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ABSTRACT

Aims. We investigate the damping process for propagating transverse velocity oscillations, observed to be ubiquitous in the solar
corona, due to mode coupling.
Methods. We perform 3D numerical simulations of footpoint-driven transverse waves propagating in a low β coronal plasma with a
cylindrical density structure. Mode coupling in an inhomogeneous layer leads to the coupling of the kink mode to the Alfvén mode,
observed as the decay of the transverse kink oscillations.
Results. We consider the spatial damping profile and find a Gaussian damping profile of the form exp(−z2/L2

g) to be the most congruent
with our numerical data, rather than the exponential damping profile of the form exp(−z/Ld) used in normal mode analysis. Our results
highlight that the nature of the driver itself will have a substantial influence on observed propagating kink waves.
Conclusions. Our study suggests that this modified damping profile should be taken into account when using coronal seismology to
infer local plasma properties from observed damped oscillations.
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1. Introduction

Standing kink oscillations of coronal loops have attracted atten-
tion as a possible diagnostic tool for the solar corona since the
observations of post-flare loops by the TRACE satellite (e.g.,
Aschwanden et al. 1999; Nakariakov et al. 1999). More recently,
there has been interest in propagating kink waves, following
Tomczyk et al. (2007) and Tomczyk & McIntosh (2009) who
used the ground-based coronagraph CoMP to observe spatially
and temporally ubiquitous propagating transverse velocity os-
cillations with periods of about 5 min. Tomczyk & McIntosh
(2009) reported strong damping of these propagating waves
which was interpreted by Pascoe et al. (2010) in terms of cou-
pling between the kink and Alfvén modes.

For the case of standing kink modes in a coronal loop be-
ing damped by resonant absorption, the kink eigenmode has a
spatial structure determined by the loop parameters and the har-
monic order of the mode. The global kink mode, for example,
has order N = 1 and a wavelength λ = 2L/N for a loop of
length L. The standing mode amplitude varies as a function of
position along the loop. It is therefore instructive to consider a
fixed point along the loop, such as the anti-node of displace-
ment, and then determine the oscillation amplitude as a function
of time. For standing kink modes, an exponential damping en-
velope is obtained (e.g., Ruderman & Roberts 2002) of the form

A(t) = A0 exp(−t/τ). (1)

Here the damping time τ depends on the period of oscillation P
and the loop parameters as

τ

P
= C

a
l
ρ0 + ρe

ρ0 − ρe
, (2)

where a is the loop radius, l is the inhomogeneous layer thick-
ness, and ρ0 and ρe are the internal and external mass densities,

respectively. The constant C depends upon the chosen density
profile in the inhomogeneous layer, e.g. for a linear density pro-
file C = (2/π)2 (see e.g., Hollweg & Yang 1988; Goossens et al.
1992). This equation was derived using the thin tube, thin bound-
ary (TTTB) approximation. The assumption of a thin boundary
was relaxed by Van Doorsselaere et al. (2004) who performed a
numerical investigation for thick inhomogeneous layers.

Terradas et al. (2006) performed numerical simulations for
standing kink modes in straight line-tied coronal loops with a
thick inhomogeneous layer. The standing kink modes are excited
by a planar pulse and, after an initial transitory period, undergo
exponential damping by resonant absorption as given by Eqs. (1)
and (2).

For a propagating kink wavepacket in an inhomogeneous
loop, mode coupling will cause the kink oscillations to de-
cay. The mode coupling condition is satisfied where ω =
VA(r)kz, where ω is the dominant (angular) frequency of the
kink wavepacket, VA(r) is the local Alfvén speed and kz is
the local longitudinal wavenumber (Pascoe et al. 2011a). If the
wavepacket propagates with group speed Vg = ∂ω/∂k, then at a
time t the distance it has propagated along the loop is z = Vgt. We
can, therefore, consider the damping of the wavepacket roughly
as a function of distance as

A(z) = A0 exp(−z/Ld) (3)

where Ld = Vgτ is the damping length (Pascoe et al. 2010).
Since τ ∝ P ∝ 1/ f , the damping length will depend on the fre-
quency of the oscillation. Terradas et al. (2010) considered the
frequency-dependence of the damping length scale in detail, and
Verth et al. (2010) found evidence of the effect of mode coupling
acting as a low-pass filter in CoMP data.

