with the z-axis
coinciding with the tube axis, the tube is situated in the half-
space z > 0. The equilibrium magnetic field is in the z-direction,
B0 = (0, 0, B0), and homogeneous. The equilibrium density, ρ(r)
is given by

ρ(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρi, r ≤ R − �/2,
ρt(r), R − �/2 ≤ r ≤ R + �/2,

ρe, r ≥ R + �/2,

(1)

where ρi and ρe are constants, and ρi > ρe. Thus, the Alfvén
speed, VA(r) = B0/

√
μ0ρ(r), is a function of radius alone and

we use the notation

VA(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Vi, r ≤ R − �/2,

VA(r), R − �/2 ≤ r ≤ R + �/2,

Ve, r ≥ R + �/2.

(2)

The tube is excited by imposing a velocity perturbation at z = 0.
Thus, waves are excited and these propagate into the system,
namely z > 0. We select the external Alfvén speed to be
1 Mm s−1. Distances are measured in mm and periods in seconds.

To demonstrate the Gaussian nature of the damping analyti-
cally, we neglect stratification, field line curvature and expansion
of the magnetic tube. The importance of these physical phenom-
ena will be discussed in Sect. 6 but we expect them to be unim-
portant when the wavelength and damping lengths are shorter
than the gravitational scale height, the radius of curvature and the
characteristic spatial scale of the tube’s radial variation. These
conditions may not necessarily be met in all coronal flux tubes
but are imposed for mathematical simplicity.

In this paper, we are interested in linearly polarized (trans-
verse) oscillations. The displacements in the radial and az-
imuthal directions are taken as ξr = ξr(r, z, t) cosϕ and ξϕ =
−ξϕ(r, z, t) sin ϕ, respectively, and the perturbed total pressure as
P = B0bz/μ0 = P(r, z, t) cosϕ, where bz is the z-component of
the magnetic field perturbation. This is a lateral kink mode (as
opposed to the helical kink) and, due to form of the equilibrium,
there is no coupling to other azimuthal mode numbers.

The linearised Magnetohydrodynamic (MHD) equations,
describing the plasma evolution in the cold plasma limit, are
given in Ruderman (2011, hereafter Paper I) and they reduce to

∂(rξr)
∂r
− ξϕ = 0, (3)

Lξr ≡ ∂
2ξr

∂z2
− 1

V2
A

∂2ξr

∂t2
=
μ0

B2
0

∂P
∂r
, (4)

Lξϕ ≡ ∂
2ξϕ

∂z2
− 1

V2
A

∂2ξϕ

∂t2
=
μ0

B2
0

P
r
· (5)

For notational simplicity, we define the differential operators

Lk =
∂2

∂z2
− 1

C2
k

∂2

∂t2
, L = ∂

2

∂z2
− 1

V2
A

∂2

∂t2
, (6)

Li =
∂2

∂z2
− 1

V2
i

∂2

∂t2
, Le =

∂2

∂z2
− 1

V2
e

∂2

∂t2
· (7)

Ck is the fast kink speed determined by

2

C2
k

=
1

V2
i

+
1

V2
e
, ⇒ C2

k =
2B2

0

μ0(ρi + ρe)
, (8)

where B0 is the (constant) magnitude of the equilibrium mag-
netic field, and μ0 the magnetic permeability of free space. In our
analysis, we use the equation for kink oscillations in a straight
magnetic tube, derived in Paper I, using the thin tube approx-
imation. The thin tube approximation means that the z compo-
nent of the induction equation reduces to (3) to leading order in a
series expansion in powers of the radial coordinate. The plasma
is only incompressible to leading order. Paper I considers a cold
plasma in the presence of background flow but here we consider
the static background case.

Equations (3)–(5) are solved inside the tube (r < R− l/2 with
ξr and ξϕ only functions of z and t) and in the external region
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(r > R + l/2 with ξr and ξϕ proportional to 1/r2 in the thin tube
limit). The external solutions are expressed in terms of the inter-
nal solutions by integrating the solutions to the equations across
the transition layer (R− l/2 < r < R+ l/2). We define the internal
solutions, using the thin tube approximation, as

ξr(r, z, t) = η(z, t), ξϕ(r, z, t) = η(z, t),

μ0Pi

B2
0

= r

⎛⎜⎜⎜⎜⎝∂2η

∂z2
− 1

V2
i

∂2η

∂t2

⎞⎟⎟⎟⎟⎠ ≡ rLiη. (9)

Following Paper I and the brief derivation in the Appendix (see
Sect. A.2 and Eq. (A.6)), we obtain the equation governing
the propagation of the radial component of the fast kink mode,
η(z, t), namely

Lkη ≡ ∂
2η

∂z2
− 1

C2
k

∂2η

∂t2
= −M. (10)

The right-hand side of Eq. (10) describes the damping of the
fast kink mode. When the right-hand side is zero, the kink wave
propagates undamped from the photospheric boundary. When
M is non-zero inside the transition layer, the energy in the kink
wave (as identified by η) is converted into the resonant Alfvén
mode (as identified by the spatial growth in amplitude of ξϕ at
the location where the value of the variable Alfvén speed equals
the kink speed Ck, i.e. where VA(rs) = Ck).

The quantityM on the right-hand side of Eq. (10) is given
by (see Appendix, Eq. (A.6))

M = − �
4R
Liη +

�

4R
Leη +

μ0δP

2RB2
0

+
1
2
Leδξr, (11)

where δP = Pe − Pi and δξr = ξe − η are the jumps of P and ξr
across the transition layer.

In what follows, we use the thin tube thin boundary (TTTB)
approximation, and so have ε = l/R � 1. Hence, the leading
order approximation to M, with respect to ε, is given in the
Appendix (see Eq. (A.11)) and the propagating kink mode equa-
tion can be expressed as

Lkη = − 1
2R
Le

∫ R+l/2

R−l/2
ξϕdr. (12)

3. Derivation of the governing equation

To progress, the integral involving ξϕ in Eq. (12) must be ex-
pressed in terms of η. Hence, we need to obtain the solution
for ξϕ in the transition layer. Thus, we must solve Eq. (5), where
the right hand side is replaced by the leading order solution, i.e.
with P replaced by Pi and r by R. Next we use Eq. (A.2), from
the Appendix, to give to leading order

Lξϕ = Liη. (13)

Below, we assume that the photospheric driver at z = 0 excites
a linearly polarized kink wave with frequency ω propagating in
the positive z-direction. In the absence of the inhomogeneous
annulus, the solution to Eq. (12) describes a constant amplitude,
propagating wave for the internal displacement that propagates
with the speed Ck. The perturbations of all variables, in this case,
are functions of T = t − z/Ck only and, for a fixed frequency ω,
have the form eiωT . Due to the transition layer, the amplitude of
the internal displacement, η, is resonantly damped and for ε � 1
the lengthscale for the damping will be much longer than the
wavelength L = 2πCk/ω of the undamped kink wave. We do

Table 1. Definitions of variables and parameters used in this paper.

