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ABSTRACT

Context. Recent observations of the corona reveal ubiquitous transverse velocity perturbations that undergo strong damping as they
propagate. These can be understood in terms of propagating kink waves that undergo mode coupling in inhomogeneous regions.
Aims. The use of these propagating waves as a seismological tool for the investigation of the solar corona depends upon an accurate
understanding of how the mode coupling behaviour is determined by local plasma parameters. Our previous work suggests the expo-
nential spatial damping profile provides a poor description of the behaviour of strongly damped kink waves. We aim to investigate the
spatial damping profile in detail and provide a guide to the approximations most suitable for performing seismological inversions.
Methods. We propose a general spatial damping profile based on analytical results that accounts for the initial Gaussian stage of
damped kink waves as well as the asymptotic exponential stage considered by previous authors. The applicability of this profile is
demonstrated by a full parametric study of the relevant physical parameters. The implication of this profile for seismological inver-
sions is investigated.
Results. The Gaussian damping profile is found to be most suitable for application as a seismological tool for observations of oscil-
lations in loops with a low density contrast. This profile also provides accurate estimates for data in which only a few wavelengths or
periods are observed.

Key words. magnetohydrodynamics (MHD) – Sun: atmosphere – Sun: corona – Sun: magnetic topology – Sun: oscillations – waves

1. Introduction

Magnetohydrodynamic waves in the solar corona attract atten-
tion as a seismological tool for the remote diagnostic of fun-
damental plasma parameters (e.g. reviews by Nakariakov &
Verwichte 2005; Andries et al. 2009; De Moortel & Nakariakov
2012), as well as possibly having a significant role in coro-
nal heating and solar wind acceleration (e.g. recent review by
Parnell & De Moortel 2012). For example, standing magnetoa-
coustic kink oscillations of coronal loops have been employed to
deduce the coronal magnetic field strength since the observations
of post-flare loops by the TRACE satellite (e.g. Nakariakov et al.
1999; Nakariakov & Ofman 2001) and more recently with Solar
Dynamics Observatory (SDO) (e.g. White & Verwichte 2012).

The process of resonant absorption was first suggested by
Sedláček (1971) for electrostatic oscillations in a cold plasma.
It was discussed as a plasma heating mechanism by Chen &
Hasegawa (1974) and in the context of coronal loops by Ionson
(1978). The resonant position is based upon matching the the lo-
cal Alfvén frequency with the driver frequency (e.g., Grossmann
& Tataronis 1973). The process leads to the spatial redistribution
of energy (e.g., Tataronis 1975), which may initiate or enhance
dissipative processes, for example resistive effects were consid-
ered by Poedts et al. (1989, 1990). Resonant absorption was later
applied to explain the strong damping of standing kink modes by
Ruderman & Roberts (2002) and Goossens et al. (2002; see also
review by Goossens et al. 2011 and references therein).

The behaviour of propagating kink waves has recently
also been considered. Tomczyk et al. (2007) and Tomczyk &
McIntosh (2009) used the ground-based coronagraph Coronal

Multi-channel Polarimeter (CoMP) to observe spatially and tem-
porally ubiquitous propagating transverse velocity oscillations
with periods of about 5 min. Tomczyk & McIntosh (2009) re-
ported strong damping of these propagating waves which was
interpreted by Pascoe et al. (2010) in terms of a coupled kink
and Alfvén mode.

For a propagating kink wavepacket in an inhomogeneous
loop, mode coupling will cause the kink oscillations to decay.
The mode coupling condition is satisfied where Ck = VA(r), i.e.
where the phase speed of the kink mode wavepacket matches the
Alfvén wave phase speed (e.g. Allan & Wright 2000; Sect. 2 of
Pascoe et al. 2011 and references therein).

Terradas et al. (2010) considered the frequency-dependence
of the damping length scale in detail, and Verth et al. (2010)
found evidence of this effect of mode coupling acting as a low-
pass filter in CoMP data. Soler et al. (2011a,b, 2012) extended
this work to include the effects of background flows, longitudinal
stratification, and partial ionization, respectively. The effect of
line-of-sight integration on mode identification and energy bud-
get calculations was considered by De Moortel & Pascoe (2012)
for multiple oscillating structures.

Pascoe et al. (2012) considered the damping profile as a func-
tion of height for propagating waves driven by harmonic foot-
point motions. They found that an exponential spatial damping
profile does not provide an adequate account of the decay at
low heights. Instead, they proposed a Gaussian spatial damping
profile for the behaviour at low heights and hence, for strongly
damped oscillations, this would be the dominant damping be-
haviour. Following this numerical result, Hood et al. (2013) con-
sidered the problem analytically to account for such behaviour.
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They obtained analytical expressions that describe a nonlinear
damping rate that can be approximated by a Gaussian form at
low heights.

In this paper, we investigate the validity range of the ana-
lytical results of Hood et al. (2013). In Sect. 2, we reconcile the
Gaussian and exponential spatial damping profiles by combining
both approximations into a general damping profile that is ac-
curate for all heights. The applicability of this profile is demon-
strated in Sect. 3 with a parametric study for the relevant physical
parameters. In Sect. 4, the consequences of the general spatial
damping profile for seismological inversions are considered and
several simple methods to estimate the local plasma parameters
are benchmarked. The effect of kink mode dispersion is explored
in Sect. 5. Discussion and conclusions are presented in Sects. 6
and 7, respectively.

2. Spatial damping profile

In this section we will demonstrate a general spatial damping
profile which combines two approximations in order to produce
an accurate description of the oscillation at all heights. The first
stage of the oscillation is described by a Gaussian spatial damp-
ing profile, and the second stage by an exponential spatial damp-
ing profile. The height at which the switch from one profile to
the other occurs depends upon the loop parameters and can be
estimated by matching the gradients of the two spatial damp-
ing profiles so that the transition from one approximation to the
other occurs as smoothly as possible.

Pascoe et al. (2012) propose a Gaussian spatial damping pro-
file of the form

A (z) = A0 exp
(
−z2/Λ2

g

)
, (1)

where A0 is the initial amplitude of the oscillation and Λg is an
empirically determined damping length scale. (Note that the no-
tation of Pascoe et al. (2012) refers to this empirical fit Λg as Lg,
whereas in this paper we use Lg and Ld to refer to analytically
calculated damping length scales.)