These results strictly apply to the situation where all fields
are varying as exp i(kzz − ωt), but provide a useful guide for the
decay length of wavepackets and other situations where there
is not a single frequency or wavenumber such as initial value
problems or systems with a broadband frequency driver.
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In this paper, we focus on the damping profile as a function
of height for propagating kink waves driven by harmonic foot-
point motions. We find that for propagating modes, the exponen-
tial damping profile does not provide an adequate account of the
decay at low heights.

2. Model

The initial equilibrium we consider is the same as in Pascoe et al.
(2010). We consider a straight, uniform magnetic field in the
z direction. We choose the plasma β = 0.001 to be small, ap-
propriate for the solar corona. Our density profile describes a
cylindrical tube aligned with the z axis. We define a cylindrical
core region with radius r ≤ b, surrounded by an inhomogeneous
layer b < r ≤ a. The density is ρ0 in the core region and ρe in the
external region (r > a). In between is the inhomogeneous layer
of width l = a − b, where the density varies linearly from ρ0 to
ρe. We choose a density contrast ρ0/ρe = 2 and inhomogeneous
layer thickness l/a = 0.5. The Alfvén speed varies from CA0 in
the core region to CAe in the external region.

Rather than simulating a finite wavetrain as in Pascoe et al.
(2010), the driver is chosen to simulate continuous harmonic
footpoint motions displacing the tube axis. The driving condi-
tion is applied to the lower z boundary and prescribes the x and
y components of velocity,

u = sin(ωt)u, u (x, y) = (ux, uy, 0) (4)

where ω is the (constant) angular frequency of the driver and
where the spatial dependence u (x, y) has the same dipole form
as in Pascoe et al. (2010) (see their Eq. (4) and discussion
in text). We choose the maximum value of the perturbation
u/CAe = 0.002 to be small in order to avoid non-linear effects.

Modelling an exact kink normal mode requires a driver with
an azimuthal velocity profile that is not just discontinuous but
actually singular. Instead a reasonable compromise could be to
consider an azimuthal velocity with a step function (finite) dis-
continuity. Such a driver (as in Terradas et al. 2010) would ex-
cite mainly the kink normal mode with only a very small con-
tribution from other disturbances. When using this particular
driver in a thin flux tube with a narrow inhomogeneous layer
(TTTB approximation), the exponential damping of Terradas
et al. (2010) is to be expected. However, it is unlikely that the
Sun will produce a driving velocity pattern that is discontinuous
so we mainly consider a smooth (i.e., without discontinuities)
driver.

The simulations are performed using the MHD code lare3d
(Arber et al. 2001). The numerical domain is much larger in the
z direction than in x or y in order to accommodate the contin-
uously driven propagating wavepacket. However, the resolution
is higher in the x and y directions in order to resolve the activity
in the inhomogeneous layer for as long as possible, particularly
when phase mixing of the Alfvén mode takes place. Typical val-
ues used are 400× 400× 400 grid points for a numerical domain
of 6 × 6 × 150 Mm (a = 1 Mm). The boundary conditions are
periodic in the x and y directions, and are placed sufficiently far
from the flux tube to not affect the results. All simulations were
run without resistivity.

3. Results

The transverse velocity perturbations excited at the lower bound-
ary propagate along the magnetic field. The simulation ends be-
fore perturbations reach the upper boundary, to avoid unwanted
reflections.

Fig. 1. Magnetic field components as a function of height for a sim-
ulation driven with a single harmonic frequency. The solid lines and
dotted lines represent bx and bz, respectively. The top panel shows the
kink mode along the loop axis. The middle panel shows the kink mode
inside the inhomogeneous layer. The bottom panel shows the Alfvén
mode in the inhomogeneous layer. (Note that bz has nodes at the (x, y)
locations in the top and bottom panels.)

