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ABSTRACT

Context. Phase mixing of standing continuum Alfvén waves and/or continuum slow waves in atmospheric magnetic structures such
as coronal arcades can create the apparent effect of a wave propagating across the magnetic field.
Aims. We observe a prominence with SDO/AIA on 2015 March 15 and find the presence of oscillatory motion. We aim to demonstrate
that interpreting this motion as a magneto hydrodynamic (MHD) wave is faulty. We also connect the decrease of the apparent velocity
over time with the phase mixing process, which depends on the curvature of the magnetic field lines.
Methods. By measuring the displacement of the prominence at different heights to calculate the apparent velocity, we show that the
propagation slows down over time, in accordance with the theoretical work of Kaneko et al. We also show that this propagation speed
drops below what is to be expected for even slow MHD waves for those circumstances. We use a modified Kippenhahn-Schlüter
prominence model to calculate the curvature of the magnetic field and fit our observations accordingly.
Results. Measuring three of the apparent waves, we get apparent velocities of 14, 8, and 4 km s−1. Fitting a simple model for the
magnetic field configuration, we obtain that the filament is located 103 Mm below the magnetic centre. We also obtain that the scale
of the magnetic field strength in the vertical direction plays no role in the concept of apparent superslow waves and that the moment
of excitation of the waves happened roughly one oscillation period before the end of the eruption that excited the oscillation.
Conclusions. Some of the observed phase velocities are lower than expected for slow modes for the circumstances, showing that they
rather fit with the concept of apparent superslow propagation. A fit with our magnetic field model allows for inferring the magnetic
geometry of the prominence.
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1. Introduction

Solar prominences are huge magnetic structures consisting of
large amounts of solar plasma suspended in the solar corona.
Compared to their coronal surroundings typically they are
roughly 100 times cooler and denser, with temperatures up to
104 K and electron densities of 109 to 1011 cm−3 (for a review,
see Labrosse et al. 2010; Mackay et al. 2010).

Oscillatory motion in prominences and other coronal struc-
tures, such as loops and plumes, have been of scientific in-
terest for a while now. While they have been observed by
Hα spectrograms as early as the 1930s (Dyson 1930), theo-
retical studies on the subject long predate observational evi-
dence owing to a potential link with the coronal heating prob-
lem (Joarder & Roberts 1992; Mackay et al. 2010; Díaz et al.
2003). The ability to study oscillations has advanced drastically
over the years thanks to improved observational methods, such
as two-dimensional spectrographs and image stabilisers, and
analysis tools, such as wavelet transforms (Oliver & Ballester
2002). At the moment the main method to detect these motions
is through the periodic Doppler shifts of spectral lines or ob-
served displacements. For prominences these observations have
shown that the oscillations are mostly localised and undergo
strong damping over time (Mackay et al. 2010). Depending on
the amplitude of the oscillations they can be divided into two

? The movie attached to Fig. 1 is available at
http://www.aanda.org

groups: small-amplitude oscillations and large-amplitude oscil-
lations (Arregui et al. 2012).

Small-amplitude oscillations can be distinguished due to
containing one of three aspects:

– Only a restricted part of the prominence is subjected to the
oscillation.

– The amplitude of the oscillation is rather small.
– The relation to flare activity is usually non-existent.

Aside from the size of the amplitude, the most important char-
acteristic of large-amplitude osculations is the fact that the en-
tirety of the prominence undergoes the movement, in which dis-
placements from the equilibrium position ranging from a few
thousand to a few ten thousand km. For a long time it was
believed that large-amplitude oscillations were only caused by
the collision of the filament with a Moreton wave (a flare-
associated wave that propagates in the chromosphere; Moreton
1960; Okamoto et al. 2004). More recent observations however
exhibit the presence of large-amplitude oscillations without the
presence of a remote flare and thus without the accompanying
Moreton wave; other triggering events could be magnetic re-
connection between a filament barb and a nearby emerging flux
(Isobe et al. 2007) or a subflare (Jing et al. 2003). A handful of
models have been introduced to explain large-amplitude oscil-
lations. One of the earliest is the Kleczek & Kuperus model
(Kleczek & Kuperus 1969). In this model, the filament is rep-
resented as a slab with the magnetic field running along it.
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Oscillatory motion is perpendicular to the main axis of the
slab and magnetic tension plays the role of the restoring force.
Jing et al. (2003) used this model as a basis for the interpreta-
tion of three filament observations on 2001 October 24, 2002
March 20, and 2002 March 22. One of the main conclusions in
this work is that the direction of the observed oscillations con-
flicts with that of the Kleczek & Kuperus model. The observa-
tions seem to show that the displacements are mostly oriented
along the filament axis, but the magnetic tension drives trans-
verse motions, perpendicular to the actual oscillation (Jing et al.
2006). Vršnak et al. (2007) proposed a model of a flux rope ge-
ometry with oscillations analogous to a longitudinal-mode stand-
ing wave on a spring fixed at both ends. This model however
also predicts motions that are oriented perpendicular to the lo-
cal magnetic field, which is a phenomenon not found in ob-
servations. One of the more recent works on the topic is by
Ruderman & Luna (2016). In their model, the oscillation con-
sists of the unified motion of multiple cool, dense threads along
the magnetic field. A nearby energetic event, such as a flare, sub-
flare, or microflare, is taken as the triggering event. The restoring
force is the projected gravity in the flux tube dips and the oscilla-
tion is damped by mass accretion of the threads (Luna & Karpen
2012; Ruderman & Luna 2016).