The spatial damping profile applied for the first stage of the
oscillation is based on the analysis of Hood et al. (2013) who
obtain equations for the damping profile at all heights, based on
the approximation of a thin inhomogeneous layer. (The deriva-
tion is also based on the assumption of a small density contrast
although the equations were subsequently demonstrated to ap-
ply also for large density contrasts.) The initial behaviour (i.e.
for small kz) can be approximated by a Gaussian profile of the
form

A (z) =
A0

2

⎡⎢⎢⎢⎢⎣1 + exp

⎛⎜⎜⎜⎜⎝− z2

L2
g

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ , (2)

where A0 is the initial amplitude of the oscillation and Lg is the
Gaussian damping length scale which depends upon the loop
parameters as

L2
g =

16
εk2κ2

, (3)

where ε = l/R is the (normalised) inhomogeneous layer width,
κ = (ρ0−ρe)/(ρ0+ρe) is a ratio of densities, and the wavenumber
is k = 2π/λ for a wavelength λ. The constant of proportionality
depends upon the chosen density profile in the inhomogeneous
layer and here we use a profile that varies linearly from ρ0 at r ≤
(R − l/2) to ρe at r > (R + l/2).

The second spatial damping profile is the exponential profile
(e.g. Terradas et al. 2010 and references therein) of the form

A (z) = A0 exp (−z/Ld) , (4)

where Ld is the exponential damping length scale given by

Ld =
8
πεkκ
, (5)

and the constant of proportionality has again been chosen for a
linear density profile in the inhomogeneous layer. This profile is
also based on the assumption of a thin inhomogeneous layer, al-
though Van Doorsselaere et al. (2004) have shown that it remains
reasonable for a fully inhomogeneous model.

For a Gaussian damping profile, the gradient of the profile is
initially zero, then increases to some maximum (negative) value,
beyond which it continues to decrease with increasing z. The
exponential damping profile (Eq. (4)) has a maximum gradient
at z = 0 and the gradient decreases with z. We define the switch
from one profile to the other to occur at a height z = h defined as
the (first) position at which the gradients of the two profiles are
equal. Additionally, we require that the two profiles have equal
amplitude at z = h, and so we construct our general spatial damp-
ing profile as

A (z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A0
2

[
1 + exp

(
− z2

L2
g

)]
z ≤ h

Ah exp
(
− z−h

Ld

)
z > h

(6)

where Ah = A (z = h) and the height of the switch in profiles is

h = L2
g/Ld. (7)

Equation (7) is based on matching the gradient of the exponential
profile (Eq. (4)) with the Gaussian profile (Eq. (2)). However,
due to the presence of the constant term A0/2, this profile does
not exactly match the gradient of the exponential profile at z = h
(e.g. Fig. 19). The gradient could match exactly for a profile of
the form

A (z) = A0 exp

⎛⎜⎜⎜⎜⎝− z2

2L2
g

⎞⎟⎟⎟⎟⎠ , (8)

however we find the modified Gaussian profile (Eq. (2)) provides
a slightly better overall fit to our data and so use it in our general
spatial damping profile (Eq. (6)). This is demonstrated in Fig. 1
which shows the spatial damping profile for the first 8 wave-
lengths for the case of ρ0/ρe = 1.4 and ε = 0.1. The solid
line represents the full analytical solution of Hood et al. (2013)
though this is too complex to be suitable for use in seismological
inversions. The dashed and dotted lines represent the approxi-
mations given by Eqs. (2) and (8), respectively, with the former
giving better agreement.

If we substitute Eqs. (3) and (5) into Eq. (7), we obtain

h =
2π
k

1
κ
, (9)

which can be rearranged as

h
λ
=

1
κ
=
ρ0 + ρe

ρ0 − ρe
=
ρ0/ρe + 1
ρ0/ρe − 1

· (10)

This shows that the height of the switch in profiles (in terms
of the number of wavelengths) depends only upon the ratio
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Fig. 1. Spatial damping profile for the first 8 wavelengths for ρ0/ρe =
1.4 and ε = 0.1. The solid line represents the full analytical solution
of Hood et al. (2013) while the dashed and dotted lines represent the
approximations given by Eqs. (2) and (8), respectively. The vertical
dashed line is the height given by Eq. (10).

Fig. 2. Number of wavelengths after which the switch to the exponen-
tial damping profile occurs (1/κ) as a function of the density contrast
ratio ρ0/ρe. For ρ0/ρe < 2 the Gaussian damping profile is expected to
dominate the observed signal. For ρ0/ρe > 3 only the first 1–2 wave-
lengths exhibit the Gaussian damping behaviour.

of densities. This information can be used to inform an ob-
server as to which analytical formula is most appropriate for
the seismological inversion. For example, for density contrasts
above ρ0/ρe = 3, the switch occurs before h = 2λ and so the
Gaussian profile is not appropriate for use as seismological in-
version. On the other hand, for low density contrasts ρ0/ρe < 2,
the Gaussian profile applies to the first 3 or more wavelengths
(which is the typical number of observed wavelengths) and so
the exponential profile is not appropriate for inversions. This is
demonstrated by Fig. 2 which shows 1/κ as a function of ρ0/ρe.

Note that for a different density profile (not the linear change
from ρ0 to ρe considered here), there may be a remaining con-
stant of proportionality in Eq. (7). Additionally, we expect h to
depend upon the profile of the driver since in the case of driving
with the exact normal mode we must obtain h→ 0.

An example of this general spatial damping profile is shown
in Fig. 3. The top panel shows the transverse velocity vr at the
centre of the loop r = 0 as a function of height or propagation
distance z. The amplitude decreases with z as energy is trans-
ferred by mode coupling to azimuthal perturbations vθ in the in-
homogeneous layer r ∼ R. The envelope of the oscillation is the
general spatial damping profile given by Eq. (6), with the loca-
tion of the switch between approximations h = 3λ (Eq. (10))
denoted by the vertical dashed line. The lower panel shows the
same velocity profile and envelope on a logarithmic scale. This
makes the switch between Gaussian and exponential profiles
easier to see, as the corresponding behaviour is either quadratic
or linear, respectively. The dotted line shows what the Gaussian

Fig. 3. General spatial damping profile for P = 24 s, ε = 0.2
and ρ0/ρe = 2. The solid lines show the numerical simulation of the
damped kink mode and the analytical damping envelope given by
Eq. (6). The dashed vertical line shows the change from Gaussian to
exponential damping regimes, located at h = 3λ (see Fig. 2).

damping profile would look like if extended to heights z > h,
and the dot-dashed line shows the extrapolation of the exponen-
tial profile back towards z → 0. It is clear that this hybrid or
general spatial damping profile combines the best aspects of the
Gaussian and exponential profiles to produce an envelope which
is accurate for all z. Note that the leading edge of the wavetrain
does not follow either profile, as described in detail by Hood
et al. (2005).