Parameter/variable Definition

ε l/R
χ Ck/VA

κ (ρi − ρe)/(ρi + ρe)
X (r − R)/(l/2)
s kz
Z κkz/2
ωT ωt − kz

not prescribe the relationship between the wavelength and the
characteristic scale of the amplitude variation, but only assume
that this scale is much larger than L. Inside the transition layer
we define a stretched radial coordinate, namely

X =
r − R
l/2
· (14)

The definitions of important variables used in this paper are
given in Table 1.

Thus, we look for solutions for η of the form

η(z, t) = η̃(z)eiωT = η̃(z)eiω(t−z/Ck) = η̃(z)ei(ωt−kz), (15)

where k = ω/Ck, and assume

L
η̃

dη̃
dz
� 1. (16)

To keep the expressions as simple as possible, we restrict our
attention to the linear density profile. Thus, inside the transition
layer,

ρ =
1
2

[
ρi + ρe − (ρi − ρe)X

]
.

In addition, we must specify boundary conditions for η and ξϕ
on the driven boundary at z = 0. We assume η̃(0) = a and

ξϕ(r, 0, t) = a sgn(−X)eiωt =

{
aeiωt, −1 < X < 0,
−aeiωt, 0 < X < 1.

(17)

From the integral of Eq. (3), so that rξr =
∫
ξϕdr and continu-

ity of ξr , the leading order boundary condition for ξr on z = 0
is ξr(r, z = 0, t) = aeiωt. This choice matches the form of the
undamped kink mode. We remind the reader that terms propor-
tional to ε are dropped to leading order.

The solution to (13) is obtained by the method of Variations
of Parameters (Boyce & DiPrima 2008). Thus, we set

ξϕ = α(r, z)eiω(t−z/VA) + β(r, z)eiω(t+z/VA), (18)

where α(r, z) and β(r, z) are to be determined. We define the ratio
of the kink speed to the Alfvén speed as χ = Ck/VA.

Hence, χ =
√

1 − κX where κ = (ρi − ρe)/(ρi + ρe).
Substituting these results into Eq. (13), we have the pair of
equations

∂α

∂z
ei(ωt−kχz) +

∂β

∂z
ei(ωt+kχz) = 0,

−χ∂α
∂z

ei(ωt−kχz) + χ
∂β

∂z
ei(ωt+kχz) = −ikκη̃(z)eiωT , (19)
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and the solutions to these equations are

α = C1(X) +
ikκ
2χ

∫ z

0
η̃(u)e−ik(1−χ)udu, (20)

β = C2(X) − ikκ
2χ

∫ z

0
η̃(u)e−ik(1+χ)udu. (21)

When deriving the second equation in Eq. (19), we neglect the
small terms containing the derivatives of η̃(z) in the right-hand
side. Since the wavelength associated with e−ik(1+χ)z is much less
that the damping length of η, we can integrate by parts (or equiv-
alently average over one wavelength) the expression for β and
get, approximately,

β = C2(X) − aκ
2χ(1 + χ)

+
κ

2χ(1 + χ)
η̃(z)e−ik(1+χ)z. (22)

To eliminate any downward propagating waves, we choose

C2(X) =
aκ

2χ(1 + χ)
, (23)

so that

βei(ωt+kχz) =
κ

2χ(1 + χ)
η̃(z)eiωT . (24)

Hence, there is no contribution from downward propagating
waves, as expected, and only the term due to the upward propa-
gating kink wave remains.

Integration by parts cannot be used for simplifying α near
X = 0, since the wavelength of the integrand, 2π/k(1 − χ), is no
longer less than the damping length. However, we can use that
approach at X = −1 (or equivalently at r = R − l/2) to confirm
that ξϕ = η̃(z)eiωT there.

Finally, we need to choose C1(X) so that the boundary con-
dition at z = 0, Eq. (17), is satisfied. Hence,

C1(X) = a sgn(−X) − aκ
2χ(1 + χ)

· (25)

This is the only place where the spatial form of the photospheric
driver appears, namely the first term on the right hand side of
Eq. (25). Thus, the solution for ξϕ is

ξϕ =

{(
a sgn(−X) − aκ

2χ(1 + χ)

+
ikκ
2χ

∫ z

0
η̃(u)e−ik(1−χ)udu

)
eik(1−χ)z

+
κ

2χ(1 + χ)
η̃(z)

}
eiωT . (26)

There are four terms in the expression for ξϕ, with the first term
dependent on the radial form of the boundary condition at z = 0.
The exponential factor for the undamped kink mode, eiωT , has
been taken outside the curly brackets, leaving a complex func-
tion of kz, X and η̃ inside.

Next, we must integrate Eq. (26) across the transition layer.
This is done term by term in the Appendix. The final equation
governing the propagation and damping of the kink mode, on
using Eq. (15) for the form of η, is

− 2i
dη̃
ds
+

d2η̃

ds2
=
εκ

4

∫ 1

−1
ξϕdX =

εκ

4

{
F(s)

+

∫ s

0
η̃(u)g(s − u)du + η̃(s) ln

[
p4

p3

] }
(27)

on cancelling the common factor of eiωT and setting s = kz. In
deriving Eq. (27), we have only applied the operator Le to the
multiplier eiωT . The additional terms are small for s greater than
unity. They are also small for κ � 1. The inhomogeneous term
is given by

F(s) = − 4a
κs2
− i

4a
κs
+

2a
κs2

(
eisp1 + eisp2

)

+ i
2a
κs

(√
1 − κeisp1 +

√
1 + κeisp2

)
+aei2s [

Ci(sp3) − Ci(sp4) − iSi(sp3) + iSi(sp4)
]
, (28)

and

g(s − u) =
ei(s−u)p1 − ei(s−u)p2

s − u
· (29)

We define, for later use, the complex function

G(s) =
∫ s

0
g(s − u)du. (30)

In Eqs. (27)–(29), we have used the shorthand notation,

p1 = 1 − √1 − κ, p2 = 1 − √1 + κ,

p3 = 1 +
√

1 − κ, p4 = 1 +
√

1 + κ, (31)

and Ci(x) and Si(x) are the cosine integral and the sine integral,
as defined in Abramowitz & Stegun (1965) and the Appendix.

When κ is not too large, i.e. less than about 1/2, we can use
the approximations p1 ≈ κ/2 and p2 ≈ −κ/2 and express F(s) as

F(s) = −2ia

(
1 − cos Z

Z

)
+ O(κ), (32)

where Z = κkz/2. This approximation is valid for κ � Z � 1/κ.
A more accurate representation of F, by taking an extra term in
the κ expansions of p1 and p2 is given by

F(s) = −2ia

⎛⎜⎜⎜⎜⎜⎜⎝
1 − cos Z cos

(
κZ
4

)
Z

⎞⎟⎟⎟⎟⎟⎟⎠ + O(κ), (33)

by considering variations over the slower spatial scale given by
κZ/4 = κ2kz/8. Note that the Taylor series expansion for small
κZ/4 gives the same approximation as Eq. (32). The difference
between the two approximations only occurs for large κZ/4 and
remains bounded. In addition, the expansion for small Z agrees
with small kz expansion discussed below. Hence, the approxima-
tion given by Eq. (32) remains accurate for 0 < Z < 4/κ.