In recent years, there have been a number of numerical sim-
ulations regarding prominence oscillations. Zhang et al. (2012)
used Hinode high resolution observations and attempted to re-
produce the observed damped oscillations by performing a one-
dimensional hydrodynamical numerical simulation. In their re-
sults they show that the oscillation period derived from the
simulation closely matches the observed one and their findings
seem to support that the projected gravity is the restoring force,
as mentioned by Luna & Karpen (2012). Terradas et al. (2013)
calculated two-dimensional numerical models that connect the
magnetic field to the photosphere and include an overlying ar-
cade. Oscillatory motion is simulated by injecting mass into
the equilibrium state of the system. These authors found that
vertical oscillations are always stable for their equilibrium pa-
rameters when there is no perpendicular propagation. On the
other hand, Longitudinal oscillations, which are mainly related
to slow magnetoacoustic-gravity waves, can become unstable
because that they are more strongly affected by gravity. This two-
dimensional model was later expanded to a three-dimensional
model (Terradas et al. 2015, 2016) while using the same con-
cepts as in the two-dimensional model. In these simulations the
main objective was to tie the time evolution of the prominence
to the different parameters of the configuration, where plasma
β is one of the more critical parameters. Kolotkov et al. (2016)
developed an analytical model for transverse oscillations. In this
model, they account for both the magnetic dip and mirror cur-
rent, which is a current located below the prominence that is
generated by the conductive properties of the photosphere. In
their results, they find the properties of vertical and horizontal
oscillations and show that the system is in fact stable when the
force of the mirror current is accounted for.

When cross-field propagation is observed in solar fila-
ments, it is usually attributed to magnetosonic magneto hydrody-
namic (MHD) waves. Kaneko et al. (2015) and Schmieder et al.
(2013), however, have shown that this may in fact be faulty.
Magnetic surfaces in the prominence can contain trapped con-
tinuum Alfvén waves. In ideal MHD, a single flux surface os-
cillates at its own frequency without any influence on or from
neighbouring flux surfaces (negligible effect in non-ideal MHD).
Depending on the variation of the frequency through the fila-
ment, an illusionary effect of a propagating wave can be created

that can be confused with an MHD wave. The simulations of
Kaneko & Yokoyama (2015) have shown that these apparent
waves slow down over time with propagation velocities that are
lower than fast and even slow modes.

While these observational and theoretical works have been
around for some time now, applying seismology to solar oscil-
lations is a more recent application (Ballester 2014). Seismol-
ogy entails the analysis of oscillation or wave properties to study
the conditions of the medium through which they travel, which
can be applied to a number of different fields. Solar atmospheric
seismology, while introduced as early as 1970 (Rosenberg 1970;
Uchida 1970; Roberts et al. 1984) was only fully realised since
the late 1990s (Nakariakov et al. 1999; Nakariakov & Ofman
2001; Goossens et al. 2002; Arregui et al. 2007; Andries et al.
2005; Van Doorsselaere et al. 2011; Wang et al. 2016).

One can use MHD seismology to determine physical pa-
rameters of plasma structures, such as coronal magnetic field,
transport coefficients and heating function. When considering
prominence seismology, both large-amplitude oscillations and
small-amplitude oscillations can be used as an observational tool
(Ballester 2014). Related observations have been reported in a
magnetospheric context, where phase motion has been observed
at the ionospheric footpoints of field lines supporting Alfvén
waves (see Wright & Mann 2006, for a review of the observa-
tions and theory used to interpret them).