Previous studies using damping of kink oscillations for seis-
mology (e.g. Ruderman & Roberts 2002; Goossens et al. 2002)
have focussed on the use of the exponential damping profile. The
single fitted parameter Ld can have various combinations of in-
homogeneous layer width and density contrast and so the in-
version problem has infinite solutions, though bounding values
can be estimated (e.g. Arregui et al. 2007; Goossens et al. 2008,
2012b). There is also a constant of proportionality that depends
on density profile inside inhomogeneous layer. For the general
spatial damping profile presented here, we have three fitted pa-
rameters; Lg, h and Ld. We can therefore in principle (for data
of sufficient quality) obtain results for both the layer width and
density contrast, plus the density profile.

3. Parametric study

In this section we will consider the dependence of the spatial
damping profile upon the period of oscillation P, and the density
structure parameters ε and ρ0/ρe.

Numerical simulations for various combinations of param-
eters were performed using a Lax-Wendroff code to solve the
linear MHD equations in cylindrical coordinates. The lower
boundary is driven harmonically with velocity perturbations that
correspond to moving the loop footpoint back and forth about its
equilibrium. This is a general driver that is continuous and does
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Fig. 4. Snapshots of vr (top), vθ (middle) and
√

Ew (bottom) for a simu-
lation with P = 48 s, ε = 0.2 and ρ0/ρe = 5.

not assume the kink normal mode structure (see Pascoe et al.
2012 for detailed discussion).

Figure 4 shows various snapshots for a simulation with P =
48 s, ε = 0.2 and ρ0/ρe = 5. The top and middle panels show vr
and vθ, respectively, as functions of r and z. (Note that these plots
do not show the full numerical domain.) For small z the signal
in the tube interior is dominated by vr and vθ decaying, and a cut
along the tube axis shows the decay of vr with z (see Fig. 5), the
description of which is the focus of this paper. It can be seen that
the dependence of vθ on r and z is very different to that of vr.
Of particular interest is the growth of vθ with z in the inhomo-
geneous layer, which is shown in the bottom panel of Fig. 5.
The growth in z of vθ and its saturation is matched by the de-
cay of vr as energy is exchanged between various perturbations.
The bottom panel of Fig. 4 shows

√
Ew, where Ew is the wave

energy density. At low z the energy is concentrated in the high
density core of the tube, and at larger z it is focussed in the in-
homogeneous layer. Cally & Hansen (2011) consider the case of
mode conversion at a reflection level in a stratified atmosphere,
in which only a fraction of the energy is exchanged.

The flow of energy in the evolving waves can be studied us-
ing the Poynting vector S, and in Fig. 6 we show hodograms
of (S r (t),S z (t)) at two different locations. The top panel shows
the hodogram plotted for the point r = 0.85 z = 22.7, i.e. at

Fig. 5. vr at the centre of the tube (top) and vθ at the centre of the in-
homogeneous layer (bottom) for the simulation in Fig. 4. The lower
panel also shows −Bθ (z) /

√
μ0ρ (dotted line). The two lines are nearly

indistinguishable and so their difference is plotted as a dashed curve.
The vertical dashed lines show the location of the radial plots shown in
Fig. 7.

low z and in the core of the tube. Not surprisingly energy always
flows along the tube (S z > 0). Significantly S r is nonzero, and
so the wave is capable of transporting energy perpendicular to
the background magnetic field. This is a feature characteristic
of compressional magneto-acoustic waves. Note that S r has a
net positive value since these perturbations feed energy from the
interior of the tube to the inhomogeneous layer.

The middle panel of Fig. 6 shows a Poynting vector
hodogram for z = 478 where the compressional vr perturbations
have decayed and the solution is dominated by the saturated vθ
signature. Consequently, the hodogram is generated at the centre
of the inhomogeneous layer (r = 1). The hodogram shows neg-
ligible Poynting vector perpendicular to the background mag-
netic field, whilst there is an intense field-aligned Poynting vec-
tor which is the familiar classic signature of an Alfvén wave. The
scales of the axes in the top and middle panels are very different,
and so to stress how the wave character has changed with z we
superpose the two hodograms in the bottom panel of Fig. 6. At
low z our simulation has compressional disturbances that trans-
port energy along the tube but also, crucially, feed energy radi-
ally into the inhomogeneous layer. Once in the inhomogeneous
layer the wave transports energy along the background field in a
fashion reminiscent of Alfvén waves.

The wave dominated by vθ at large z has some other interest-
ing characteristics. The bottom panel of Fig. 5 has−Bθ (z) /

√
μ0ρ

superposed on vθ as a dotted line. For nearly all z the two lines are
indistinguishable (their difference is plotted as a dashed curve),
which is yet another feature characteristic of propagating Alfvén
waves.

It is also interesting to look at the radial structure of vθ at
large z, which is shown in Fig. 7 for two values of z denoted by
the dashed lines in Fig. 5. The numerical results in Fig. 7 clearly
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Fig. 6. Poynting vector hodograms for the dominant perturbations at
low z (top) and high z (middle). The bottom panel shows the superposi-
tion of the two behaviours on the same scale.

Fig. 7. vθ as a function of r at the values of z denoted by vertical dashed
lines in Fig. 5.

show that at larger z the waves have smaller spatial scales per-
pendicular to the background magnetic field. The phase struc-
ture of these waves was studied by Allan & Wright (2000) in
a Cartesian geometry. They showed how the reduction in ra-
dial structure was described well by the process of Alfvén wave
phase-mixing (e.g., Heyvaerts & Priest 1983).

