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ABSTRACT

Context. Resonant absorption, also known as field line resonance, can be used to describe coupling between fast and Alfvén waves
in non-uniform plasmas. Since the conditions for resonant absorption occur widely in astrophysics, it is applicable in many different
contexts, all of which are united by their common physics. For example, resonant absorption is known to play a major role in the
excitation of ultra-low frequency pulsations in the terrestrial magnetosphere and is also a leading explanation for the decay of fast
kink oscillations of coronal loops. The occurrence of non-axisymmetric conditions in the magnetosphere, and observational evidence
that coronal loops may possess fine transverse structure, highlight a need to consider equilibria that vary in two dimensions across the
background magnetic field.
Aims. We investigate the properties of resonant absorption when field line eigenfrequencies vary in two dimensions across the back-
ground magnetic field. We aim to place the theory on a firm mathematical footing and explore some of its key features.
Methods. Using cold, linear, ideal MHD with a straight, uniform background magnetic field, we systematically obtain a complete
analytic solution for behaviour at late times. This provides a framework from which the features of resonant absorption may be un-
derstood. The time-dependent problem is solved numerically, reproducing key features of the analytic solution.
Results. Energy is deposited from a monochromatic fast wave as a phase mixing Alfvén wave, in the vicinity of the resonant surface,
at which the local field line eigenfrequency matches the frequency of the driver. A generalisation of the one dimensional phase mixing
length to higher dimensions is suggested, and shown to successfully estimate the finest lengthscales in time-dependent simulations.
The resonant Alfvén wave is driven by gradients of the field aligned magnetic field perturbation, which is associated with the fast
wave pressure. This leads to amplitude variations of the Alfvén wave that can be used to reveal the spatial form of the fast wave.
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1. Introduction

Resonant absorption, also known as field line resonance, can be
used to describe the transfer of energy between fast magnetoa-
coustic and Alfvén waves in non-uniform plasmas. By combin-
ing the different properties of these two waves, this fundamental
process opens new paths for energy to flow through astrophysi-
cal systems.

The basic requirements for resonant absorption are a source
of compressive energy such as global oscillations, stellar winds
or non-steady accretion flows, and gradients in magnetic field or
plasma density. These occur widely in astrophysics. The mech-
anism of resonant absorption is generic, so it is reasonable to
expect it to occur across a wide range of scenarios. Here, we fo-
cus on the physics of resonant absorption, but, for illustration,
we will place our work in the context of two systems in which
it is already believed to play a key role: the origin of ultra-low
frequency (ULF) geomagnetic pulsations in the terrestrial mag-
netosphere; and the decay of fast kink oscillations of coronal
loops. In addition, Rezania & Samson (2005) recently explained
periodic oscillations in X-ray flux from an accreting neutron star
in terms of resonant absorption, providing a good example of its
wider application to non-heliospheric bodies.

ULF pulstations are magnetic waves at mHz frequencies
that have been observed from the surface of the Earth since
the Carrington event in 1859 (Stewart 1861). The ground
measurements are the effect of standing Alfvén waves in the

magnetosphere (Dungey 1955; Singer et al. 1982). The ex-
citation of these waves remained a mystery until Southwood
(1974) and Chen & Hasegawa (1974) independently demon-
strated that resonant absorption can gradually pump energy into
Alfvén waves of increasingly large amplitude from low ampli-
tude fast waves. The ultimate energy source is the solar wind,
which excites fast waves in the magnetosphere by a variety of
mechanisms. Buffeting of the magnetospheric cavity preferen-
tially excites the fast eigenmodes of the cavity, leading to the ap-
pearance of discrete frequencies (Kivelson & Southwood 1985).
Kelvin-Helmholtz instability of the magnetopause provides a
monochromatic source of fast waves (Mann et al. 1999). Finally,
a density perturbation running along the magnetopause also pro-
duces its own fast wave signatures (Wright & Rickard 1995).
Recently, magnetic pulsations have been used as a diagnostic
to probe the properties of the magnetosphere (Mann & Wright
1999; Menk et al. 1999).

In coronal seismology, it was evident from the first obser-
vations of impulsively excited kink oscillations (Aschwanden
et al. 1999; Nakariakov et al. 1999) that the rapid decay of these
waves was not accounted for. Several explanations have been
suggested, and resonant absorption is a leading candidate. In
coronal loop geometries, the total pressure perturbation of the
kink mode acts as a fast eigenmode of the system and couples
to a resonant Alfvén wave. The wave energy, initially in the
kink wave, is deposited into azimuthal motions, and the ampli-
tude of the kink mode decays (see, e.g., Hollweg & Yang 1988;
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Goossens et al. 1992; Ruderman & Roberts 2002; Terradas et al.
2006, and references therein).