The aim of this paper is to add more observational evidence
for apparent superslow wave propagation in prominences, by
showing that the oscillatory motion observed in a filament on
2015 March 15 can be attributed to this concept. This will be
carried out using observations from the Atmospheric Imaging
Assembly (AIA) aboard the Solar Dynamics Observatory (SDO)
to determine the apparent phase velocity of the observed move-
ment. Section 2 explains the data reduction in more details. The
calculation of the apparent phase velocity and subsequent results
can be found in Sect. 3. In Sect. 4 we connect the phase mixing
process with the decrease of apparent velocity over time using a
model for the prominence magnetic field with the aim of using
the superslow waves for seismology. We fit the model to the data
to infer the magnetic configuration. Our conclusions are formu-
lated in Sect. 5.

2. Observations
The SDO/AIA observations of the prominence were carried out
from 00:00–10:00 UT on 2015 March 15. This case was cho-
sen by visual inspection. It is observed at 600 arcsec solar west,
130 arcsec solar south, which is approximately half a solar radius
from the solar centre. The location is near active region 12 297.
The prominence is clearly visible in SDO/AIA filters, mainly in
wavelengths of 193 and 304 Å. The central panel of Fig. 1 shows
the prominence in AIA 193 Å, where it can be seen as a dark re-
gion against the brighter solar disk.

2.1. Observed oscillatory motion

The AIA 193 Å observations clearly show an eruptive event near
active region 12 297 from 00:00–03:00 UT. Consequently, oscil-
latory motion can be seen until approximately 10:00 UT, but it is
most outspoken from 03:10–06:20 UT. The exact moment when
the eruption excites the oscillatory motion cannot be found in
the observations. In Sect. 4.6 we show that the oscillatory motion
starts around 02:15 UT, but the eruption itself visually blocks any
sign of this. In order to verify whether these motions are MHD
waves or not, we determine the (apparent) phase velocity of the
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Fig. 1. Prominence observed by AIA on 2015 March 15 at 03:10 in the 193 Å channel. The left panel shows the data in a non-manipulated format.
The darker area denotes the filament and the brighter area is the solar background. The temporal evolution as seen in AIA 193 channel is available
online. The middle panel shows the data set after a first manipulation by using a cut-off value. In this format, the prominence can be seen as a black
shape against a white background. Compared to the non-manipulated data, the prominence can be seen much more clearly. The right panel shows
the data after a final manipulation: in this format only the prominence edges are displayed. The red lines over the prominence are the different
slices at which the displacement measurements are taken.

wave. This can be achieved with accurate measurements of the
wave amplitude over time at different heights of the prominence.
For this we need to determine the location of the prominence
edges.

2.2. Data reduction

The data from SDO AIA has a cadence of 12 s. Each frame
consists out of 4096 by 4096 data points. We used a total of
2990 frames, covering a time span from 00:00 UT to 10:00 UT
on 2015 March 15, from the 193 Å channel. Most of these data
are obsolete however, as only a small part of the solar surface
contains the prominence and the oscillatory motion is only ob-
served in a smaller time interval. Cutting the unnecessary parts
we get 980 frames consisting of 349 by 380 data points. A first
step to locating the edges of the prominence is to introduce an
intensity cut-off in these data. By changing all data values below
this cut-off value to zero and all data values above or equal to
this cut-off to one, we can find a clearer picture for which part
of the image is the prominence. Through a process of trial and
error we find that a cut-off value of 30 200 DN yields the best
result. We now have a data set where a data point with a value
of 0 belongs to the prominence and a data point with a value of
1 denotes the solar background. The left panel of Fig. 1 shows
an image of these data format: a black blob against a white back-
ground. As can be seen, these data show the prominence edges
very clearly.

The location of the edges can now be found by comparing
neighbouring data points in the vertical direction. When two
neighbouring data points have the same value (either 0 or 1), we
regard them as belonging to same medium (either prominence
of solar disk). When two neighbouring data points have differ-
ent values, these two points form a transition from solar disk to
prominence or vice versa. In other words, where the difference
between two sequential data points is non-zero, we are looking
at the prominence edge. This way, we create a new dataset in
which a value of 1 denotes the location of an edge and a value
of 0 denotes the rest. An image of this dataset can be seen in the
right panel of Fig. 1.

We take a set of slices across the filament to obtain the dis-
placement of the oscillatory motion at different heights. For each
slice we determine the intersection of the slice with the northern
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Fig. 2. Displacement measurements of the filament at height 0. The red
lines at each peak are fitted parabola to find the time of the maxima.

edge of the filament, for each frame. Subsequently we calculate
the distance between this intersection and a fixed reference point
on the slice. The exact location of this reference point is not of
great importance: we want to know when the displacement is
maximal, not its exact value. Measuring the projected distance
between the slices and setting the lowest slice at height 0, Fig. 2
shows the displacement over time at projected height 1530 km.
The effect of projection due to the angle of the observation is not
taken into account, such that all speeds and distances measured
in this article are projected distances.