Hence it appears our simulation fields have the character
of magneto-acoustic modes at low z and are converted to per-
turbations at larger z that have properties similar to propagat-
ing Alfvén waves (see also Goossens et al. 2012a). This pro-
cess itself does not dissipate energy, though dissipation may
occur later, especially due to the large gradients produced by
phase-mixing.

In the following simulations, the numerical domain cov-
ers r = [0, 6R] and for z it scales according to the period
so that 10 periods of oscillation can be accommodated z =
[0, 10CAeP]. Convergence tests with the radial boundary located
up to 24R typically affected results by less than 5%. The typi-
cal resolution is 2400× 3000 grid points, with convergence tests
performed with 4800 × 6000 grid points. For the various simu-
lations, R = 1, ρe = 1 and CAe = 1 were kept constant while P,
l and ρ0 were varied. The simulation ends at t = 10P at which
point the spatial damping profile can be investigated by consider-
ing vr as a function of z at the centre of the loop r = 0. Note that
although we generate a damped signal composed of 10 wave-
lengths (e.g. Fig. 3), only up to 9 are considered for fitting. For
the first period of oscillation (corresponding to the wavelength
at highest z), the approximation of a harmonic signal is poor.
Consequently, this period does not damp at the same rate as
the later stage of the signal (Hood et al. 2005) and is therefore
ignored.

3.1. Period of oscillation

Equation (3) can be rewritten to demonstrate the period depen-
dence as

Lg =
2Ck

πκε1/2
P, (11)

where we have used λ = CkP (long wavelength limit).
The frequency-dependence of the exponential spatial damp-

ing profile was investigated by Terradas et al. (2010) and Verth
et al. (2010). Eq. (5) can similarly be written as

Ld =
4Ck

π2εκ
P. (12)

The fact that the damping length scale (for both damping
regimes) is proportional to the period of oscillation means that
mode coupling acts as a low pass filter, with higher frequency
components being damped at lower heights. This was demon-
strated by Terradas et al. (2010) for the exponential spatial damp-
ing profile and is also true for the Gaussian spatial damping pro-
file. Note that these results are based on the applicability of the
long wavelength or thin tube approximation. Section 5 consid-
ers the effect of dispersion when this approximation no longer
applies.

Figure 8 (top panel) shows the Gaussian damping length
scale Lg as a function of the period of oscillation P. The dot-
ted line shows the analytical dependence given by Eq. (11). The
symbols are the results of numerical simulations with ε = 0.3
and ρ0/ρe = 2. Figure 8 also shows the exponential damping
length scale Ld and the height h of the change from Gaussian
to exponential damping profile, along with their analytical de-
pendences given by Eqs. (12) and (7), respectively. The numer-
ical length scales were calculated using a least squares fit of a
general spatial damping profile as given by Eqs. (6) and (7) to
the maxima and minima of the oscillation. The fitted values are
in good agreement with the analytical dependences. Since each
spatial damping profile is the same except for a linear scaling
of the z axis with P, each period is fitted well with small errors.
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Fig. 8. Damping length scales Lg (triangles) and Ld (squares), and the
height h (crosses) as a function of the period of oscillation P for numer-
ical simulations with ε = 0.3 and ρ0/ρe = 2. The dotted lines show the
analytical dependence given by Eqs. (11), (12) and (7), respectively.

The error is largest for h since this is sensitive to errors in both
damping length scales.

3.2. Inhomogeneous layer width

Equations (3) and (5) give the dependence of the damping
length scales on the inhomogeneous layer width as Lg ∝ 1/

√
ε,

Ld ∝ 1/ε and h independent of ε. Figure 9 shows Lg, Ld and h
as a function of ε for numerical simulations with P = 24 s
and ρ0/ρe = 2. We demonstrated in Sect. 3.1 that Lg,d ∝ P
and so here we use a short period for numerical efficiency.
Again the simulations are in good agreement with the analyti-
cal dependences.

3.3. Density contrast

Equations (3) and (5) give the dependence of the damping length
scales on the density contrast as Lg,d ∝ 1/κ. Figure 10 shows Lg,
Ld and h as a function of the density contrast ρ0/ρe for numerical
simulations with P = 120 s and ε = 0.15. The damping length
scales have an asymptotic dependence that is well reproduced
by the numerical fits. Note that for these simulations we have

Fig. 9. Damping length scales Lg (triangles) and Ld (squares), and the
height h (crosses) as a function of the inhomogeneous layer width ε
for numerical simulations with P = 24 s and ρ0/ρe = 2. The dotted
lines show the analytical dependence given by Eqs. (3), (5) and (7),
respectively.

chosen to use a longer period than in Sect. 3.2 in order to avoid
the effects of kink mode dispersion, which becomes important
when the wavelength is short and is discussed in detail in Sect. 5.

4. Seismological inversions

In this section we will demonstrate the use of the proposed spa-
tial damping profile (Sect. 2) as a seismological tool. First we
will consider the use of observations of damped kink modes in
order to determine the density contrast ratio present, and then
as a method of determining the transverse length scale of the
density profile (i.e. as a tool to reveal possible sub-resolution
structuring).

In the case of fitting to the numerical simulations in Sect. 3,
the numerical simulations provide sufficient data to be able to
recognise both the Gaussian and exponential damping regimes
and apply the general spatial damping profile (Eq. (3)) accord-
ingly. Observational data is often not of sufficient quality to ap-
ply this method, and so in this section we will consider sim-
pler fitting methods based on only a Gaussian (Eq. (2)) or
exponential (Eq. (4)) fit and consider when each approximation
is appropriate.
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Fig. 10. Damping length scales Lg (triangles) and Ld (squares), and the
height h (crosses) as a function of the density contrast ρ0/ρe for numer-
ical simulations with P = 120 s and ε = 0.15. The dotted lines show the
analytical dependence given by Eqs. (3), (5) and (7), respectively.

Fig. 11. Error in seismologically inferred density from fitting Gaussian
(triangles) and exponential (squares) spatial damping profiles. P =
120 s and ε = 0.3.