The structure of the magnetosphere and of coronal loops
motivates consideration of resonant absorption in equilibria that
vary in two dimensions across the background magnetic field.
In the magnetosphere, Alfvén speed is not axisymmetric for
the dawn flank, magnetotail or dusk flank, although observa-
tions show that resonant absorption persists in these regions
(Anderson et al. 1990; Takahashi & Anderson 1992; Takahashi
et al. 1996). Similarly, coronal loops may have non-circular
cross-section (Ruderman 2003). Furthermore, there is good evi-
dence that loops have substructure, consisting of elemental mag-
netic flux strands of widths less than 2 Mm (Schmelz et al. 2001,
2003, 2005; Schmelz 2002; Martens et al. 2002; Aschwanden &
Nightingale 2005; Aschwanden 2005).

Investigation of resonant absorption started with considera-
tion of a 1D density variation perpendicular to a uniform mag-
netic field (Southwood 1974; Chen & Hasegawa 1974). Since
then, analytic efforts have been made to relax the geometric con-
straints of the first papers. Notably, Schulze-Berge et al. (1992)
allowed the density profile to vary in three dimensions. They
showed the existence of a singular solution on magnetic sur-
faces at which field line eigenfrequency matches the driving fre-
quency. The leading order singular solution was obtained, but the
authors stopped short of the full solution. Thompson & Wright
(1993) considered a density profile that varied in one dimension
across the background magnetic field and a second dimension
along it. Full solutions were obtained systematically, confirm-
ing that resonant Alfvén waves are excited on field lines whose
eigenfrequency matches the driver. They also demonstrated the
existence of an overlap integral that determines the efficiency of
the excitation: excitation is most efficient when the spatial form
of the driver matches the eigenmode of the resonant field lines.

We consider a complementary problem, in which the density
profile varies in two dimensions across a straight, uniform equi-
librium magnetic field. This produces a 2D variation of field line
eigenfrequencies, and we investigate the effect of this on reso-
nant absorption. Numerical simulations of the initial value prob-
lem have been performed by Lee et al. (2000) and Terradas et al.
(2008). These demonstrated persistence of resonant absorption
for the type of equilibria considered here, and have aided quali-
tative understanding of its properties. A complete understanding,
however, requires a mathematical solution from which key fea-
tures can be teased.

This paper is organised as follows. Section 2 presents our
model, with governing equations obtained in Sect. 3. Section 4
describes the numerical solutions. These show that resonant ab-
sorption is robust, the phase mixing length can be generalised
to higher dimensions, and amplitude variations of the resonant
Alfvén wave can be used to reveal the spatial form of the fast
wave. In Sect. 5, we systematically obtain a complete analytic
solution for late times. This confirms the presence of a (singular)
resonant Alfvén wave, and provides insight into the relationship
between amplitude variations of the resonant Alfvén wave and
the spatial form of the fast wave.

2. Model

We consider an equilibrium in which the magnetic field is
straight and uniform. The density varies in two dimensions
perpendicular to the field. The equilibrium is maintained by the
assumption that the plasma is cold, so that there is zero gas pres-
sure (this has the additional advantage of setting the slow mag-
netoacoustic speed to zero, eliminating the slow wave). Gravity

Fig. 1. Sketch of numerical domain showing boundary conditions.

is neglected and we limit ourselves to times at which dissipative
and non-linear effects may be considered unimportant.

Taking the direction of the background magnetic field as
an ignorable coordinate, ẑ, means that field line eigenfunctions
are Fourier modes with an exp(±ikzz) dependence. In an infi-
nite medium, any value of kz may be considered. It is, how-
ever, more realistic to include boundary conditions such as line-
tying, which quantises kz so that kz = nπ/L, where L is the
length of the field line and n is an integer. The correspond-
ing field line eigenfrequency is ωA(x, y) = kzvA(x, y), where
vA(x, y) = B0/

√
μ0ρ(x, y) is the Alfvén speed.

We simplify matters further by specifying our driver to also
have an exp(±ikzz) dependence. Since Fourier modes are orthog-
onal, this means that only one eigenfunction may be driven on
any field line. We therefore follow a normal mode analysis.