4. Investigation of damping

In this section we investigate the spatial form of the damping of
the kink mode. Firstly, we show that for small distances the am-
plitude decays Gaussianally and that this behaviour is not due
to the specific form of the photospheric driver. Next we investi-
gate a simple expansion in powers of ε, the ratio of the width of
the transition layer to the radius of the flux tube. This illustrates
that the simple expansion breaks down once a certain distance
is reached. Finally, we use an expansion valid for small density
ratios to derive a relatively simple looking equation to describe
the damping. This form of equation allows us to investigate com-
monly used assumptions in the next subsection and demonstrates
the importance of the various terms involved.
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Fig. 1. Imaginary part of F(s) shown as a solid curve and small z expan-
sion shown as a dot-dashed curve, for κ = 1/3. The real part of F(s) is
the dotted curve. The approximation to the imaginary part of F(s) given
by (33) is the dashed curve.

4.1. Small kz

Let us use Eq. (27) to study the properties of propagating kink
waves. We start our analysis by investigating the solution of this
equation for small kz. In the Appendix, we show that the expan-
sion of F(s) on the right-hand side of Eq. (27) is given by, (see
Sects. A.4.1 and A.4.2),

F(s) ≈ isB − a (1 + 2is) ln

⎡⎢⎢⎢⎢⎣1 +
√

1 + κ

1 +
√

1 − κ

⎤⎥⎥⎥⎥⎦
+isa

(√
1 + κ − √1 − κ

)
, (34)

where

B = 2
3κ

a
(
2 − (1 + κ)3/2 − (1 − κ)3/2

)
. (35)

For example, for κ = 1/3, the linear approximation provides a
good fit to both F(s) and the coefficient of η̃ out to s ≈ 5 (see
Fig. 1). In this case, small s means 0 ≤ s < 5. Therefore, we can
express Eq. (27) as

− 2i
dη̃
ds
+

d2η̃

ds2
=
εκ

4

⎧⎪⎪⎨⎪⎪⎩isB − 2isa ln

⎡⎢⎢⎢⎢⎣1 +
√

1 + κ

1 +
√

1 − κ

⎤⎥⎥⎥⎥⎦
+2isa

[√
1 + κ − √1 − κ

]

+i
∫ s

0
(η̃(u) − a)

[√
1 + κ − √1 − κ

]
du

+ (η̃(s) − a) ln

⎡⎢⎢⎢⎢⎣1 +
√

1 + κ

1 +
√

1 − κ

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ · (36)

When κ is not too close to unity, κ < 1, Eq. (36) can be approxi-
mated by

−2i
dη̃
ds
+

d2η̃

ds2
=

εκ2

8

{
(η̃(s) − a) + 2i

∫ s

0
(η̃(u) − a) du + ais

}
. (37)

This form of the equation is used to illustrate the method of anal-
ysis with the result for more general κ listed below. Since η̃ = a
when ε = 0, we set η̃−a = εη̃1(s) and, in the weak damping limit

and for small values of s, terms containing η̃−a on the right hand
side of Eq. (36) can be neglected. Hence, the O(ε) equation is

−2i
dη̃1

ds
+

d2η̃1

ds2
− κ

2

8
{ais} = 0. (38)

The solution is to this equation is the complementary function
and a particular integral. Since it has to satisfy the boundary
condition η̃(0) = a, it contains only one arbitrary constant. To
determine this constant, we once again use the condition that
there is no downward propagating wave. As a result we obtain

η̃ = a

(
1 − εκ

2 s2

32
+ i
εκ2 s
32

)
+ O(ε2). (39)

It is common in considering the effect of weak damping, where
dη̃/ds = O(ε), to assume that the second derivative will beO(ε2),
i.e. smaller than the first derivative. However, this is not the case,
as shown by Eq. (39). Instead the imaginary term in Eq. (39)
results from keeping the second derivative. The amplitude of η̃
is, however,

1 − εκ
2 s2

32
+ O(ε2)

and this can be obtained directly from Eq. (37) by dropping the
second derivative. Thus, the second derivative term modifies the
phase of the weakly damped kink mode.

Repeating the above method for general κ, we can show that,
for small s,

η̃ ≈ a[1 − εq(κ)(s)2] (40)

where

q(κ) =
1
24

[
2 − (1 − 2κ)

√
1 + κ − (1 + 2κ)

√
1 − κ

]

+
κ

8
ln

1 +
√

1 − κ
1 +
√

1 + κ
· (41)

It is worth noting that

q(κ) ≈ κ
2

32
(42)

with the accuracy better than 2.5% for 0 < κ < 1. This approxi-
mation for q can be used even for values of κ close to unity. For
example, when the density contrast is 10 so that κ = 9/11, the
maximum error in replacing Eq. (41) by the simpler expression
of Eq. (42) is less than 1.6%.

To clearly highlight the behaviour of the damping, we inves-
tigate the logarithm of η̃ so that, for example, e−z/L would appear
as a straight line. For our expansion given by Eq. (40), we have
ln(η̃/a) ≈ −εq(κ)s2, where s = kz. This is consistent with

ln(η/a) ≈
(
− εκ

2s2

32

)
,

but there are other functions which have the same initial terms
in their expansion. For example,

η̃ ≈ a
2

{
1 + exp

(
− εκ

2 s2

16

)}
=

a
2

⎧⎪⎨⎪⎩1 + exp

⎛⎜⎜⎜⎜⎝− z2

L2
g

⎞⎟⎟⎟⎟⎠
⎫⎪⎬⎪⎭ , (43)

where

L2
g =

16
εκ2k2

, (44)
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Fig. 2. η̃1 is shown as a function of s as a solid curve, for κ = 1/3. The
triple dot-dashed curve is the approximation −(κs)2/32, the dot-dashed
curve is−π(κs)/8+2 and the dashed curve is −π(κs)/8+ln(κs/2)/2+0.9.
Note that the function is initially Gaussian for small s but, although
modified by the logarithm term, it is approximately linear for large s.

is a slightly better fit to the numerical solution provided s is not
too large. Here not too large means up to a distance of approx-
imately a wavelength divided by κ from the boundary driver.
Since the long wavelength limit is used, this can be a significant
distance from the location of the driver.

Thus, the amplitude of η̃ decreases Gaussianally for small s.
Although the series given by Eq. (40) is the correct expression
for small s, this can be expressed by a number of different func-
tional forms that have the same expansion for small s.