4.1. Determining the density contrast

In this section we consider the loop density calculated by
means of seismological inversion (ρS) from our numerical

Fig. 12. Error in seismologically inferred density from fitting an expo-
nential damping profile to all but the first 2 wavelengths. P = 120 s
and ε = 0.3.

data. Figure 11 shows the error in the seismological inver-
sion (ρS − ρ0) /ρ0 when fitting the signal (9 wavelengths) to
a Gaussian (triangles) or exponential (square) spatial damping
profile, as given by Eqs. (2) and (4), respectively. In the limit
of ρ0/ρe → 1, we have very weak damping, with Lg,d → ∞.
In this limit, the damping envelope can be described by either
damping profile and both fits tend to the correct value. For den-
sity contrasts that are sufficiently large to provide significant
damping, the spatial damping profile will be some combination
of both Gaussian and exponential damping profiles as described
in Sect. 2. Consequently, attempting to fit a single damping pro-
file to the whole signal will produce significant errors due to the
effect of points not following that particular profile influencing
the fit.

The error in the density calculated from the Gaussian
fit increases significantly once the density contrast increases
past ρ0/ρe ≈ 2.5 and the exponential damping regime starts to
become dominant.

For illustrative purposes, Fig. 12 shows an improved ex-
ponential fitting method based on taking the presence of the
Gaussian damping regime at lower heights into account. This
example ignores the first two wavelengths of the oscillation at
low z which will be at least partly affected by the Gaussian damp-
ing regime for all density contrasts. The vertical dotted line de-
notes the density contrast at which the change from the Gaussian
damping profile to the exponential damping profile occurs af-
ter 2 wavelengths (see Fig. 2). In this region of ρ0/ρe ∼ 3, this
method produces very accurate estimates of the density contrast.
The error increases for low densities for which the Gaussian
damping regime extends significantly past the first 2 wave-
lengths. The error also increases for much larger density con-
trasts as the damping becomes very strong. Here, the approxi-
mation of weak damping, upon which the analytical expressions
are based, no longer applies.

Despite this method producing good estimates over a range
of density contrasts, it is only intended to illustrate the impor-
tance of applying the spatial damping profile suitable for the
height observed. The practical application of such a method is
likely to be limited by observational constraints. Observed os-
cillations often have a very low signal quality. The number of
wavelengths that can be observed for a propagating wave may be
limited by the length of the structure in which it propagates. The
angle of the structure might also limit the observable portion.
Both propagating and standing waves often have a low num-
ber of observable wavelengths/periods due to strong damping
which quickly damps the oscillation below detectable levels (e.g.
Aschwanden et al. 2002; Schrijver et al. 2002). It is therefore
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Fig. 13. Error in seismologically inferred density from fitting
Gaussian (triangles) and exponential (squares) damping profiles to the
first 2 wavelengths. P = 120 s and ε = 0.3.

Fig. 14. Error in seismologically inferred density from fitting
Gaussian (triangles) and exponential (squares) damping profiles to the
first 3 wavelengths. P = 120 s and ε = 0.3.

not appropriate to discard data in this way, especially the initial
wavelengths which are expected to have the largest amplitude
and hence lowest error.

Figures 13 and 14 consider such a scenario of observations
with a low signal quality. Figure 13 shows the Gaussian and ex-
ponential fits based on just the first 2 wavelengths. The verti-
cal dotted line denotes the density contrast at which h = 2λ.
Since these two wavelengths will both be in the Gaussian damp-
ing regime for ρ0/ρe ≤ 3, the Gaussian fit (triangles) produces
a very low error in this range. For larger densities, part of the
second wavelength will be influenced by the exponential damp-
ing regime and so the estimate becomes increasingly inaccurate.
As expected, the exponential fit (squares) gives a poor estimate,
except in the limit of very weak damping (ρ0/ρe → 1).

Figure 14 shows the same method as Fig. 13, except consid-
ering the first 3 wavelengths. The additional data points lead to
a more accurate estimate from the Gaussian fit in the applica-
ble range of density contrasts (less than that given by the ver-
tical dotted line). However, this range is accordingly reduced
to ρ0/ρe ≤ 2, and above this value the error increases more
rapidly than in Fig. 13. The error for the exponential fit is re-
duced but still significant.

From these figures we can see that in the case of strongly
damped oscillations with low signal quality, the Gaussian spa-
tial damping profile is more appropriate for use as a tool for
seismological inversion. However, it is also important to check
that the inferred density contrast is consistent with the assump-
tion that the Gaussian damping regime dominates the observed
signal for the result to be reliable. Since the Gaussian fit overes-
timates the density contrast outside of its range of applicability

Fig. 15. Error in seismologically inferred inhomogeneous layer width
from fitting Gaussian (triangles) and exponential (squares) spatial
damping profiles to the first 3 wavelengths. P = 24 s and ρ0/ρe = 2.

Fig. 16. Error in seismologically inferred inhomogeneous layer width
from fitting Gaussian (triangles) and exponential (squares) damping
profiles to wavelengths 4–6. P = 24 s and ρ0/ρe = 2.

(Figs. 13 and 14) this assumption can be qualified. For example,
in Fig. 13, for ρ0/ρe = 4 the Gaussian fit for 2 wavelengths
overestimates the density contrast by ≈20%, i.e. ρS = 4.8.
This density would imply the Gaussian damping regime extends
to 1/κ ≈ 1.5 wavelengths and so the Gaussian fit to 2 wave-
lengths will only be an approximation.

For comparison, for ρ0/ρe = 2 the Gaussian fit for 2 wave-
lengths overestimates the density contrast by ≈2%, i.e. ρS =
2.04. This density would imply the Gaussian damping regime
extends to 1/κ ≈ 2.9 wavelengths and so the Gaussian fit
to 2 wavelengths should be reasonable, as is the case.

Figures 13 and 14 also show how estimates based on an ex-
ponential fit tend to underestimate the density contrast, since the
initial stage of the damping starts from a gradient of zero, rather
than the maximum gradient assumed by the exponential spatial
damping profile (e.g. Fig. 3).

4.2. Determining the inhomogeneous layer width

Using the damping of kink modes due to mode coupling as a
seismological tool to determine the transverse scale of the den-
sity structure assumes that an estimate of the density contrast
ratio is already known. In this case, the use of either a Gaussian
or exponential damping profile to fit the data can be informed by
the relationship demonstrated by Fig. 2.