3. Governing equations

Neglecting gravity, the cold (β = 0 or p = 0), ideal (η = 0 and
ν = 0) MHD equations become

Induction equation:
∂B
∂t
= ∇ × (u × B), (1)

Continuity equation:
∂ρ

∂t
+ ∇ · (ρu) = 0, (2)

Momentum equation: ρ
∂u
∂t
+ ρ(u.∇)u = j × B, (3)

Solenoid constraint: ∇ · B = 0, (4)

Ampère’s law: j =
1
μ0
∇ × B. (5)

Taking B0 ẑ as the equilibrium magnetic field, using Ampère’s
Law and neglecting high-order (non-linear) perturbations, the
momentum and induction equations reduce to

∂B
∂t
= B0

(
∂ux

∂z
,
∂uy
∂z
, −∂ux

∂x
− ∂uy
∂y

)
, (6)

∂u
∂t
=

B0

μ0ρ

(
∂bx

∂z
− ∂bz

∂x
,
∂by
∂z
− ∂bz

∂y
, 0

)
. (7)

As matters stand ux, uy, bx, by and bz are functions of x, y, z and t.
We consider perfectly reflecting boundaries in the z-direction
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(equivalent to a perfectly conducting ionosphere in a magneto-
spheric model), allowing us to take Fourier modes in the z direc-
tion. Writing

bx(x, y, z, t)→ bx(x, y, t) cos(kzz),

by(x, y, z, t)→ by(x, y, t) cos(kzz),

bz(x, y, z, t)→ bz(x, y, t) sin(kzz),

ux(x, y, z, t)→ ux(x, y, t) sin(kzz),

uy(x, y, z, t)→ uy(x, y, t) sin(kzz),

the problem reduces to 2D with governing equations

∂bx(x, y, t)
∂t

= B0ux(x, y, t)kz, (8)

∂by(x, y, t)

∂t
= B0uy(x, y, t)kz, (9)

∂bz(x, y, t)
∂t

= −B0

(
∂ux(x, y, t)
∂x

+
∂uy(x, y, t)

∂y

)
, (10)

∂ux(x, y, t)
∂t

= − B0

μ0ρ

(
kzbx(x, y, t) +

∂bz(x, y, t)
∂x

)
, (11)

∂uy(x, y, t)

∂t
= − B0

μ0ρ

(
kzby(x, y, t) +

∂bz(x, y, t)
∂y

)
, (12)

equivalent to the equations solved by Lee et al. (2000) and
Terradas et al. (2008).

4. Numerical solution

4.1. Method

Before solving the governing equations numerically, we non-
dimensionalised, using

B̄ =
B
B0
, (13)

ū =
u
u0
, (14)

x̄ =
x
l0
, (15)

t̄ =
t
τ
=

u0t
l0
, (16)

where u0 is the Alfvén speed at (x̄, ȳ) = (0, 0) and l0 is the width
of the rectangular domain in the x-direction. Perturbations were
further scaled by a dimensionless smallness parameter.

The equations were solved with the leapfrog trapezoidal
scheme detailed in Rickard & Wright (1994). Using centred dif-
ferences for spatial derivatives, this gives a code that is second
order in space and time. Boundary conditions were chosen so
that the numerical domain represents the dusk flank of the ter-
restrial magnetosphere. Whilst this means that the simulation is
set up in a specific context, the essential physics remains com-
mon to all space plasmas. The antisunward boundary at large ȳ
is open to model the tail and reflections from this boundary were
avoided by advancing it ahead of all perturbations. The bound-
ary condition at ȳ = 0 is symmetric, representing the nose of the
magnetosphere. Most fast waves propagating towards Earth are
turned around by refraction and redirected towards the magne-
topause, so a reflecting boundary was placed at x̄ = 0. Finally,
the boundary at x̄ = 1 was chosen as the magnetopause and may
be reflecting or driven.

We used a continuous monochromatic driver. A nonuniform
system supports collective modes of oscillation with discrete

eigenfrequencies. When such a system is driven by a broad-
band source that includes one or more of its eigenfrequencies,
interference leads to the dominance of those frequencies. Thus,
a broadband driver drives resonances as if it were a superposi-
tion of monochromatic drivers (Kivelson & Southwood 1985;
Rickard & Wright 1994; de Groof et al. 1998).