3. Results

To get an initial of the apparent phase velocity, we gather the am-
plitudes of the slices at each height into a single plot, as shown in
Fig. 3. In this figure a constant offset proportional to the height
is added to the displacement of each subsequent slice. For this
reason, no numerical values are given on the vertical axis, as
otherwise the highest slice would seem to have a much higher
amplitude than the lowest. We note that there are instances with
a lot of noise in the data. This is because the intensity profile
does not always follow a smooth shape, making automated edge
detection noisy. Going over each data frame separately and man-
ually selecting the edge would have resulted in much less noise.
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Fig. 3. Displacement measurements of the filament at all heights. The
blue curve is at a height of 0 km, the green curve at height 2175 km,
the red curve at height 6527 km, the grey curve at height 8703 km,
and the black curve at height 10 879 km; these are projected heights.
The time difference between maxima for subsequent slices is smallest
during the first maximum, larger for the second maximum, and largest
for the third maximum.

Table 1. Overview of the times of maximal amplitude for each slice.

Height (km) Peak 1 (s) Peak 2 (s) Peak 3 (s)
0 1390 5580 9501

1530 1447 6013 9557
4589 1751 6156 10 438
6118 1584 6225 10 527

However, we used a systematic approach to avoid any bias.
Luckily, the noise is minimal around the peaks of each displace-
ment graph, so we can still determine the moment of maximum
displacement accurate enough. This is also the reason why we
use the northern edge of the filament, where there is less noise.
Figure 3 gives an interpretive grasp on the apparent velocity; as
the apparent wave moves through the filament, the peak time oc-
curs later for each subsequent slice (Schmieder et al. 2013). We
thus need the times of each local maximum of the amplitudes
for each projected height to find the apparent phase velocity. As
the highest slice is too close to the boundary of the prominence,
its results are unreliable and are not used for further analysis.
To find the maxima of the other slices, we fit a parabola to each
peak of every slice as can be seen by the red lines for the slice
of height 1530 km in Fig. 2. For the fits we took an interval of
about 1200 s for the first peak and 2400 s for the second and
third peaks, all centred on a rough estimate of the maximum.
The times can be found in Table 1 and are plotted in Fig. 4. The
time of 0 s corresponds with the end of the eruption, which is
2015 March 03:10 UT.

We can easily get the velocities from each peak by interpo-
lating these points. This gives us 14, 8, and 4 km s−1 for the
three peaks, respectively. Using the same moment in time for
t = 0 as defined above, gives an evolution of phase velocity over
time as shown in Fig. 5. We first notice the decline of the ap-
parent phase velocity over time, as expected from the theoretical
work by Kaneko et al. (2015) and the numerical simulations by
Kaneko & Yokoyama (2015). This indicates that we are dealing
with apparent superslow waves instead of MHD waves. When
looking at the expected values of phase velocity for MHD waves,
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Fig. 4. Plot of the times of maximal displacement for the different pro-
jected heights. The slopes indicate that the velocity decreases over time
for each peak.
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Fig. 5. Overview of the apparent phase velocities over time. The time
for each velocity corresponds with the time when the first maximal am-
plitude was reached for that wave at height 0. The dotted line is the fitted
phase velocity using Eq. (35).

one would presume approximately 20 km s−1 or higher for so-
lar prominences (Mackay et al. 2010). While the first observed
apparent phase velocity of 14 km s−1 could still be considered
ambiguous, the values of 8 and 4 km s−1 are vastly lower than
expected speed for even the slow mode. This suggests that in-
terpreting the observed oscillatory motion of the prominence as
MHD waves is not correct.

4. Seismology

In this section we attempt to combine the works of Kaneko et al.
(2015) and Luna et al. (2012) to fit our observations of the super-
slow propagation to the change of frequency using a magnetic
field model.

4.1. Phase mixing and phase motion

There are many instances in MHD where individual field
lines exhibit natural oscillations along their length that are
essentially decoupled from neighbouring field lines. Exam-
ples include Alfvén waves, slow modes, and the gravity-driven
sloshing modes considered by Luna & Karpen (2012). Since the
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frequency of the oscillation varies from one field line to another,
considering a set of field lines in a smoothly varying medium
leads to a continuum of permitted natural frequencies.