Figures 15 and 16 show the errors in seismological esti-
mates of ε for several methods in the case of a density con-
trast ρ0/ρe = 2. For this density contrast, we can expect the
change from Gaussian to exponential damping regimes to occur
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at h = 3λ. Figure 15 shows the error in seismologically in-
ferred density from fitting Gaussian (triangles) and exponential
(squares) spatial damping profiles to the first 3 wavelengths of
the oscillation. As expected, the Gaussian fit gives good esti-
mates (mean error ≈10%) whereas the exponential fit gives a
poor estimate (mean error ≈57%), since we expect the Gaussian
damping profile to be dominant for these wavelengths.

If, instead, we consider the subsequent 3 wavelengths (4–6)
as shown in Fig. 16, we see the situation reverses. Now (in this
case) the exponential fit gives the better fit (mean error ≈4%),
while the estimate based on the Gaussian fit is poor (mean er-
ror ≈29%). However, this method is again potentially limited
in terms of practical application by observations having a small
number of wavelengths observed, with the first ones being the
most reliable, as discussed in Sect. 4.1.

4.3. Full seismological inversion

For data of sufficient quality, fitting the general spatial damping
profile (Eq. (6)) allows the parameters h, Lg and Ld to be de-
rived from which the density contrast and inhomogeneous layer
width can both be calculated. The density contrast can be calcu-
lated from h using Eq. (10) and then Eqs. (3) and/or (5) can be
used to find ε. By substituting Eq. (7) into Eq. (6) for z = h we
can see that the amplitude of the signal at h can also be used to
determine ε

Ah =
A0

2

[
1 + exp

(
− επ

2

4

)]
, (13)

ε = − 4
π2

ln

(
2

Ah

A0
− 1

)
. (14)

5. Kink mode dispersion

The analytical spatial damping profiles given by Eqs. (2) and (4)
are derived using certain mathematical approximations which
are only valid in limited parameter ranges. In order for observed
damped oscillations to be used as a reliable seismological tool,
the same approximations should hold for the physical system be-
ing considered. In this section we present examples of kink os-
cillations that are not accurately described by our general spatial
damping profile.

An assumption of the analytical theories is that the kink
modes are in the long wavelength limit kR 
 1 and so the waves
propagate at the kink speed Ck. Consequently the wavelength
of the oscillation is λ = CkP. If the wavelength becomes suffi-
ciently small that the long wavelength limit no longer applies,
the wave speed is determined by the kink mode dispersion rela-
tion and the wave has a phase speed Vp < Ck. Accordingly, the
wavelength is λ = VpP < CkP.

Such behaviour can be seen if we consider the dependence of
the damping length scales with density contrast for short period
oscillations. Figure 17 shows Lg, Ld and h as a function of the
density contrast ratio ρ0/ρe for P = 24 s and ε = 0.2.

For low density contrasts, the wavelength is sufficiently long
that the long wavelength limit applies and λ = CkP. As the
density contrast increases, the wavelength decreases due to the
lower internal Alfvén speed. For the larger density contrasts
(ρ0/ρe � 5) the data points have diverged significantly from the
analytical curves. This effect is demonstrated by Fig. 18 which
shows the dependence of the oscillation wavelength upon the
density contrast. The dashed line represents the long wavelength

Fig. 17. Damping length scales Lg (triangles) and Ld (squares), and the
height h (crosses) as a function of the density contrast ρ0/ρe for numer-
ical simulations with P = 24 s and ε = 0.2. The dotted lines show the
analytical dependence given by Eqs. (3), (5) and (7), respectively.

Fig. 18. Kink oscillation wavelength λ as a function of the density con-
trast ρ0/ρe. The dashed line shows the long wavelength limit λ = CkP.
The crosses are the results of numerical simulations with P = 24 s
and ε = 0.2.

approximation λ = CkP. We see that for the larger density
contrasts (ρ0/ρe � 5) the wavelength is significantly shorter
than predicted by the long wavelength approximation. Since the
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Fig. 19. Spatial damping profiles for P = 120 s, ε = 0.5 and ρ0/ρe = 2.
The solid lines show the numerical simulation of the damped kink
mode and the analytical damping envelope given by Eq. (6). The dashed
vertical line shows the change from Gaussian to exponential damping
regimes at h = 3λ. The thick dashed curve is an empirical Gaussian
profile (Eq. (1)).

analytical relation assumes a longer wavelength than the actual
value, and Lg,d ∝ λ, the damping length scales are overestimated
for these higher densities.

6. Discussion

It is instructive to reconsider the Gaussian profile proposed by
Pascoe et al. (2012) in light of the results presented in this pa-
per. This previous work suggested that the height up to which
the Gaussian damping behaviour applied depended upon the in-
homogeneous layer width ε. This can be reconciled by consid-
ering the conditions in order to reproduce the strong damping
of kink modes as reported by Tomczyk & McIntosh (2012). The
damping is greater for larger density contrasts and wider inho-
mogeneous layers. Pascoe et al. (2012) considered the case of
strong damping achieved by means of a wide inhomogeneous
layer and a low density contrast, e.g., their Fig. 1 is for ε = 2/3
and ρ0/ρe = 2. From the results of the present paper, we can un-
derstand that it is the low density contrast rather than the large in-
homogeneous layer that is responsible for the dominance of the
Gaussian regime over the exponential one. Figure 6 of Pascoe
et al. (2012) shows two simulations with the same density con-
trast. In one case the inhomogeneous layer is thin and so the
damping is weak, whilst in the other the damping is strong due
to a wide layer and so the Gaussian behaviour dominates. In both
cases the Gaussian behaviour applies for the same number of
wavelengths, consistent with our Eq. (10).

Another point to consider is that the Gaussian fit considered
by Pascoe et al. (2012) is an empirical one (Eq. (1)), whilst in
this paper we consider a Gaussian profile (Eq. (2)) based on the
analytical results of Hood et al. (2013). When the damping is
strong and the density contrast is low, a Gaussian profile may be
fitted to data up to and beyond h, however, for such an empirical
fit it is not known how to relate the damping length scale Λg to
the plasma parameters. An example of this is shown in Fig. 19
which shows a numerical simulation similar to that presented in
Fig. 1 of Pascoe et al. (2012). The solid envelope shows the ana-
lytical damping profile given by Eq. (6). The thick dashed enve-
lope is an empirical Gaussian profile (Eq. (1)), with Λ2

g = 2.6L2
g.