The fast wave was driven by setting ūx at x̄ = 1. At this
boundary, the displacement in the x̄ direction is a sinusoidal
function ramped in ȳ and t̄. This produces a function that is
continuous and differentiable in ȳ and t̄, with no net displace-
ment of the boundary over one period. Initially, the amplitude of
the displacement ramps up globally over Nt periods; under this
envelope, the displacement is a sinusoidal wave that ramps up
spatially over one wavelength, is at full amplitude for Ny wave-
lengths and ramps down over one wavelength. Differentiating
the displacement in time to obtain a velocity, we set

ūx(ȳ, t̄) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f (ȳ)

⎛⎜⎜⎜⎜⎜⎝
1

4Nt
sin

(
πt̄
t̄1

)
sin(k̄dȳ − ω̄d t̄)−

sin2
(
πt̄
2t̄1

)
cos(k̄dȳ − ω̄d t̄)

⎞⎟⎟⎟⎟⎟⎠ , t̄ < t̄1,

− f (ȳ) cos(k̄dȳ − ω̄d t̄), t̄ ≥ t̄1,

(17)

where t̄1 = 2πNt/ω̄d and

f (ȳ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2

(
1 − cos

(
k̄d ȳ
2

))
, ȳ < ȳ1

1, ȳ1 ≤ ȳ ≤ ȳ2
1
2

(
1 + cos

(
k̄d
2 (ȳ − ȳ2)

))
, ȳ2 < ȳ < ȳ3,

0, ȳ3 ≤ ȳ,
(18)

with ȳ1 = 2π/k̄d, ȳ2 = 2π(Ny + 1)/k̄d and ȳ3 = 2π(Ny + 2)/k̄d.
The density profile was chosen so that v̄A(x̄, ȳ) decreases

with increasing x̄ (Alfvén speed drops off with increasing alti-
tude in the outer magnetosphere) and to provide a 2D variation
in field line eigenfrequencies. With these aims we chose

v̄A(x̄, ȳ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, x̄ ≤ x̄−(ȳ),
1 − (1 − v̄1) sin2

(
π(x̄−x̄−(ȳ))

2L̄x

)
, x̄−(ȳ) < x̄ < x̄+(ȳ),

v̄1, x̄+(ȳ) ≤ x̄,
(19)

where

x̄−(ȳ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − L̄x), ȳ ≤ ȳ0,

(1 − L̄x) cos2
(
π(ȳ−ȳ0)

2L̄y

)
, ȳ0 < ȳ < ȳ0 + L̄y,

0, ȳ0 + L̄y ≤ ȳ,
(20)

and x̄+(ȳ) = x̄−(ȳ) + L̄x. This produces two uniform regions of
Alfvén speed, the interior region having v̄A(x̄, ȳ) = 1 and the
exterior region having v̄A(x̄, ȳ) = v̄1. We are free to choose v̄1,
but require it to be less than 1 so that Alfvén speed reduces
with increasing x̄. The uniform regions are joined by a corri-
dor of width L̄x in which the Alfvén speed is non-uniform. Note
that our choice of v̄A(x̄, ȳ) is smooth and continuous everywhere.
Figure 2 shows the variation of v̄A(x̄, ȳ) on fixed ȳ for suitable v̄1
and L̄x.

Runs were performed with a gridspacing Δl̄ ≤ 0.00332 and
a timestep Δt̄ = 0.8Δl̄. For each run, the gridspacing was cho-
sen to ensure the fine scales produced by phase mixing were re-
solved with at least five points. The code preserves energy (total
energy density in the waveguide agrees with the time integrated
Poynting flux to within 0.0447% after early times) and maintains
a small ∇ · B̄ (the maximum value in the runs shown here was
1.65 × 10−10). Test cases showed that the code captures refrac-
tion of wavefronts and their reflection at boundaries in x̄. As a
final test, running the code with the drivers and density profile of
Rickard & Wright (1994) reproduced their results.
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Fig. 2. Cut in v̄A(x̄, ȳ) on fixed ȳ. This plot was produced taking v̄1 = 0.2,
L̄x = 0.4 and x̄−(ȳ) = 0.2.

4.2. Results

4.2.1. Excitation of resonant Alfvén wave

As a simulation runs, energy propagates throughout the domain.
Since we are considering a cold plasma, features of energy den-
sity that move across magnetic field lines correspond to the fast
wave. This fast wave soon reaches a quasi-steady state in the
vicinity of the driven boundary, in which energy losses to the res-
onant Alfvén wave and flux down the waveguide approximately
match energy fed in from the driven boundary.

The Alfvén speed profile means that field lines in our do-
main have eigenfrequencies that lie in a continuum ω̄A(x̄, ȳ) ∈
[v̄1k̄z, k̄z]. When the driving frequency, ω̄d, falls outwith this
continuum there is no (singular) resonant absorption. However,
when the driving frequency lies within this continuum, energy is
deposited in the vicinity of the contour at which ω̄A(x̄, ȳ) = ω̄d
(Fig. 3). This energy is trapped on any given field line, and the
dominant velocity perturbation is parallel to the contour. This al-
lows us to identify the deposited energy with the resonant Alfvén
wave.