Figure 1 shows the resultant magnetic field components,
each as a function of height (or propagation distance) z, at sev-
eral locations in the numerical domain. The upper panel shows
the perturbations to the magnetic field bx (solid line) and bz (dot-
ted line) at the loop axis, where b(t) = B(t) − B(t = 0). The
component bz has small fluctuations indicating an almost incom-
pressible (kink) mode, and bx varies harmonically according to
the driven footpoint oscillation which propagates upwards and
undergoes damping due to mode coupling. The dashed line is a
damping profile with a Gaussian form

A(z) = A0 exp(−z2/L2
g) (5)

where Lg is empirically determined by fitting. Although Lg
has been chosen to give the best fit, the form of the Gaussian
profile seems much more congruent with the numerical data
than the exponential envelope found in the modelling of
Terradas et al. (2010) since the radial profile of a smooth driver
in a flux tube with a wide inhomogeneous layer cannot be rep-
resented by a single eigenmode. It is clear that an exponential
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Fig. 2. Transverse velocity component vx as a function of height at the
loop axis. The dot-dashed (red) line represents a Gaussian envelope of
the form given in Eq. (5). The dashed line is the exponential decay given
by Eqs. (2) and (3).

damping profile, as demonstrated by standing modes, would not
provide an adequate fit to our results. The Gaussian damping
profile produces an excellent fit to the data over all values of
z, except for the expected disparity at the leading edge (see e.g.,
Hood et al. 2005, for the case of damping of wavetrains by phase
mixing).

For this particular simulation the boundary was driven with
ω = 0.377 s−1. Our simulation was repeated for several driver
frequencies, each showing the same Gaussian damping profile,
with its own particular value of Lg which decreases with fre-
quency as Lg ∝ 1/ f .

The middle panel of Fig. 1 shows the magnetic field compo-
nents as a function of z at y = 0 and at the centre of the inho-
mogeneous layer (x = 0.75). This region is close to the (radial)
antinode in bz. Note that our driver (Eq. (4)) is compressible in
the transition layer and the amount of compression will influ-
ence the magnitude of bz. The lower panel shows the magnetic
field components again at the centre of the inhomogeneous layer
but at x = 0 (where bz has a radial node). This is also the lo-
cation of the antinode for the m = 1 Alfvén mode, represented
by bx, which grows in z as energy is transferred to the Alfvén
mode from the kink mode. It is interesting to note that a similar
growth in Alfvén wave amplitude was found in the simulations
and modelling of Mann & Wright (1995) and Mann et al. (1997).

Figure 2 shows the transverse velocity component vx as a
function of height at the loop axis with two spatial damping
profiles added. The dot-dashed (red) line represents a Gaussian
envelope of the form given in Eq. (5). The dashed line is the
exponential decay given by Eqs. (2) and (3) with Vg = Ck =√

2/(1 + ρe/ρ0)CA0 and C = (2/π)2 as in, e.g., Terradas et al.
(2010). This formula, which is commonly used and is based
upon the thin flux tube and thin boundary layer approximations,
gives an exponential damping length of Ld ≈ 25 Mm. Our simu-
lations indicate a different (Gaussian) envelope is more appro-
priate and has a larger length scale of Lg ≈ 52 Mm. These
differences must be accounted for when interpreting data and
simulations.

3.1. Numerical simulation in cylindrical coordinates

In order to confirm our results in the absence of an analytical
treatment, we perform the same experiment with an indepen-
dent numerical code in which perturbations are proportional to
exp(iθ). This alternative Lax-Wendroff code differs in using a

Fig. 3. Snapshot of radial velocity vr (top) and vθ (bottom) as a function
of r and z for a kink wave propagating in a cylindrical coronal loop with
an inhomogeneous layer (0.5 < r ≤ 1). The velocity components in the
core (r ≤ 0.5) are damped as the energy is transferred by mode coupling
to azimuthal Alfvén oscillations in the inhomogeneous layer.

cylindrical rather than Cartesian coordinate system. It also solves
the linear MHD equations, rather than lare3d which solves the
full nonlinear MHD equations although we consider small am-
plitude perturbations to approximate the linear regime. The same
initial equilibrium, driver and boundary conditions are used as in
the results discussed above.

Figure 3 shows snapshots of the radial and azimuthal veloci-
ties at the end of the simulation. Both velocity components show
damping with increasing height z in the core region r ≤ 0.5. The
lower panel clearly shows the growth of the Alfvén mode, vθ,
inside the inhomogeneous shell.