This has been studied previously in two-dimensional sys-
tems where the flux function is a natural coordinate. For ex-
ample, Wright et al. (1999) show how the scales and motion
phase structures in standing Alfvén waves may be predicted.
Kaneko & Yokoyama (2015) provide a similar analysis for inter-
preting coronal Alfvén waves in a simulation. In this subsection
we indicate how the ideas of phase mixing and phase motion
may be generalised to a three-dimensional system.

To facilitate analysis it is natural to introduce a field-aligned
coordinate system in which the two perpendicular directions are
identified with coordinates α and β, for example Euler potentials.
The following analysis applies when the continuum frequency
may be denoted by ωc(α, β). Since these coordinates are con-
stant on a field line it also guarantees that the frequency is the
same everywhere along a particular field line. The coordinates
are completed by a field aligned coordinate (γ). Whilst it may
be difficult to define (α, β, γ) as orthogonal coordinates globally
in certain cases, such as when there is a field aligned equilib-
rium current, there is no problem if we are considering a smaller
subdomain in the vicinity of a chosen field line as we do here.

We begin with considering the natural undamped continuum
oscillations. Assuming the system to have been excited at t = 0,
the subsequent state (for t > 0) of the perturbation quantity ξ
may be represented by

ξ(α, β, γ, t) = a(α, β, γ) exp
[
−iωc(α, β)t

]
, (1)

where the complex coefficient a(α, β, γ) is determined from ini-
tial conditions. The quantity ξ could represent any leading order
continuum field, such as a component of velocity, magnetic field,
displacement, etc., associated with the natural oscillation. For
some systems there may be several harmonics present, in which
case these should be summed over. For simplicity we assume
that there is only a single mode that dominates the behaviour.
Depending upon the system considered, the above expression
could be an exact representation or one that is asymptotically
valid.

The field aligned eigenmode structure is contained in the
coefficient a, as is the initial cross-field variation of ξ. In a
one-dimensional system, Mann et al. (1995) showed how the
solution develops increasingly small scales (∝1/t) in the perpen-
dicular direction owing to phase mixing, which is a property of a
time-dependent evolution. Here we generalise their results (and
those of Wright et al. 1999) to three dimensions. Taking ∇⊥ of
Eq. (1) gives

∇⊥ξ ≈ −i(∇ωc)tξ (2)

after omitting a term (∇⊥a) exp[−iωct], which may be justified
if a varies slowly with α and β, or because as t increases the term
retained on the righthand side of Eq. (2) dominates.

We can see how this is consistent with the development of
small scales via phase mixing by introducing local wavenumbers
for the variation with α and β,

ξ ∝ exp i
[∫

καdα +

∫
κβdβ

]
. (3)

Here κα and κβ are the wavenumbers in α and β and have
units that are the inverse of the units of their respective coor-
dinates. These wavenumbers should be distinguished from the
perpendicular components of the usual wave vector k, which
has units of 1/length. The different wavenumbers may be related

through the scale factors (h) that relate elemental coordinate in-
crements to physical distances: dr = eαhαdα + eβhβdβ + eγhγdγ,
where eα is a unit vector in the α direction, etc. In this notation
∇⊥ = (eα/hα)∂/∂α + (eβ/hβ)∂/∂β, and noting that ∇⊥ξ ≈ ik⊥ξ,
Eq. (3) yields

∇⊥ξ = ik⊥ξ = i
(

eα
hα

∂

∂α
+

eβ
hβ

∂

∂β

)
ξ (4)

≡ i
(

eα
hα
κα +

eβ
hβ
κβ

)
ξ. (5)

Equating components of the second and fourth expressions
in Eq. (5) gives the expected relations between the various
wavenumbers,

kα = κα/hα, kβ = κβ/hβ. (6)

Equations (2) and (5) give a direct and elegant expression for the
perpendicular wave vector as

k⊥ ≈ −(∇ωc)t, (7)

which is a generalisation to three dimensions of the results
of Mann et al. (1995), (Wright et al. 1999) and Kaneko &
Yokoyama (2015) for lower dimensional systems, which devel-
oped phase mixing in only one perpendicular coordinate. The
above expression allows phase mixing in both perpendicular di-
rections, giving physical phase mixing lengths (or wavelengths)
in the α and β directions of

Lphα =
2π
|kα|
≡

2πhα
|∂ωc/∂α|t

, Lphβ =
2π
|kβ|
≡

2πhβ
|∂ωc/∂β|t

· (8)

If the phase mixing lengths are expressed in the same units as α
and β, rather than physical length as in Eq. (8), slightly simpler
expressions are found, i.e.