Whilst the analytical expression (solid line) provides a slightly
worse fit, it has the benefit of being applicable to a wide range of
parametric values (Sect. 3) with known analytical relationships
(Eqs. (3) and (5)) and can therefore be used as a seismological
tool (Sect. 4).

Fig. 20. Comparison of the general spatial damping profile (Eq. (6))
(solid lines) with the full analytical solution of Hood et al. (2013)
(dashed lines). The upper pair of curves is for ε = 0.05. The middle
and lower curves are for ε = 0.1 and ε = 0.2, respectively. For all
curves ρ0/ρe = 2 i.e. h = 3λ (dotted line).

Figure 20 compares the general spatial damping profile
(solid lines) given by Eq. (6) with the full analytical solution
of Hood et al. (2013) (dashed lines). The upper pair of curves
is for ε = 0.05. The middle and lower curves are for ε =
0.1 and ε = 0.2, respectively. The density contrast is con-
stant ρ0/ρe = 2 i.e. h = 3λ (dotted line) as given by Eq. (10). The
location of the switch from Gaussian to exponential damping is
therefore the same for each value of ε. However, the amount of
damping that occurs over the distance h, and hence which damp-
ing profile is the dominant, does indeed depend upon ε.

6.1. Standing modes

The mode coupling process considered for propagating modes
in this paper is a robust physical mechanism and the same be-
haviour is expected to apply for standing modes (with the appro-
priate changes in variables). Standing kink modes were observed
(Aschwanden et al. 1999) long before the ubiquitous propagat-
ing kink waves, and have been analysed using normal mode
analysis that predicts an exponential damping profile. However,
such observations (e.g, Nakariakov et al. 1999; Ruderman &
Roberts 2002; Goossens et al. 2002) usually assume that the
individual loop structures seen to oscillate have a high density
contrast, typically ρ0/ρe = 10, since the bright loops stand out
against the background EUV emission. Such an assumption is
consistent with the use of an exponential damping profile. For
such a large density contrast, we expect the Gaussian behaviour
to only apply for ∼1.2 oscillations (Eq. (10)), which is insuf-
ficient for accurate analysis and might in any case be lost in
the highly dispersive initial stage of oscillation that follows the
excitation of global modes by impulsive events such as flares.
Similarly, for prominence oscillations the density contrast is typ-
ically very high ∼100–1000 and so we approach the asymptotic
limit of the Gaussian damping profile applying for just a single
period/wavelength (Fig. 2).

On the other hand, a density contrast of ≈1.2 was reported
by Van Doorsselaere et al. (2008) for standing kink mode os-
cillations observed using Hinode/EIS. This particular oscillation
was claimed to be undamped, which the authors proposed was
an observational selection effect. Interestingly, Van Doorsselaere
et al. (2008) used the FeXII 186/195 line ratio and CHIANTI to
derive the density profile across the oscillating structure. This al-
lows us to make some estimates of the damping rate we expect
to observe in light of the results of the present paper.
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The results discussed so far in this paper are for
harmonically-driven propagating waves for which we consider
the spatial damping profile. Following Pascoe et al. (2010) we
can consider a corresponding damping timescale by considering
a finite wavetrain propagating at a group speed Vg. Hence we
obtain the change of variable t = z/Vg, where Vg = Vp = Ck
in the long wavelength limit. For a standing mode decaying by
resonant absorption with an exponential damping envelope we
obtain from Eq. (12)

τd

P
=

Ld

λ
=

4
π2εκ

(15)

as shown by, e.g., Ruderman & Roberts (2002). Similarly, we
can consider a standing mode damping with a Gaussian enve-
lope (see also Ruderman & Terradas 2012) and a characteristic
damping time τg from Eq. (11) as

τg

P
=

Lg

λ
=

2
πκε1/2

· (16)

The density profile presented by Van Doorsselaere et al. (2008)
in their Fig. 3 has a peak electron density at the oscillating loop
and is lower to each side of the loop. For the purposes of this ap-
proximation, we can consider the width of the inhomogeneous
layer to be l = 2R i.e. ε = 2. This large value of ε is beyond the
thin boundary approximation that the Gaussian and exponential
damping profiles are based upon. However, the purpose of the
following simple estimates is to demonstrate that the Gaussian
damping regime naturally accounts for the observed weak damp-
ing. Van Doorsselaere et al. (2004) calculate that the exponen-
tial damping profile based on the TTTB approximation overesti-
mates the damping by 25% when ε = 2.

For the reported density contrast of ρ0/ρe = 1.2 we have
κ ≈ 0.09. Figure 2 of Van Doorsselaere et al. (2008) shows
an oscillation in velocity with approximately 3.5 periods of
oscillation. For the low density contrast observed in this oscil-
lation, we expect the Gaussian damping profile to apply to the
first 1/κ = 11 periods. If this oscillation is indeed damped by res-
onant absorption, we would expect it to be entirely dominated by
the Gaussian damping profile. Other reported parameters for this
oscillation are a period P = 296 s and a phase speed of 2.6 Mm/s.
(Note the phase speed does not appear in Eqs. (15) and (16) but is
useful for mode identification and these equations have assumed
a long wavelength kink mode with Vp = Ck.)

Figure 21 shows damping envelopes for Gaussian and expo-
nential profiles based on the observed parameters. The solid line
shows the Gaussian damping profile based on Eqs. (2) and (16).
The dashed line shows the exponential damping profile based on
Eqs. (4) and (15). At t = 3.5P, the two analytical estimates show
significantly different amounts of damping, with normalised am-
plitudes of approximately 0.8 and 0.2 for the Gaussian and ex-
ponential damping envelopes, respectively. This difference be-
tween Gaussian and exponential profiles is much larger that
the 25% reported by Van Doorsselaere et al. (2004) for an ex-
ponential profile for a fully inhomogeneous model (indicated by
the dotted line in Fig. 21).