Figure 4 shows a plot of vr (top) and bz (bottom) as a function
of height z at the centre of the inhomogeneous layer (i.e. where
the condition for mode coupling is satisfied). The dashed line
is a Gaussian envelope and is in excellent agreement with the
calculated damping rate, except again for the expected disparity
at the leading edge (e.g., Hood et al. 2005).

The top panel of Fig. 5 shows the location of the zeroes of
vr (crosses) and bz (diamonds) for the oscillations in Fig. 4. The
zeroes for bz have been shifted to be in phase with those for vr.
The dashed (red) line shows the predicted locations based on the
driving period P and the kink speed Ck. In the long-wavelength
limit ka � 1, the kink mode will have wavelength λ ≈ CkP so
the zeroes are separated by λ/2. The zeroes for bz are in good
agreement with the predictions based on the kink mode. The
dot-dashed (black) line shows the predicted locations of the ze-
roes based on the Alfvén speed CA0. The zeroes of vr initially
follow the estimate based on the kink speed, but later switch
(n > 4) to follow more closely the estimate based on the inter-
nal Alfvén speed. This crossover provides more support for the
interpretation of propagating transverse velocity perturbations as
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Fig. 4. Radial velocity vr (top) and longitudinal magnetic field bz (bot-
tom) as a function of height z at the centre of the inhomogeneous layer.
The dashed lines represent a Gaussian envelope of the form given in
Eq. (5).

a genuine coupling of the kink and Alfvén modes (Pascoe et al.
2010).

The bottom panel of Fig. 5 shows the natural logarithm of
the amplitude of the vr signal as a function of height. The dashed
line represents a quadratic fit, supporting the Gaussian envelope
in Eq. (5).

4. Discussion

We have considered the propagation of harmonic transverse ve-
locity perturbations through a low β plasma with cylindrical den-
sity structure. The transfer of energy from transverse kink oscil-
lations to azimuthal Alfvén motions, due to mode coupling, is
observed as a decay of the initial kink disturbance. For a broad-
band driver, each Fourier component can be considered to have a
damping length scale Ld = Vgτ, where τ ∝ P ∝ 1/ f . Higher fre-
quency components will therefore be damped over shorter prop-
agation distances than lower frequency components. In this way
mode coupling acts as a low-pass filter, as noted by Terradas
et al. (2010) and Verth et al. (2010).

Pascoe et al. (2010) showed that normal mode calculations
can be a useful indicator of the behaviour of propagating wave-
trains when the spatial and temporal scales match (see also
Terradas et al. 2010). In this paper, we have demonstrated that
the damping profile of propagating transverse velocity perturba-
tions in a flux tube with a wide inhomogeneous layer differs from
the exponential profile of standing or normal modes in z, and that
a Gaussian damping profile is most congruent with our numeri-
cal data. However, for a flux tube with a narrow inhomogeneous
layer (TTTB), the result of Terradas et al. (2010) should be re-
covered in the case of a driver with a singular azimuthal velocity

Fig. 5. The top panel shows the location of the zeroes of vr (crosses)
and bz (diamonds) for the oscillations in Fig. 4. The zeroes for bz have
been shifted to be in phase with those for vr . The dashed (red) and dot-
dashed (black) lines represent the predicted values for the kink mode
and Alfvén mode, respectively. The bottom panel shows the natural log-
arithm of the amplitude of the vr signal as a function of height. The
dashed line indicates Gaussian nature of the spatial damping profile.