`phα =
2π
|κα|
≡

2π
|∂ωc/∂α|t

, `phβ =
2π
|κβ|
≡

2π
|∂ωc/∂β|t

· (9)

The development of the phase mixing length can be pictured
simply as the tendency for each field line to oscillate with its
own natural frequency. Even if all the field lines start to os-
cillate with the same phase, they soon drift out of phase with
one another as time passes. Not only does the phase mixing pro-
cess generate perpendicular scales, but points of constant phase
can be seen to move across field lines. This phase motion has
been seen in magnetospheric data of Alfvén waves (see the re-
view by Wright & Mann 2006) and the simulations of coronal
oscillations by Kaneko & Yokoyama (2015). These studies note
that the direction of motion is related to the spatial variation of
ωc. The results of these papers for the perpendicular phase ve-
locity in physical space generalise to Vph = ωc/k⊥, giving the
components

Vphα =
−ωchα

(∂ωc/∂α)t
, Vphβ =

−ωchβ
(∂ωc/∂β)t

, (10)

If the excitation occurred at a time ti, the subsequent properties
are found by replacing t with t − ti in the above formulae.

Even though some of the steps in the above formulation are
approximate, the results have been shown to be remarkably ro-
bust and valid. For example, Alfvén waves are only strictly de-
coupled when appropriate symmetry is present. Nevertheless,
Mann et al. (1995) and Kaneko & Yokoyama (2015) show how
they can provide an accurate interpretation of simulations which
lack this symmetry. Indeed, even when one-dimensional theory
is applied to two-dimensional simulations, the expressions work
remarkably well (Rickard & Wright 1994).
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4.2. Apparent phase speed

The generalised expressions for the phase speed that have
been derived in both the magnetoshperic and solar literature
(Wright et al. 1999; Kaneko et al. 2015) can be rewritten for a
flux function of r as

vph =
ω(r)

−(t − ti)
∂ω(r)
∂r

, (11)

with ω the natural/continuum frequency of the field line in a flux
surface at radius r. The assumption for writing this formula is
that the phase speed (Alfvén speed in this case) is a flux function
and that the radial coordinate corresponds to the flux coordinate.
Adopting the work of Luna et al. (2012), we get a relation be-
tween the angular frequency of an oscillation and the magnetic
field,

ω =

√
g0

RC
, (12)

with g0 the gravitational acceleration at the solar surface and
RC the radius of curvature of the fieldline. If we now assume
that the radius of curvature RC is a flux function, then we
can use the same formalism as Kaneko et al. (2015) to de-
scribe the superslow propagation. To obtain the dependence of
the radius of curvature on the height in the prominence, we
use the Kippenhahn-Schlüter prominence magnetic field model
(Kippenhahn & Schlüter 1957).

4.3. Kippenhahn-Schlüter model

The Kippenhahn-Schlüter prominence magnetic field model is
given by:

Bx = Bx0,

By = By0,

Bz(x) = Bz0 tanh
(

Bz0
2Bx0

x
Λ

)
,

(13)

where the x-direction is across the filament, the y-direction is
along the filament, and the z-direction is vertical. The quantity Λ
is the pressure scale height, given by

Λ =
RT0

µ̃g
,

with R the specific gas constant, T0 the temperature (assumed
constant), µ̃ the mean atomic mass, and g the gravitational ac-
celeration. Figure 6 shows a projection of the xz-plane of the
Kippenhahn-Schlüter model. We obtain the equation of the field-
lines in the xz-plane by solving the equation

dx
Bx

=
dz
Bz
, (14)∫

Bz0

Bx0
tanh

(
Bz0

2Bx0

x
Λ

)
dx =

∫
dz, (15)

2Λ ln
{[

cosh
(

Bz0

2Bx0

x
Λ

)]}
= z + c. (16)

Different values of c give different altitudes in the prominence,
which corresponds with the different slices of observations we
have, as seen in Fig. 3.

The radius of curvature of a curve given parametrically by{
x = x(s),
z = z(s),

x

Zc

Z

C1

Fig. 6. Diagram of the magnetic field configuration of a solar promi-
nence. Figure modified from Gilbert et al. (2000). The prominence it-
self is shown by the shaded area, denoted by C1. This area is modelled
by the Kippenhahn-Schlüter model. The value zc denotes the centre of
the magnetic field twist we introduce in Sect. 4.4.

is calculated through

RC =
(x′2 + z′2)3/2

|x′z′′ − z′x′′|
· (17)

We parametrise the equation of the field line in the Kippenhahn-
Schlüter model (Eq. (16)) asx = s,

z = 2Λ ln
{

cosh
(

Bz0
2Bx0

s
Λ

)}
− c.