4.2.2. Phase mixing

At early times, the resonance is broad and gradients of the wave
fields are gentle. As time progresses, however, the resonance be-
comes increasingly narrow and the perturbations that make up
the Alfvén wave develop steep gradients. This is shown in Fig. 4,
in which the X̄ coordinate is perpendicular to contours of ω̄A and
h̄X is the corresponding scale factor. For a similar 1D model in
which vA = vA(x), Mann et al. (1995) showed that the finest
scales within Alfvén fields are governed by a time-dependent
phase mixing length,

Lph(t) = 2π

(
t
dωA

dx

)−1

· (21)

We surmise that this result might be extended to higher dimen-
sions by taking

Lph(t) = 2π (t|∇ωA|)−1 , (22)

which is in good agreement with the fine scales observed in the
simulations (see the horizontal line segments indicated in Fig. 4).

4.2.3. Amplitude variations of resonant Alfvén wave
revealing spatial form of fast wave

At any time, the amplitude of the resonant Alfvén wave varies
significantly along the resonant contour and the associated

velocity perturbation, ūY , may change sign. (Ȳ is the coordinate
parallel to contours of ω̄A and has a scale factor h̄Y .) This ampli-
tude correlates well with the magnetic pressure force associated
with the fast wave ∼−∂b̄z/∂s̄ where s̄ = h̄Y Ȳ is distance along the
resonant contour (Fig. 5). The amplitude variations of the reso-
nant Alfvén wave can therefore reveal the spatial form of the fast
wave. This relationship is discussed more fully in Sect. 5.

We further investigated cases in which field line eigenfre-
quencies were quasi-1D (ω̄A(x̄, ȳ) varies little with ȳ, over the
wavelength of the driver). In this limit, the spatial form of the
fast wave on the resonant contour, is most strongly determined
by the wavenumber k̄2

x in the uniform region next to the driven
boundary. We can set k̄2

x in this region by varying v̄1 and k̄d, since

k̄2
x =

ω̄2
d

v̄21
− k̄2

z − k̄2
d, (23)

for x̄ > x̄+. The driving frequency, ω̄d, which also appears in the
above equation, was set from v̄1 to position the resonant contour
at x̄ = x̄−+ L̄x/2. Setting k̄2

x < 0 for x̄ > x̄+, gives a fast wave that
is evanescent in x̄, over the entire numerical domain. If k̄2

x > 0
for x̄ > x̄+, then the fast wave has a propagating character in x̄,
between x̄ = 1 and the turning point of the fast wave.

For these cases, the relationship between the spatial form of
the fast wave and the amplitude of the resonant Alfvén wave may
be seen qualitatively in surface plots of energy density. Figure 6
shows two such plots at t̄ = 30. In each plot, the largest values
of energy density lie on the resonant contour and are associated
with the resonant Alfvén wave. Both plots show a foreground
of fast wave energy, which lies between the resonance and the
driven boundary. In the snapshot for k̄2

x < 0, the Alfvén wave
has been driven to sufficiently large amplitude that the fore-
ground appears almost negligible. In the snapshot for k̄2

x > 0,
however, the foreground is much more visible; here the Alfvén
wave corresponds to the triple peaked surface behind the fast
wave foreground.

When k̄2
x < 0 everywhere, there is less wave energy available

to drive the resonance far from the driven boundary, and this is
reflected in the energy density of the Alfvén wave. Setting k̄2

x > 0
for x̄ > x̄+, means that (after initial transients) the fast wave
forms an interference pattern, which may include nodes and anti-
nodes. These nodes and anti-nodes prescribe points along the
resonant contour at which energy is not available to the reso-
nance or is available in maximum quantity. This, in turn, leads
to the formation of nodes and anti-nodes in the energy-density
of the Alfvén wave.

5. Analytic solution

Our numerical simulations clearly indicate the existence of reso-
nant absorption for 2D equilibria. To investigate this problem an-
alytically, we now consider the system after perturbations have
settled to a time dependence of the form exp(−iωt)). This corre-
sponds to the asymptotic state for late times. The 2D geometry is
handled by a change of coordinates to (X(x, y), Y(x, y), z) where
the X direction is perpendicular to contours ofωA(x, y) and the Y
direction is parallel to contours ofωA(x, y). We are free to set the
origin of X so that ωA(X = 0) = ω. This is valid, provided that
∇ωA(x, y) � 0 close to the resonant contour. The resulting coor-
dinate system is orthogonal with scale factors hX(X, Y), hY (X, Y)
and hz = 1.