profile of the form 1/(r − R), where R is the radius at which the
kink speed equals the local Alfvén speed. This is demonstrated
in Fig. 6, where the top panel shows the logarithmic amplitude
of the radial velocity perturbations at the axis of a flux tube with
a narrow inhomogeneous layer with l/a = 0.1. These perturba-
tions were generated by a driver with a step function disconti-
nuity in the radial profile of the azimuthal velocity. The bottom
panel, on the other hand, shows the simulation result using a
smooth driving profile and a wide inhomogeneous layer l/a =
2/3. In both panels the dashed line corresponds to an exponential
damping profile, whereas the dot-dashed line corresponds to a
Gaussian damping profile. It is clear that for the top panel (TTTB
model) the exponential decay gives an excellent fit after the first
few wavelengths, demonstrating that in this limit we do indeed
recover the results of Terradas et al. (2010). For a smooth (con-
tinuous) driver with a wide inhomogeneous layer, the damping
profile is mainly Gaussian apart from at large heights where the
exponential profile is recovered. However, in the TTTB regime
(top panel) the damping is very weak even at large heights. The
observations have shown strong in situ attenuation of the trans-
verse velocity perturbations (Tomczyk & McIntosh 2009) and
hence, the strong damping achieved in our wide layer simula-
tions (bottom panel) seems more representative. Accordingly,
care should be taken when using the spatial damping length
in coronal seismology applications. For example, when strong
damping is observed, our simulations show that fitting to an
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Fig. 6. Logarithmic amplitude of the radial velocity perturbations at the
axis of a flux tube for a narrow inhomogeneous layer with l/a = 0.1,
using a driver with a radially discontinuous azimuthal component (top)
and for a wide inhomogeneous layer l/a = 2/3, using a smooth driver
(bottom). The dashed and dot-dashed lines correspond to exponential
and Gaussian spatial damping profiles, respectively.

exponential damping rate low in the corona would underesti-
mate the mode coupling rate and could infer, say, less density
structuring than is actually present.

If we consider the excitation of a standing kink mode in a
coronal loop with an inhomogeneous layer, if the exact kink
eigenmode is applied, the kink mode will decay exponentially
as resonant absorption transfers the wave energy to an Alfvén
mode. If the exact eigenmode is not applied, for example the
kink mode is excited by some external perturbation, then there
will be an initial transitory period, of order 2L/CA0, as the kink
mode is established. After this time, the standing kink mode will
decay in the usual way. When we now consider propagating kink
modes, it is convenient to substitute distance for time (z = Vgt)
and consider a damping length Ld rather than damping time τ.
However, the disparity between the exponential and Gaussian
damping profiles at low z presented here ought not to be con-
fused with the transient that is present at early times in the case
of the standing mode. For a propagating mode, the transient be-
haviour applies to the first (and last) driving cycle as discussed
by Hood et al. (2005). For an established, continuous driver, the
Gaussian damping profile will apply for mode coupling at all
times. For a broadband driver, each frequency will follow the
Gaussian profile with its own particular damping length (Pascoe
et al. 2011b).

Pascoe et al. (2010) found that the normal mode analysis
for resonant absorption was a useful guide to the behaviour of
propagating kink wavepackets with regard to their characteristic

damping length Ld. Pascoe et al. (2011a) noted that the method
of mode coupling for propagating kink wavepackets differs from
resonant absorption of standing modes in that there is no reso-
nant singularity in this process and there is no harmonic driv-
ing frequency. The result of this paper supports the claim that
normal mode analysis provides a useful guide to the behaviour
of propagating wavepackets but a more considered approach is
required if propagating waves are intended to be used as an ac-
curate diagnostic for MHD coronal seismology. However, even
for the described Gaussian damping profile of the driven trans-
verse velocity perturbations, mode coupling will still act as a fre-
quency filter with the higher frequencies damped near the loop
footpoints and only the lower frequency modes propagating fur-
ther along the loops. If the wrong spatial envelope for damped
kink modes is used when interpreting data, it is inevitable that
any inferences made will be questionable and/or misleading.

The Gaussian rather than exponential spatial damping pro-
file arises because we do not apply a pure kink mode driver
and have a wide inhomogeneous layer. A full analytical treat-
ment and parametric study of the dependence of the damping
length scale Lg on driver frequency and density structuring will
be presented in a forthcoming paper. Results so far indicate that
if the transition layer is very narrow, then the exponential damp-
ing profile of Terradas et al. (2010) is a good approximation
for nearly all heights. If the transition layer is wider, then the
Gaussian profile is a better fit for lower heights. There is still a
switch to the exponential damping profile at larger heights but
as at these heights most of the energy in the m = 1 mode is
transferred into the Alfvén wave, observationally this stage is
perhaps not so important for practical seismological purposes.
In this paper we have chosen a wider boundary layer as a nar-
row transition layer does not reproduce the observed rapid/short
damping scales (e.g. Goossens et al. 2002; Pascoe et al. 2010).
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