4.2. Expansion in powers of ε

Before progressing, we study the approximations to F(s) =
Fr(s) + iFi(s). Figure 1 shows that the imaginary part of F(s),
Fi(s), dominates Fr(s), for 0 < s < 30, and the small s expan-
sion is valid out to s = 5. Note that Eq. (33) provides a good
fit to Fi(s) for 0 < s < 50, as seen in Fig. 1. Now we look
to express η̃ in powers of ε as η̃ = a + εη̃1(s) + O(ε2). Hence,
ln η̃ = ln a + εη̃1(s) + O(ε2). Since both the imaginary parts of
F(s) and G(s) are larger than the respective real parts, we drop
the real parts. Dropping the second derivative, we have

−2
dη̃1

ds
=
κ

4
(Fi(s) + aGi(s)) . (45)

Hence,

η̃1(s) = − κ
8

∫ s

0
(Fi(u) + aGi(u)) du. (46)

This is shown is Fig. 2. Our simple expansion in powers of ε
must break down whenever εη̃1 becomes of order unity. This
secular behaviour suggests that there is a slower lengthscale as-
sociated with the damping of the kink mode. However, this slow
scale is not simply a linear combination of ε and z.

Thus, the expansion in powers of ε is only valid for small
enough distances, such that εη̃1 � 1. For large distances, this
expansion will always break down. However, the distance where
it begins to break down does depend strongly on ε. For small
enough ε, we can clearly see how the form of the damping is
initially Gaussian in character but it switches to an almost lin-
ear form further up. If ε is larger, but still less than unity, the
expansion will be valid for the Gaussian part only.

4.3. Expansion in powers of κ

Returning to the kink mode Eq. (27), we expand the right hand
side in powers of κ. Defining the new independent variable Z =
κkz/2, the equation is

− i
dη̃
dZ
+
κ

4
d2η̃

dZ2
=

− i
ε

2

{
a(1 − cos Z)

Z
−

∫ Z

0
η̃(u)

sin(Z − u)
Z − u

du

}
+ O(κ).

Hence, the second order derivative can be neglected to leading
order in κ and the weak density variation assumption κ � 1
leads to

dη̃
dZ
=
ε

2

{
a(1 − cos Z)

Z
−

∫ Z

0
η̃(u)

sin(Z − u)
Z − u

du

}
. (47)

Equation (47) is the important equation that can be used to inves-
tigate the spatial damping of the propagating kink mode, when-
ever the density contrast is not too large. For example, good
agreement is found with the numerical solutions (see Sect. 5)
whenever ρi/ρe ≤ 3 or equivalently κ ≤ 1/2. The advantage
of Eq. (47) over the full expression in Eq. (27) is its relative
simplicity. This equation can be solved numerically. We can use
it also to investigate how some standard approximations com-
pare with the full solution. In addition, the inhomogeneous term
in Eq. (47) is derived directly from the imposed form of the
photospheric driver. Changing the driver changes this one term.
However, as we will see below, neglecting this term does not
change the conclusion that the damping is Gaussian in nature
over the first few wavelengths. It is just that the rate of the
Gaussian damping is different.

4.3.1. Expansion in powers of ε

Next, we can expand η̃ in powers of ε and obtain

η̃ = a +
εa
2

{∫ Z

0

1 − cos u
u

du −
∫ Z

0

∫ u

0

sin s
s

ds du

}
.

Evaluating the integrals, we have

η̃ = a +
εa
2
{γ + 1 + ln Z − Ci(Z) − ZSi(Z) − cos Z, } (48)

where γ ≈ 0.5772 is Euler’s constant and Ci(Z) and Si(Z) are the
Cosine and Sine integrals respectively (Abramowitz & Stegun
1965). We can approximate η̃ by

a − εa
2

(
Z2

4
− Z4

288
+

Z6

21600

)
for Z < 4,

a − εa
2

(
πZ
2
− ln Z − 1 − γ + cos Z

Z2

)
for Z > 4, (49)

where the appropriate asymptotic expansions for Ci(Z) and Si(Z)
have been used. Note that the logarithm of η̃, when ε is small, is
simply

ln(η̃/a) =
ε

2
(γ + 1 + ln Z − Ci(Z) − ZSi(Z) − cos Z) . (50)

This form is used when comparing with the numerical solution
for small ε in Sect. 5 below. From Eq. (49), we expect ln η̃ to
behave like −επZ/4 + (ε ln Z)/2 for large Z, so that the Terradas
et al. (2010) results will slightly over-estimate the damping rate
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due to the neglect of the logarithmic term. The behaviour for
small Z is again the same as the real part of Eq. (39).

We remind the reader that, for large Z, the expansion in
powers of ε will break down whenever the magnitude of η̃ − a
becomes of order unity. The small Z expansion, however, will
remain valid for small ε and κ.

4.4. Approximate solutions to Eq. (47)

Equation (47) can be solved numerically and the results are com-
pared with the full numerical solution to the linear MHD equa-
tions (as discussed in Pascoe et al. 2012). This comparison is dis-
cussed in Sect. 5. Before that, we can use Eq. (47) to investigate
commonly used approximations in the large z limit and compare
these approximations with the numerical solution of Eq. (47).

4.4.1. Approximation 1

Firstly, consider the behaviour of η̃(kz) for 1 � kz � ε−1. The
first term on the right-hand side of Eq. (47) is O(1/z) when com-
pared to the second term. Hence, we neglect the first term. Thus,
for large Z, we solve

dη̃
dZ
+
ε

2

∫ Z

0
η̃(u)

sin(Z − u)
Z − u

du = 0. (Approx. 1) (51)

where Z = κkz/2. This approximate equation can be solved
by a Laplace transform but it is not straightforward to in-
vert the transform back to physical space. Instead we solve
this equation numerically to determine Approximation 1, η̃1(Z).
Approximation 1 is shown in Fig. 3 as a dashed curve.

4.4.2. Approximation 2

Using the mean value theorem, the integral in Eq. (51) can be
expressed as
∫ Z

0
η̃(u)

sin(Z − u)
Z − u

du = η̃(z)
∫ Z

0

sin(Z − u)
Z − u

du

−
∫ Z

0
η̃′(c) sin(Z − u)du,

where the derivative of η̃ is evaluated at c and u ≤ c ≤ Z. Since
the derivative of η̃ is O(ε), we neglect the second term. Hence,
Eq. (51) reduces to

dη̃
dZ
+ η̃(z)

ε

2

∫ Z

0

sin(Z − u)
Z − u

du = 0. (Approx. 2)

and this can be solved by an integrating factor to give

η̃2(Z) = a exp

{
− ε

2

∫ Z

0
Si(u)du

}

= a exp
{
− ε

2
(ZSi(Z) + cos Z − 1)

}
. (52)

For large Z, Si(Z)→ π/2 and so

η̃ ≈ a exp

{
− επκkz

8

}
, (53)

as derived by Terradas et al. (2010). This approximate solution is
shown in Fig. 3 as a dot-dashed curve. Despite neglecting the in-
homogeneous terms, which arise through the form of the photo-
spheric driver when solving for the resonant Alfvén mode inside

Fig. 3. Different approximations for η̃ shown as a function of Z =
κkz/2 for ε = 0.2. The solid curve is the numerical solution to
Eq. (47). Approximation 1, Eq. (51), is shown as a dashed curve,
Approximation 2 as a dot-dashed curve and Approximation 3 as a triple
dot-dashed curve.

the transition layer, this solution also has a Gaussian form for
small Z of the form a exp{−εZ2/4} and only takes on the linear
exponential damping for large Z. So the inhomogeneous term
only changes the value of the coefficient of Z2 in the Gaussian
damping.