This coordinate system is used to write the cold, lin-
ear, MHD equations in curvilinear form. With the assumed
time dependence, and considering standing structure in z with
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Fig. 3. Accumulation of energy density at a fully 2D resonant contour. Plots show filled contours of energy density with contours representing
0.3% and 1.4% of the maximum energy density at t̄ = 30.0. The location of the resonant contour, where ωA(x̄, ȳ) = ω̄d, is shown by the black line.

Fig. 4. Phase mixing of velocity component parallel to resonant contour. The plot is made along a curve that is everywhere prependicular to
contours of ω̄A(x̄, ȳ). Dotted lines indicate the transition from uniform to non-uniform regions, with the dashed line showing the location at which
ω̄A(x̄, ȳ) = ω̄d. The horizontal solid line represents the dimensionless phase mixing length which goes as ∼1/t̄.
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Fig. 5. Plots at t̄ = 30 of Alfvénic velocity component, ūY , (dashed
curve) and magnetic pressure force, ∼−∂b̄z/∂s̄, (solid curve) against
distance, s̄ = h̄Y Ȳ , along the resonant contour. These quantities have
been re-normalised by their maximum value to aid comparison of spa-
tial forms. Upper plot: a quasi-1D case. Lower plot: a fully 2D case.

wavenumber kz, the components of the momentum and induc-
tion equations lead to 5 non-trivial equations in 5 variables,
ξX , ξY , bX , bY , bz, where ξ is the displacement perturbation. It is
possible to eliminate variables for bz, producing a single equa-
tion of the form

F
∂2bz

∂X2
+G
∂bz

∂X
+ Ĥbz = 0, (24)

where

F = h3
YhXL, (25)

G = h2
Y

(
hX
∂hY

∂X
− hY
∂hX

∂X

)
L − h3

YhX
∂L
∂X
, (26)

Ĥ =
1

B2
0

h3
Xh3

YL2 + h2
X

(
hY
∂hX

∂Y
− hX
∂hY

∂Y

)
L ∂
∂Y

+h3
XhYL ∂

2

∂Y2
· (27)

Here, Ĥ is an operator that does not generally commute with
functions of Y. L(X) is defined as

L(X) = μ0ρ(X)
(
ω2 − ω2

A(X)
)
. (28)

We seek a series solution to (24). First, hX(X, Y), hY (X, Y)
and L(X) are Taylor expanded on constant Y, giving, for
example,

hX(X, Y) =
∞∑

n=0

XnhXn(Y). (29)

Fig. 6. Surface plots of energy density at t̄ = 30 showing qualitative
changes with the domain of k̄2

x .

Similarly, F, G and Ĥ may be expanded with coefficients Fn,
Gn and Ĥn. These coefficients are obtained in terms of hXn, hYn
and Ln by substitution in (25)−(27).

The next step is to choose a suitable form of series solution
for bz. Led by the Frobenius solution to singular ordinary differ-
ential equations (ODEs), we put

bz(X, Y) = Xσ
∞∑

n=0

Xnαn(Y) + Xσ ln(X)
∞∑

n=0

Xnβn(Y). (30)

Substituting all series expansions into (24) and equating powers
of X provides the value of σ (at least one of α0(Y) and β0(Y)
must be non-zero) and recurrence relations for αn(Y) and βn(Y)
with n ≥ 3. Two of {β0(Y), β1(Y), β2(Y), α0(Y), α1(Y), α2(Y)} are
undetermined and act as parameters to accommodate boundary
conditions. In the resonant case, one obtains σ = β0 = β1 =
α1 = 0 with β2(Y) = −Ĥ1α0(Y)/2F1. Both α0(Y) and α2(Y) are
undetermined and are a natural choice of parameters.