By inspection of Fig. 2 of Van Doorsselaere et al. (2008),
it is clear that the strong damping predicted by the exponen-
tial envelope is not present. However, the estimate based on
the Gaussian damping envelope (Eqs. (2) and (16)) is much
weaker. Determining the damping rate of the observed oscilla-
tion is complicated by the level of noise. The authors present a
smoothed version of the data, which exhibits a trend to increas-
ing (positive) velocities with time. As a rough estimate, we con-
sider the trough-to-peak amplitude of the smoothed oscillation

Fig. 21. Damping envelopes for the standing kink mode observed by
Van Doorsselaere et al. (2008). The solid line shows the Gaussian
damping profile (Eq. (16)) expected to dominate oscillations in such
a low density (ρ0/ρe = 1.2) loop. The dashed line shows the expo-
nential damping profile based on Eq. (15). The dotted line is an ex-
ponential damping profile with 25% weaker damping calculated by
Van Doorsselaere et al. (2004) for a fully inhomogeneous model.

for the first half-period of oscillation and the last half-period.
This produces estimates of approximately 2.0 and 1.6 km s−1,
respectively, which is more consistent with the Gaussian damp-
ing envelope factor of 0.8 after 3.5 periods of oscillation than
either of the exponential envelopes.

These approximations and estimates show that the damping
rate of a low density contrast coronal loop is inconsistent with
the rate predicted by the exponential damping profile (Eq. (4)).
However, the results presented in this paper (Sect. 2) show that
we expect this to be the case even if damping of kink modes by
mode coupling is actually present. In the low density contrast
regime, we expect the Gaussian damping profile (Eq. (2)) to be
the dominant behaviour, and indeed the estimate based on such a
profile is found to be consistent with the observational example.

7. Conclusions

In this paper we have presented a general spatial damping profile
for kink oscillations damped due to mode coupling. The profile
(Eq. (6)) combines the exponential spatial damping profile, cal-
culated as the asymptotic state of the system, at large heights
(z > h) with a Gaussian profile, proposed numerically by Pascoe
et al. (2012) and derived analytically by Hood et al. (2013), at
low heights z ≤ h. The location of the switch between profiles,
expressed as a number of wavelengths h/λ, is found to depend
only upon the density contrast ρ0/ρe (and the driver profile).

The simple dependence of the height h upon the density con-
trast means that observers can consider whether the exponen-
tial or Gaussian damping profile is more appropriate for their
data, as well as being a useful seismological tool. For obser-
vations with sufficient quality to apply the full general spatial
damping profile, we can obtain a unique solution to the seismo-
logical inversion problem (Sects. 2 and 4.3), whereas fitting to
a single exponential or Gaussian damping profile requires ad-
ditional information about the density structuring. In cases of
limited observational data where this is not possible, we con-
sidered several seismological methods (Sect. 4). Since current
observational data is typically limited to oscillations with a low
signal quality (i.e. only the first few wavelengths are reliably
observed), we propose that the Gaussian damping profile is gen-
erally more appropriate for seismology, except when the den-
sity contrast is expected to be very high. This procedure is sum-
marised in Fig. 22 which shows a flowchart of a simple method
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Fig. 22. Flowchart of a simple method to determine the appropriate spatial damping profile for seismology based on the number of observed
wavelengths Nobs and an estimate of the density contrast ρ0/ρe.

to determine which spatial damping profile is most appropriate
for a particular observation. The method starts with an estimate
of the density contrast. In the case that the damping length scale
is being used to calculate the seismologically inferred density
contrast, the result can be checked for consistency with the initial
estimate as described in detail in Sect. 4.1. A different approach
using a (linear) exponential damping profile for the seismolog-
ical inversions was proposed by Goossens et al. (2012b). It is
possible that combining the scheme proposed by these authors
with our general damping profile would improve the seismolog-
ical estimates.

In Sect. 5, we considered the case of kink mode dispersion in
which the common assumption of the long wavelength limit no
longer applies. The effect of the long wavelength approximation
breaking down could be seen, and yet overall the behaviour was
still quite well described by the analytical profiles. Considering
various methods of using the profiles for seismological inver-
sions in Sect. 4, we demonstrated simple yet robust methods for
obtaining accurate (error �10%) estimates of some of the loop
parameters. Indeed, even the less appropriate methods produced
seismological estimates with errors less than a factor of 2. In
this regard, the use of damped kink oscillations is a promising
seismological tool, subject of course to sufficiently good data.
This data would ideally resemble the numerical simulations pre-
sented here, i.e. accurate measurements of many wavelengths.
However, we have shown that even just a few wavelengths can
be sufficient for accurate inversions if they have sufficiently low
noise.

In Sect. 6.1 we presented an example of a kink oscilla-
tion observed in a coronal loop with a low density contrast
(Van Doorsselaere et al. 2008). This is the regime in which we
expect the Gaussian damping profile to be most applicable and

we found the estimate based on such a profile to be consistent
with the observational example, whilst the exponential damping
profile was inconsistent. The results presented in this paper may
therefore account for the relatively high signal quality (i.e. weak
damping) of that particular oscillation.
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Sedláček, Z. 1971, J. Plasma Phys., 5, 239
Soler, R., Terradas, J., & Goossens, M. 2011a, ApJ, 734, 80
Soler, R., Terradas, J., Verth, G., & Goossens, M. 2011b, ApJ, 736, 10
Soler, R., Andries, J., & Goossens, M. 2012, A&A, 537, A84
Tataronis, J. A. 1975, J. Plasma Phys., 13, 87
Terradas, J., Oliver, R., & Ballester, J. L. 2006, ApJ, 642, 533
Terradas, J., Goossens, M., & Verth, G. 2010, A&A, 524, A23
Tomczyk, S., & McIntosh, S. W. 2009, ApJ, 697, 1384
Tomczyk, S., McIntosh, S. W., Keil, S. L., et al. 2007, Science, 317, 1192
Van Doorsselaere, T., Andries, J., Poedts, S., & Goossens, M. 2004, ApJ, 606,

1223
Van Doorsselaere, T., Nakariakov, V. M., Young, P. R., & Verwichte, E. 2008,

A&A, 487, L17
Verth, G., Terradas, J., & Goossens, M. 2010, ApJ, 718, L102
White, R. S., & Verwichte, E. 2012, A&A, 537, A49

A40, page 13 of 13


	Introduction
	Spatial damping profile
	Parametric study
	Period of oscillation
	Inhomogeneous layer width
	Density contrast

	Seismological inversions
	Determining the density contrast
	Determining the inhomogeneous layer width
	Full seismological inversion

	Kink mode dispersion
	Discussion
	Standing modes

	Conclusions
	References 