4.4.3. Approximation 3

Next we re-introduce the inhomogeneous term on the right-hand
side of Eq. (47) but take the η̃(z) outside the integral again and
investigate

dη̃
dZ
+
ε

2
η̃(z)

∫ Z

0

sin(Z − u)
Z − u

du =

ε

2

{
1 − cos Z

Z

}
· (Approx. 3)

Again we can use an integrating factor to obtain

η̃3(Z) = a

{∫ Z

0

ε

2

[
1 − cos u

u

]
exp

(
ε

2

∫ u

0
Si(s)ds

)
du

+1

}
exp

(
− ε

2

∫ Z

0
Si(u)du

)
. (54)

The first term in curly brackets on the right-hand side is due to
the inhomogeneous term, while the second term is the same as
Approximation 2. η̃3(Z) is shown as the triple dot-dashed curve
in Fig. 3. Note that for small Z this approximation has the form

η̃3(Z) ≈ a

{∫ Z

0

ε

4
ueεu

2/4dZ + 1

}
e−εZ

2/4

≡ a
2

{
1 + e−εZ

2/4
}
. (55)

As shown above in Eq. (43), this approximate solution has the
same Taylor series expansion as the small z expansion derived
earlier.

Finally, we can solve Eq. (51) numerically to deter-
mine the validity of using the mean value theorem to derive
Approximation 3. The numerical result for η̃ is shown in Fig. 3
as the solid curve.

There is a significant difference between the approximate so-
lutions η̃1(Z), η̃2(Z) and η̃3(Z) when Z is sufficiently large. The
neglect of the inhomogeneous term, Approximations 1 and 2,
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changes the coefficient of the Gaussian term at small Z and re-
sults in too much damping. However, it still remains Gaussian in
nature. For larger Z, Approximation 1 is more or less parallel to
the numerical solution to Eq. (47). Approximation 2 damps sig-
nificantly faster. Approximation 3 includes the inhomogeneous
term but the simplifying assumption of taking η̃ outside the inte-
gral predicts a slower damping rate at large Z. However, it does
have the correct behaviour for small Z.

The best approach in understanding the spatial damp-
ing of the kink mode through mode coupling to the Alfvén
mode in the transition layer, is to solve Eq. (47) numerically.
Keeping in mind the results shown in Fig. 3, the error in using
Approximation 3 is not too significant. It has the advantage of
having a solution in a closed analytical form. The functions Si
and Ci are rapidly obtained from computer algebra packages,
such as Maple, and it is easy to use a package to numerically
integrate the terms in Eq. (54). The small Z expansion, using
Eq. (54) gives the correct Gaussian behaviour.

5. Comparison with numerical results

The numerical solution to the linear MHD equations remains
the most accurate description of the damped kink mode. In this
section, the approximate solutions derived (and the methods il-
lustrated) in the previous section are compared with the actual
numerical results. Two different numerical codes are used, a
second order Lax-Wendroff scheme and a fourth order, finite
difference method. The numerical results obtained with the two
different methods are consistent and indicate that the results ob-
tained are not dependent on the method used to solve the linear
MHD equations. We consider two examples for a small tran-
sition layer, namely small ε (ε < κ < 1) and a small density
contrast (κ < ε < 1).

Figure 4 shows the results for a period of 36 s, a width of
the transition layer to radius ratio of 0.2 and a density contrast of
1.3. Thus, we have ε = 0.2 and κ ≈ 0.13 and the small κ Eq. (47)
is appropriate. The solution to Eq. (47), namely the amplitude
of the kink mode, is shown as a dashed curve, while the solid
curve is the full numerical solution for the kink mode, ξr , on the
axis, r = 0. The agreement is extremely good for all distances
apart from the leading initial wavelength. To illustrate the actual
form of the damping the logarithm of the absolute value of ξr is
also shown. What is clear is how the behaviour of the damping is
Gaussian for small distances, as shown in Sect. 4, and switches
to almost linear for larger distances. Despite having ε = 0.2,
the TTTB equation provides an extremely good fit to the full
solution. This is because the density ratio is only 1.3 and the
important parameter κ is small. Thus, the damping is weak and
Eq. (47) provides a good approximation.

Next we consider the situation where the period is 24 s,
which is just long enough for the long wavelength limit to apply,
the width of the transition layer to radius ratio is small (ε = 0.05)
and the density contrast is 2 (κ = 1/3). Note that the value of κ is
still quite small and we expect Eqs. (48) and (49) to give a good
approximation. The comparison is shown in Fig. 5. As above, the
dashed curve in Fig. 5 outlines the amplitude of the kink mode,
by solving Eq. (47). In addition, the solid curve is the result of
the small ε expansion given by Eq. (48). Both of the approxi-
mations match with the numerical solution to the linear MHD
equations, showing that, although the small κ equation has a rel-
atively simple form, the solution provides excellent agreement
with the numerical solution.

Finally, we show the results for a density contrast of 10, pe-
riod of 48 s and ε = 0.05 in Fig. 6. For these parameters, the thin

Fig. 4. Amplitude of η = ξr and logarithm of the modulus of η at the
centre of the tube shown as functions of distance z. The solid curve
represents the numerical solution, the dashed curve is the numerical so-
lution of (47). The period is 36 s, the ratio of the width of the transition
layer to the radius is 0.2 and the density ratio, ρi/ρe = 1.3.

tube, thin boundary analysis is still appropriate. However, what
is not so clear is whether the small κ description is still relevant.
From Sect. 4.1, we expect the form of the Gaussian profile to be
unaffected by the large density contrast, since the approximation
given by Eq. (42), is accurate to better than 2% for this choice.
Hence, the initial Gaussian part still provides an excellent ap-
proximation. In addition, at large z, the damping will approach
the limit predicted by Terradas et al. (2010) and, with the small
and large z limits fixed, the approximation given by the solution
to Eq. (47) continues to give an excellent fit to the numerical
results.

6. Conclusions

So which approximations should one use in analysing observa-
tions of propagating kink modes? For the magnetic flux tube
considered in this paper, if the density contrast is large, then the
full damped kink mode equation, Eq. (27), is used. However, if
the density contrast is smaller than about 3, then solutions to the
small κ equation, Eq. (47), agree with the full numerical results.
The solution to Eq. (47) can be approximated by the analytical
solution of Approximation 3, Eq. (54), where the Sine Integral,
S i, is readily computed in various computer algebra packages.

The different approximations used in solving Eq. (47) show
clearly that the Gaussian behaviour for small distances is not just
due to the form of driving on the boundary. It appears in the ho-
mogeneous kink mode equation as well, when the radial profile
of ξr on z = 0 is completely ignored. However, the form of the
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Fig. 5. Amplitude of η = ξr and logarithm of the modulus of η at the
centre of the tube shown as functions of distance z. The solid curve
represents the numerical solution using the fourth order scheme, the
dashed curve is the numerical solution of Eq. (47) and the red solid
curve is the small ε solution given by Eq. (48). The period is 24 s, the
width of the transition layer is 0.05 and the density ratio, ρi/ρe = 2.

boundary driver does influence the value of the coefficient of the
Gaussian term. It is possible to eliminate the Gaussian damp-
ing by selecting a very specific photospheric driving profile, that
has strong localised variations inside the transition layer. Any
smoother profile will result in the Gaussian behaviour noted in
this paper.