Solving a second order ODE gives a 2-parameter solution
which may be written as a sum of two independent 1-parameter
solutions. In such a case the parameters are constants. The so-
lution of the present partial differential equation (PDE), which
is second order in X, is analogous, making it possible to
rewrite (30) as a sum of two 1-parameter solutions. Now, how-
ever, the parameters are functions of Y. Writing the solution
for bz in this form gives

bz =

⎛⎜⎜⎜⎜⎜⎝
∞∑

n=0

XnÂ0,n − 1
2F1

ln(X)
∞∑

n=0

XnB̂nĤ1

⎞⎟⎟⎟⎟⎟⎠α0(Y)

+

⎛⎜⎜⎜⎜⎜⎝
∞∑

n=0

XnÂ2,n

⎞⎟⎟⎟⎟⎟⎠α2(Y), (31)
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where B̂0 = 0, B̂1 = 0, B̂2 = 1, Â0,0 = 1, Â0,1 = 0, Â0,2 = 0,
Â2,0 = 0, Â2,1 = 0, Â2,2 = 1 and higher coefficients (m ≥ 3) are
given by

B̂m = − 1
m(m − 2)F1

m−1∑
s=0

(
s(s − 1)Fm−s+1+

sGm−s + Ĥm−s−1

)
B̂s, (32)

Âi,m = − 1
m(m − 2)F1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−δ0,i(m − 1)B̂mĤ1+∑m−1
s=0

(
s(s − 1)Fm−s+1+

sGm−s + Ĥm−s−1

)
Âi,s−

δ0,i
∑m−1

s=0

(
(2s − 1)Fm−s+1+

Gm−s

)
B̂sĤ1
2F1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (33)

with δi, j representing the Kronecker delta.
This is a fully determined solution for bz. Series solutions

for ξX and ξY follow naturally from

hXLξX = B0
∂bz

∂X
, (34)

hYLξY = B0
∂bz

∂Y
· (35)

Using a prime to denote differentiation with respect to Y, the
leading order behaviour of the complete solution is

bz = α0(Y) + α2(Y)X2 + O(X3)

+β2(Y) ln(X)X2 + ln(X)O(X3), (36)

ξX =
B0

L1hX0
(2α2(Y) + β2(Y)) + O(X1)

+
2B0

L1hX0
β2(Y) ln(X) + ln(X)O(X1), (37)

ξY =
B0

L1hY0
α′0(Y)X−1 + O(X0)

+
B0

L1hY0
β′2(Y) ln(X)X1 + ln(X)O(X2), (38)

where

β2(Y) = − hX0

2h3
Y0

⎛⎜⎜⎜⎜⎜⎝
(
hY0h′X0 − hX0h′Y0

)
d

dY+

hX0hY0
d2

dY2

⎞⎟⎟⎟⎟⎟⎠ α0(Y). (39)

In the one dimensional limit, this solution reduces to the
previously published solution for one dimensional resonant
absorption.

The solution on the resonant contour can be examined by
taking the limit X → 0, which gives

bz = α0(Y), (40)

ξX =
2B0

L1hX0
β2(Y) ln(X), (41)

ξY =
B0

L1hY0
α′0(Y)X−1. (42)

Thus, α0(Y) represents bz evaluated on the resonant contour. This
is proportional to the magnetic pressure perturbation and is as-
sociated with the fast wave. The nature of the singularity is such
that the dominant displacement is ξY , leading to a velocity per-
turbation

uY = −i

(
B0

μ0ω2
[
∂ρ/∂X

]
X=0

)
1

hY0

[
dbz

dY

]
X=0

X−1. (43)

This is the velocity perturbation of the resonant Alfvén wave,
which is the dominant feature for late times. Note the depen-
dence on dbz/hY0dY, which is equivalent to db̄z/ds̄ in the nu-
merical simulations. This confirms that the spatial form of the

fast wave leads to amplitude variations of the resonant Alfvén
wave. We also note a dependence on the frequency, ω, and the
density gradient across the resonance,

[
∂ρ/∂X

]
X=0.

6. Discussion and conclusions

We have established a mathematical basis by which resonant
absorption may be understood when field line eigenfrequencies
vary in two dimensions. This confirms that much of our intuitive
understanding applies to these 2D equilibria. Particularly, energy
is deposited as a phase mixing Alfvén wave where the field line
eigenfrequency matches the driving frequency; a result that is
also clear from Lee et al. (2000) and Terradas et al. (2008).

In both time-dependent simulations (after early times) and
the analytic solution, the system is dominated by a resonant
Alfvén wave. The velocity perturbation rapidly becomes paral-
lel to the resonant surface, so that u ≈ uY Ŷ. Meanwhile, ∂bY/∂z
becomes much larger than ∂bz/hY∂Y. In this limit, the govern-
ing equations tend to those for a decoupled Alfvén wave. (See
also the discussion of the ordering of perturbations and length
scales in Wright (1992).) The dominant wave, which is localised
about the surface at which the local Alfvén speed matches the
wave’s field aligned phase speed, may therefore be identified as
an Alfvén wave.