Taking the first and second order derivatives and inserting them
into Eq. (17) gives

RC =

(
1 +

B2
z0

B2
x0

tanh2
(

Bz0
2Bx0

s
Λ

))3/2

∣∣∣∣ B2
z0

2B2
x0Λ

(
1 − tanh2

(
Bz0

2Bx0

s
Λ

))∣∣∣∣ ·
When considering the centre of the filament (x = 0), the curva-
ture becomes

RC =
1∣∣∣∣ B2
z0

2B2
x0Λ

∣∣∣∣
=

B2
x0

B2
z0

RT
µ̃g
· (18)

This results in a constant value for the radius of curvature, which
is contradictory to what we expect. For the concept of apparent
superslow waves, we need a radius of curvature that varies with
height in the prominence, so that we have a varying angular fre-
quency in the standing waves. We can thus conclude that the
assumed model by Eq. (13) is too simplistic for this purpose and
we thus introduce a modification.

4.4. Modified Kippenhahn-Schlüter model

We modify the model so that the magnetic field in the direction
along the prominence depends on the distance to the centre of
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the prominence, introducing a twist in the magnetic field. We
thus take the magnetic field as follows:

Bx = Bx0,

By =
By0

S 2 (x2 + (z − zc)2),
Bz = Bz0 tanh

(
Bz0

2Bx0

x
Λ

)
,

(19)

with zc the vertical position of the centre of the filament and S
a measure for the strength of the magnetic field twist. To get the
radius of curvature in this three-dimensional scenario, we use a
slightly different approach, as we only need the derivative of the
field line parametrisation. A field line with parametric equation
r(s) must have its tangent vector dr/ds parallel to B(r(s)). This
means that
dr
ds

= λ(s)B(r(s)). (20)

The differential equations for the fieldlines are then given by
dx
Bx

=
dy
By

=
dz
Bz
·

Solving dx
Bx

= dz
Bz

gives us the same result as Eq. (16). We then
introduce a parametrisation as before as follows:x = s,

z = 2Λ ln
{

cosh
(

Bz0
2Bx0

s
Λ

)}
+ C1.

(21)

Differentiation yields

x′ = 1, (22)

z′ =
Bz0

Bx0
tanh

(
Bz0

2Bx0

s
Λ

)
· (23)

Using Eq. (22) with Eq. (19) and 20 yields a value for λ(s),

λ(s) =
1

Bx0
· (24)

Using Eq. (23) with Eqs. (19) and (20) confirms this value for
λ(s). Combining Eqs. (19) and (20) with λ(s) then gives us

y′ =
By0

S 2Bx0
(x2 + (z − zc)2)

=
By0

S 2Bx0

(
s2 +

(
2Λ ln

{
cosh

(
Bz0

2Bx0

s
Λ

)}
+ C1 − zc

)2)
. (25)

After calculating the second order derivatives, the radius of
curvature for a three-dimensional fieldline in the centre of the
prominence can then be calculated as follows:

Rc =
(x′2 + y′2 + z′2)3/2√

(z′′y′ − y′′z′)2 + (x′′y′ − y′′x′)2 + (x′′z′ − z′′x′)2

=
2ΛB2

x0

B2
z0

(
1 +

B2
y0

B2
x0S 4

(C1 − zc)4
)
· (26)

Rewriting this equation using

v = By0/Bx0, (27)
w = Bz0/Bx0, (28)

A =
C1 − zc

S
, (29)

gives us

Rc =
2Λ

w2

(
1 + v2A4

)
. (30)

4.5. Apparent phase velocity

Applying this result to the formula for the angular frequency of
Luna et al. (2012; Eq. (12)) gives us

ω =

√
g

Rc

=

√
gw2

2Λ

1
1 + v2A4 , (31)

which is a function of height. Before we can use this, we need to
calculate the ∂ω(r)

∂r term in Eq. (11). We can rewrite this as

∂ω(r)
∂r

=
∂ω

∂A
∂A
∂r

r, (32)

where A is as we defined in Eq. (29). The r coordinate here is the
same as our C1 coordinate, making the ∂A

∂r factor equal 1
S . This

then gives

vph = −
S

t − ti

ω
∂ω
∂A

· (33)

Calculating the derivative of the angular frequency yields

∂ω

∂A
=

1

2
√

gw2

2Λ
1

1+v2A4

(
−
gw2

2Λ

1
(1 + v2A4)2 4v2A3

)

= −
2ωv2A3

1 + v2A4 · (34)

Inserting this into the phase velocity equation gives us

vph =
S

t − ti

1 + v2A4

2v2A3 · (35)