The nature of the damping of the kink mode changes at larger
distances to roughly linear, although there is really a series so-
lution here which varies gently over several wavelengths. The
change in character from Gaussian to “almost linear” occurs be-
tween the values of Z = 2 and Z = 4 and is essentially indepen-
dent of the width of the transition layer. If L is the wavelength
of the undamped kink mode, this change over distance can be
expressed in terms of L as 2L/πκ and 4L/πκ. For a density ratio
of 2, or κ = 1/3, the Gaussian behaviour is appropriate for at
least 2 to 3 wavelengths, while a density ratio of 1.3 (κ = 0.13),
on the other hand, it is valid for 5 to 10 wavelengths.

The small-κ equation is a relatively simple equation that can
be used to investigate the damping of the kink mode and the cou-
pling to the Alfvén mode in the transition layer. While both κ and
ε should be small, whether κ < ε or visa-versa is unimportant.
The comparison between the predictions of the small-κ equation
and the full numerical solution is extremely good for the cases
shown. However, a detailed parameter study is necessary to de-
termine how good the small-κ assumption is (see Pascoe et al.
2013). This also determines how to use both the Gaussian and

Fig. 6. Line styles as in Fig. 5. The period is 48 s, the width of the
transition layer is 0.05 and the density ratio, ρi/ρe = 10.

linear damping rates when analysing observations of propagat-
ing kink waves.

There are several possible extensions to this work, such as
including stratification, field line curvature and magnetic field
expansion. The density decrease in the direction of wave prop-
agation is known to modify the amplitude of the velocity and
magnetic field perturbations, increasing one and decreasing the
other so that, when the wavelength is less than the stratification
length, the perturbed Poynting flux remains constant. Most re-
cently Soler et al. (2011b) have investigated the effect of strat-
ification. When the density is decreasing away from the loca-
tion of the driver, there is a competition between the increase
in amplitude, due to the stratification, and a decrease due to the
damping. Thus, we expect the same competition to occur be-
tween the Gaussian damping and the amplitude increase. If the
density varies over a distance much shorter than the wavelength,
there may be reflection.

The effect of field line curvature on the kink wave has been
reviewed recently by Van Doorsselaere et al. (2009). For a semi-
toroidal loop, the curved extension to the straight cylinder con-
sidered here, they find that curvature does not change either
the normal mode frequency or the damping due to the narrow
inhomogeneous layer. Only when ε, the ratio of the transition
layer width to loop radius, is large is there a significant effect.
However, large values of ε cannot be accurately treated by the
Thin Tube, Thin Boundary approximation used here. The equa-
tions for the evolution of propagating, damped kink modes for
large values of ε must be solved numerically (see Pascoe et al.
2013, in this issue).

The expansion of the flux tube cross section has been stud-
ied by, for example, De Moortel et al. (2000) and Smith et al.
(2007). As the flux tube widens, the wavelength shortens. This
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will enhance the damping through mode coupling. However, the
shortening of the wavelength will eventually invalidate the long
wavelength assumption of the thin tube. If the expansion of the
magnetic field is characterised by the length LA, we would ex-
pect the Gaussian damping to be the dominate effect for LA > Lg,
where Lg is defined in Eq. (44). On the other hand, if LA < Lg,
the Gaussian damping envelope is likely to be modified.

The Gaussian form of the damping demonstrated in this pa-
per may be modified by the various extensions to the straight,
unstratified plasma cylinder described above. However, it is clear
that the straightforward application of a simple linear exponen-
tial damping, while easy to apply, may give misleading results.
A detailed comparison of these results when used for coronal
seismology, is discussed in the accompanying paper by Pascoe
et al. (2013).

Throughout the paper we have used the term “mode cou-
pling” to describe the conversion of energy from the compres-
sional (kink-like) driven wave to an incompressible (Alfvén-
like) wave. Both terms refer to the same physical processes, but
in different situations, and “mode coupling/conversion” can be
thought of as more general than the term “resonant absorption”.
Consider the system of equations driven harmonically in time
but studied with different boundary conditions. In this paper, the
field lines are open and the axial wavenumber, k, is determined
by the solution to these equations. If, on the other hand, the ends
of the field lines are tied and it is the radial boundary that is
driven, then the axial wavenumber becomes a discrete quantity.
There is a large volume of papers considering this second case.
The main features are that the global kink mode resonates at one
particular radius, where its energy is absorbed, and its eigenfunc-
tion is singular here. The fact that the location of the singularity
corresponds to a resonant matching of kink and natural Alfvén
frequencies has led to this solution being termed “resonant” ab-
sorption. The solution we describe differs in that we do not have
tied ends to our field lines, so there is no quantized k and no nat-
ural Alfvén frequency. Moreover, our solution does not have any
singularities: there is simply an accumulation of energy around
a particular radius, but there is no singularity. The location of
energy accumulation may be identified by the matching the kink
and Alfvén phase speeds (Allan & Wright 2000). Of course, if
k was determined by line tied boundary conditions, then match-
ing phase speeds is equivalent to matching natural frequencies.
Finally, we note that there is no singularity in the solutions if the
finite length loop case is studied as an initial value problem and
is not driven continually in a harmonic manner.

This paper has presented a detailed mathematical derivation
of the damping of propagating kink waves. Amid all the math-
ematical expressions, there are only a few key results that are
necessary for applying these results in practice. A simple flow di-
agram, shown in Fig. 7, identifies the important equations to use
and the conditions under which they apply. Obviously the thin
boundary assumption is essential in deriving the appropriate ex-
pressions from integrating across the transition layer. Hence, the
results in this paper will provide useful results for ε � 0.2. While
the general damped kink mode is described by Eq. (27), the
much simpler equation, Eq. (47), that was derived only assum-
ing κ � 1, is applicable for all density contrasts. Equation (47)
can be solved numerically but, if ε ≤ 0.05 then Eq. (48) provides
a very good approximation to the damping envelope. Finally, if
0.05 < ε � 0.2, a useful approximation can be derived on us-
ing η̃3 in Eq. (54) for general z and Eq. (55) for small values
of κkz/2.

Fig. 7. Flow chart to identify the appropriate expressions to use.

Acknowledgements. D.J.P. acknowledges financial support from STFC. I.D.M.
acknowledges support of a Royal Society University Research Fellowship.
M.S.R. acknowledges the support by a Royal Society Leverhulme Trust Senior
Research Fellowship and by an STFC grant. J.T. acknowledges support from
the Spanish Ministerio de Educación y Ciencia through a Ramón y Cajal grant,
financial support from MICINN/MINECO and FEDER Funds through grant
AYA2011-22846 and funding from CAIB through “Grups Competitius” scheme
and FEDER Funds is also acknowledged. The computational work for this pa-
per was carried out on the joint STFC and SFC (SRIF) funded cluster at the
University of St Andrews (Scotland, UK).