The role of phase mixing in such a system may be followed
using the phase mixing length, for which we have shown the gen-
eralisation from 1D to higher dimensions. This quantity is useful
since it allows a simple estimate of the time required to develop
small dissipative length scales. It therefore informs us which
structures may be heated by resonant absorption within their
typical lifetime, as well as providing a measure of the length
scales to be considered for magnetospheric (and perhaps coro-
nal) Alfvén waves.

The resonant Alfvén wave differs from the non-resonant, de-
coupled Alfvén wave in an important respect: it exhibits ampli-
tude variations along contours of Alfvén frequency. These reveal
the spatial form of the fast wave, the amplitude of the Alfvén
wave correlating well with the magnetic pressure force of the fast
wave. Intuitively, one can think of a resonant field line receiving
a “push” from the fast wave during every period. These pushes
are large where the amplitude of the magnetic pressure force is
large, and small where the amplitude of the magnetic pressure
force is small. After several cycles, those field lines which have
received the largest pushes have the largest Alfvén oscillations.
Alternatively, one can consider the variation of fast wave energy
at the resonant surface. This is reflected in the energy available
through resonance, leading to amplitude variations of the Alfvén
wave.

In the magnetosphere, the correlation between the amplitude
of the Alfvén wave and the amplitude of the magnetic pressure
force offers a means of probing the magnetosphere through mag-
netoseismology. Observations of ULF magnetic pulsations over
different magnetic latitudes and local times provide a spatial pic-
ture of the Alfvén wave, which, in turn, reveals the structure
of the magnetospheric fast wave. This connection has already
been exploited in weaker forms, for example, the low power of
ULF waves at local noon and the dominance of antisunward az-
imuthal phase speeds led the community to consider antisun-
ward propagating fast waves as the dominant driver (Anderson
et al. 1990; Samson et al. 1992). More quantitatively, Wright
& Rickard (1995) showed that a displacement pulse running
along the magnetopause excites resonant Alfvén waves with an
azimuthal phase velocity strictly equal to that of the boundary
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pulse. The present study suggests, however, that the correlation
can be exploited more generally and invoking the amplitude also.

This work is readily applied to a coronal loop with a contin-
uous profile of Alfvén speed. The kink frequency of a loop lies
between the maximum Alfvén frequency within the loop and the
Alfvén frequency of the environment, so the resonant contour
exists for any continuous profile of field line eigenfrequencies. In
this case, the total pressure perturbation associated with a trans-
verse kink wave drives an Alfvén wave at the resonance, in the
same manner as a fast wave.

For a cylindrical, monolithic loop, the total pressure per-
turbation of the kink wave has an exp(±imθ) symmetry where
m = 1. We have seen that the amplitude of the magnetic pressure
force correlates with the amplitude of the resonant Alfvén wave,
so the resonant Alfvén wave will also have an m = 1 symmetry
(as in normal mode analysis). It is therefore inevitable that the
kink wave coexists with an m = 1 Alfvén wave that oscillates at
the kink frequency (Ruderman & Roberts 2002; Terradas et al.
2006).

Moving to more general equilibria, such as the ellip-
tical cross-section considered by Ruderman (2003) or the
multi-stranded loop of Terradas et al. (2008), resonant absorp-
tion continues to imprint the spatial form of the global mode of
oscillation on the localised Alfvénic motions. This explains the
complex variation of energy density on the resonant surface pre-
viously seen in Terradas et al. (2008) (their Fig. 10). The ampli-
tude of global (kink-like) mode of oscillation must vary around
this surface, with a form of magnetic pressure force captured in
the energy density of the Alfvén wave.

In the analytic solution, magnetic pressure is not the only
contribution to amplitude variations of the resonant Alfvén
wave. Referring to Eq. (43), the Alfvénic velocity perturbation
has a Y dependence of the form

1
[∂ρ/∂X]X=0

1
hY0

[
dbz

dY

]
X=0

,

noting that ∂ρ/∂X ≡ |∇ρ|. In numerical results, multiplying the
magnetic pressure force by the inverse of the density gradient did
not significantly improve correlation with the Alfvénic velocity
perturbation. We believe that no improvement was seen because
the result is approximate within the runtime of the simulations.

Finally, it should now be possible to obtain a complete
analytic solution for three dimensional resonant absorption with
a straight, uniform magnetic field. Schulze-Berge et al. (1992)
provide a framework, density variation along field lines may be

handled by the methods of Thompson & Wright (1993) and the
present paper contributes mathematical handling of two dimen-
sional variation of field line eigenfrequencies.
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