References

Abramowitz, M., & Stegun, I. A. 1965, Handbook of Mathematical Functions,
available at http://www.nr.com/aands/

Allan, W., & Wright, A. N. 2000, JGR, 105, 317
Boyce, W. E., & DiPrima, R. C. 2008, Elementary Differential Equations and

Boundary Value Problems (John Wiley & Sons)
Cirtain, J. W., Golub, L., Lundquist, L., et al. 2007, Science, 318, 1580
De Moortel, I., & Nakariakov, V. M. 2012, Roy. Soc. Phil. Trans. A, 370, 3193
De Moortel, I., Hood, A. W., & Arbert, T. D. 2000, A&A, 354, 334
De Pontieu, B., McIntosh, S. W., Carlsson, M., et al. 2007, Science, 318, 1574
Dymova, M. V., & Ruderman, M. S. 2006, A&A, 457, 1059
Goossens, M., Hollweg, J. V., & Sakurai, T. 1992, Sol. Phys., 138, 233
Goossens, M., Terradas, J., Andries, et al. 2012, A&A, 503, A213
He, J.-S., Marsch, E., Tu, C.-Y., & Tian, H. 2009, ApJ, 705, L217
Hollweg, J. V., & Yang, G. 1988, J. Geophys. Res., 93, 5423
Ofman, L. 2010, Liv. Rev. Sol. Phys., 7, 4
Okamoto, T. J., Tsuneta, S., Berger, T. E., et al. 2007, Science, 318, 1577
Parnell, C. E., & De Moortel, I. 2012, Roy. Soc. Phil. Trans. A, 370, 3217
Pascoe, D. J., Wright, A. N., & De Moortel, I. 2010, ApJ, 711, 990
Pascoe, D. J., Wright, A. N., & De Moortel, I. 2011, ApJ, 731, 73
Pascoe, D. J., Hood, A. W., De Moortel, I., & Wright, A. N. 2012, A&A, 539,

A37
Pascoe, D. J., Hood, A. W., De Moortel, I., & Wright, A. N. 2013, A&A, 551,

A40
Ruderman, M. S. 2011, A&A, 534, A78 (Paper I)
Ruderman, M. S., & Roberts, B. 2002, ApJ, 577, 475
Ruderman, M. S., & Terradas, J. 2012, A&A, submitted
Smith, P. D., Tsiklauri, D., & Ruderman, M. S. 2007, A&A, 475, 1111
Soler, R., Terradas, J., & Goossens, M. 2011a, ApJ, 736, 10
Soler, R., Terradas, J., Verth, G., & Goossens, M. 2011b, ApJ, 734, 80
Terradas, J., Goossens, M., & Verth, G. 2010, A&A, 524, A23
Tomczyk, S., & McIntosh, S. W. 2009, ApJ, 697, 1384
Tomczyk, S., McIntosh, S. W., Keil, S. L., et al. 2007, Science, 317, 1192
Van Doorsselaere, T., Verwichte, E., & Terradas, J. 2009, Space Sci. Rev., 149,

299
Verth, G., Terradas, J., & Goossens, M. 2010, ApJ, 718, L102

Pages 11 to 14 are available in the electronic edition of the journal at http://www.aanda.org

A39, page 10 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220617&pdf_id=7
http://www.nr.com/aands/
http://www.aanda.org


A. W. Hood et al.: Damping of kink waves by mode coupling. I.

Appendix A: Derivation of kink mode equation

We give a short derivation of the basic equations, starting from Eqs. (3)–(5). The solutions are obtained in the three regions, inside
the flux tube, outside the flux tube and in the transition layer.

A.1. Internal solution

Using the thin tube (or long wavelength) limit, the internal solutions can be expressed as

ξr = η(z, t), ξϕ = η(z, t),
μ0P

B2
0

= rLiη (A.1)

Hence, at r = R − l/2 = R(1 − ε/2), we have

ξr = η,
μ0Pi

B2
0

= R
(
1 − ε

2

)
Liη. (A.2)

A.2. External solution

Again using the thin tube limit, we have

ξr =
R2(1 + ε/2)2

r2
ξe(z, t), ξϕ = −ξr, μ0P

B2
0

= −R2(1 + ε/2)2

r
Leξe(z, t). (A.3)

Hence, at r = R + l/2 = R(1 + ε/2), we have

ξr = ξe,
μ0Pe

B2
0

= −R
(
1 +
ε

2

)
Leξe. (A.4)

Since both ξr and P are continuous across the transition layer as ε → 0, we can state ξe = η + δξr, Pe = Pi + δP, where both δξr
and δP tend to zero as ε → 0. Using (A.4), we have, correct to O(ε2),

ξe = η + δξr,

−Le (η + δξr)
(
1 +
ε

2

)
= Liη

(
1 − ε

2

)
+
μ0δP

RB2
0

· (A.5)

Rearranging Eq. (A.5), the final equation for the propagating kink mode is

Lkη = −M ≡ −1
2

⎛⎜⎜⎜⎜⎝Leδξr +
1
R
μ0δP

B2
0

− ε
2
Liη +

ε

2
Leη

⎞⎟⎟⎟⎟⎠ . (A.6)

Note that the right hand side of (A.6) is of O(ε). It is the leading order expressions for δξr and δP that we now need to calculate and
this is done from the transition layer solutions.

A.3. Transition layer solution

Integrating Eq. (3) across the thin transition layer, we have

[
rξr

]R+l/2
R−l/2 = R(1 + ε/2)ξe − R(1 − ε/2)η =

∫ R+l/2

R−l/2
ξϕdr,

δξr + εη =
1
R

∫ R+l/2

R−l/2
ξϕdr + O(ε2). (A.7)

Integrating (4) we have

μ0δP

RB2
0

=
1
R

∫ R+l/2

R−l/2
Lξrdr =

1
R

∫ R+l/2

R−l/2
Lηdr + O(ε2). (A.8)

Remembering that η is independent of r,
∫ R+l/2

R−l/2
Ldr is l times the average value of the operatorL and, for the linear density profile,

the average is Lk, thus,

1
R

∫ R+l/2

R−l/2
Lξrdr = εLkη = O(ε2), (A.9)
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since Lkη = O(ε). Hence, for the linear density profile

μ0δP

RB2
0

= O(ε2). (A.10)

We substitute Eq. (A.7) into Eq. (A.6) and, using both Eq. (A.10), Li + Le = 2Lk and that again Lkη = O(ε), this results in the
propagating kink mode equation

Lkη = − 1
2R
Le

∫ R+l/2

R−l/2
ξϕdr. (A.11)

A.4. Integration of ξϕ across the transition layer

In this section we evaluate

1
2R

∫ R+l/2

R−l/2
ξϕdr =

ε

4

∫ 1

−1
ξϕdX. (A.12)

Using the solution for ξϕ given by (26), the integral across the transition layer is made up of four terms. These are evaluated in turn.

A.4.1. Term 1

Now the integral of the first term on the RHS of Eq. (26), due to the radial profile of the driving boundary condition of ξϕ, is

∫ 1

−1
a sgn(−X)ei(ωt−kχz)dX = a

∫ 0

−1
ei(ωt−k

√
(1−κX)z)dX − a

∫ 1

0
ei(ωt−k

√
(1−κX)z)dX

= −
(

4a
k2κz2

+ i
4a
kκz

)
eiωT +

2a
k2κz2

(
ei(ωt−k

√
1−κz) + ei(ωt−k

√
1+κz)

)

+i
2a
kκz

(√
1 − κei(ωt−k

√
1−κz) +

√
1 + κei(ωt−k

√
1+κz)

)

= −eiωT

[
4a

k2κz2
+ i

4a
kκz
− 2a

k2κz2

(
eikz(1−√1−κ) + eikz(1−√1+κ)

)
− i

2a
kκz

(√
1 − κeikz(1−√1−κ) +

√
1 + κeikz(1−√1+κ)

)]
.

For large kz, this is proportional to (kz)−1. The influence of the choice of boundary condition does becomes less important after
several wavelengths.

For small values of kz, we can expand the result in a series to show that the first term is

2
3κ

aeiωT
(
2 − (1 + κ)3/2 − (1 − κ)3/2

)
ikz.

For small κ, Term 1 can be expressed as

−2ia
Z

(1 − cos Z) aeiωT + O(κ)

where we have defined

Z =
κs
2
=
κkz
2
· (A.13)

A.4.2. Term 2

The second term on the RHS integrates to give

− aκ
2

∫ 1

−1

ei(ωt−k
√

1−κXz)

χ(1 + χ)
dX = −aκ

2
eiωT+i2kz

∫ 1

−1

e−ikz(1+
√

1−κX)

√
1 − κX(1 +

√
1 − κX)

dX

= −aeiωT+i2kz
[
Ci(kz(1 +

√
1 + κ)) − Ci(kz(1 +

√
1 − κ)) − iSi(kz(1 +

√
1 + κ)) + iSi(kz(1 +

√
1 − κ))

]
,

where Ci(x) and Si(x) are the Cosine integral and Sine integral respectively, defined by

Ci(x) = γ + ln x +
∫ x

0

1 − cos t
t

dt,
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where γ = 0.57721 . . . is Euler’s constant and

Si(x) =
∫ x

0

sin t
t

dt.

Again this term is proportional to (kz)−1 for large kz.
For small values of kz, it is easier to start from the integral expression. Hence, the first two terms in the Taylor series are

aeiωT

⎧⎪⎪⎨⎪⎪⎩− ln

⎡⎢⎢⎢⎢⎣1 +
√

1 + κ

1 +
√

1 − κ

⎤⎥⎥⎥⎥⎦ − 2ikz ln

⎡⎢⎢⎢⎢⎣1 +
√

1 + κ

1 +
√

1 − κ

⎤⎥⎥⎥⎥⎦ + ikz
(√

1 + κ − √1 − κ
)⎫⎪⎪⎬⎪⎪⎭ .

For small values of κ, term 2 can be shown to reduce to

− κ
2

sin Z
Z

aeiωT + O(κ2),

where Z = κkz/2, as above.

A.4.3. Term 3

The third term is

∫ 1

−1

ikκ
2χ

ei(ωt−kχz)

{∫ z

0
η̃(u)e−ik(1−χ)udu

}
dX =

ikκeiωT

2

∫ z

0
η̃(u)

⎧⎪⎪⎨⎪⎪⎩
∫ 1

−1

eik(1−√1−κX)(z−u)

√
1 − κX dX

⎫⎪⎪⎬⎪⎪⎭ du

= eiωT
∫ z

0
η̃(u)

eik(z−u)(1−√1−κ) − eik(z−u)(1−√1+κ)

z − u
du.

The expansion of the coefficient of η̃ for small kz gives to leading order

ik eiωT
∫ kz

0
η̃(u)

[√
1 + κ − √1 − κ

]
du.

The expansion for small κ gives, where Z = κkz/2,

2i eiωT
∫ Z

0
η̃(u)

sin(Z − u)
Z − u

du + O(κ).

A.4.4. Term 4

Consider the final term,

κ

2
η̃(z)eiωT

∫ 1

−1

1
χ(1 + χ)

dX =

κ

2
η̃(z)eiωT

∫ 1

−1

1√
(1 − κX)(1 +

√
(1 − κX)

dX,

= −η̃(z)eiωT
[
ln(1 +

√
1 − κX)

]1

−1
,

= η̃(z)eiωT ln

⎡⎢⎢⎢⎢⎣1 +
√

1 + κ

1 +
√

1 − κ

⎤⎥⎥⎥⎥⎦ ·

The expansion for small κ gives

eiωT κ

2
η̃(z) + O(κ2).
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A.5. Final expression

We can now bring together the expressions for all four terms to rewrite the kink mode equation, (A.11), as

Lkη = − εLe

4

∫ 1

−1
ξϕdX,

= − ε
4
Le

{
−eiωT

[
4a

k2κz2
+ i

4a
kκz
− 2a

k2κz2

(
eikz(1−√1−κ) + eikz(1−√1+κ)

)

−i
2a
kκz

(√
1 − κeikz(1−√1−κ) +

√
1 + κeikz(1−√1+κ)

)]
+ aeiωT ei2kz [

Ci(p4kz) − Ci(p3kz)
]

−iaeiωT ei2kz [
Si(p4kz) + iSi(p3kz)

]
+

∫ z

0
η(u)

eik(z−u)(1−√1−κ) − eik(z−u)(1−√1+κ)

z − u
du + η(z) ln

[
p4

p3

]⎫⎪⎪⎬⎪⎪⎭ ,

= − εLe

4

{
F(kz)eiωT +

∫ z

0
η(ku)g(z − u)du + η ln

[
p4

p3

]}

= eiωT εk
2κ

4

(
F(kz) +

∫ z

0
η̃(ku)g(z − u)du + η̃ ln

[
p4

p3

])
− ε

4
Lk

{
eiωT F(kz) +

∫ z

0
η(ku)g(z − u)du + η ln

[
p4

p3

]}
·

Expressing η as η̃(z)eiωT , our final equation is

L1η̃ =
εk2κ

4

(
F(kz) +

∫ z

0
η̃(ku)g(z − u)du + η̃ ln

[
p4

p3

])
− ε

4
L1

{
F(kz) +

∫ z

0
η̃(ku)g(z − u)du + η̃ ln

[
p4

p3

]}
, (A.14)

where p3 = 1 +
√

1 − κ, p4 = 1 +
√

1 + κ, L1 = d2/dz2 − 2ikd/dz and Le = −k2κ + Lk. In Eq. (A.14), the operator, L1, acting on
the final terms in the curly brackets on the right hand side, results in terms that are small for κ � 1. In fact, the terms remain small
even for κ ≤ 1/2. Hence, we will neglect them and the comparison with the numerical results confirms this is a valid assumption
(see Sect. 5).

Equation (A.14) is an inhomogeneous, integro-differential equation for η̃(z), the slowly varying amplitude function that describes
the damping of the kink mode.
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