A first thing to notice is that the w quantity that describes the ra-
tio of Bz0 to Bx0 vanishes completely, meaning that the apparent
phase velocity is independent of the scale of the magnetic field
in the vertical direction. It only depends on time, guide field, and
height. Assuming that A in Eq. (35) is large compared to the v
component, we can rewrite the equation so that

vph =
S

t − ti

A4( 1
A4 + v2)

A32v2

≈
S

t − ti

A4

A3

v2

2v2

=
S

t − ti

1
2

A

=
1
2

1
t − ti

(C1 − zc). (36)

In this limit for large A (corresponding to a large flux rope, with a
slowly varying twist), the parameter for the magnetic twist mag-
nitude v is no longer present in the equation. Surprisingly, the
phase speed of the apparent superslow propagation only depends
on the distance to the centre of the flux rope.
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4.6. Fitting the observations

We thus fit our three observed phase velocities (14, 8, and
4 km s−1) to their observed times (t equals 1390, 5580, and
9501 s) in order to get values for ti and C1 − zC. Doing so yields
a value of −2170 s for ti and 103 Mm for C1 − zc. A plot of this
fit can be found in Fig. 5. An excitation time of 2170 s roughly
equals one apparent oscillation period. This means that the time
of excitation of our wave happened about one oscillation pe-
riod before we observed the end of the eruption, thus around
02:45 UT. From a physical point of view, C1 − zc basically gives
the distance from the centre of the magnetic field twist to the fil-
ament. According to various works and observations, the promi-
nence itself is located low in the dip of the magnetic field lines,
also called a cavity (as can be seen in Fig. 6). This more or less
circular structure can reach up to twice the height of the promi-
nence itself and extends well above its top (Gibson & Fan 2006;
Gibson et al. 2010; Mackay et al. 2010; Xia et al. 2012). Look-
ing at the fact that the filament height can reach up to 105 km,
the obtained value for the prominence cavity size is compatible
with the earlier observations. We tried using other observations
from AIA and SDO at later times to confirm our results about
the height. This proved to be fruitless however, as no observa-
tions are clear enough for a proper sign of the flux rope or cav-
ity. since our value for C1 − zc is positive, we can deduce that
the centre of the magnetic field twist is located to the left of our
slices in Fig. 1. This can be confirmed by looking at the oscilla-
tion frequency of the different slices. Figure 3 shows us that the
oscillation frequency decreases when moving through the slices
from left (height 0) to right (height 7637 km). Equation (12)
tells us that decreasing frequency corresponds with increasing
radius of curvature, which in our modified Kippenhahn-Schlüter
model conforms to moving away from the centre of magnetic
field twist.

4.7. Alfvén and slow waves

The longitudinal oscillations described by Luna et al. (2012) are
not the only modes that can create the effect of apparent waves.
When using Alfvén waves for this purpose, the angular fre-
quency is given by

ω = kva

= k

√
B2

µρ
· (37)

We take the wavenumber k and the density ρ to be constant. Us-
ing the modified Kippenhahn-Schlüter model (Eq. (19)), we get
at the centre of the filament

B =

√
B2

x0 +
B2
y0

S 4 (z − zc)4. (38)

The r coordinate in Eq. (11) is the same as the z coordinate in
this situation. We thus calculate the derivative of the angular fre-
quency as follows:

∂ω

∂z
=

k
√
µρ

2
B2
y0

S 4 (z − zc)3√
B2

x0 +
B2
y0

S 4 (z − zc)4

· (39)

The apparent phase velocity then becomes

vph = −
1

t − ti

ω
∂ω
∂z

(40)

=

k
√
µρ

√
B2

x0 +
B2
y0

S 4 (z − zc)4

k
√
µρ

2
B2
y0

S 4 (z−zc)3√
B2

x0+
B2
y0

S 4 (z−zc)4

(41)

= S
1 +

B2
y0

B2
x0

(z−zc)4

S 4

2
B2
y0

B2
x0

(z−zc)3

S 3

· (42)

Rewriting this using Eqs. (27) to (29) gives the following:

vph =
S

t − ti

1 + v2A4

2v2A3 · (43)

It turns out that with the exception of the minus sign, the ap-
parent phase velocity when using Alfvén waves is the same as
when using the gravity waves. This can be attributed to the fact
that in our modified Kippenhahn-Schlüter model, the radius of
curvature is proportional to B−2. When using these quantities
for the angular frequencies, and thus apparent phase velocity,
these similarities result in near identical outcomes. In any case,
Alfvén waves have displacements perpendicular to the field and
this does not seem to be compatible with the observations.

We could also consider slow waves for the purpose of appar-
ent superslow waves. However, for this to be valid, we need a
smooth transition in temperature. This is not the case, as there is
a fast variation in temperature between the filament core and sur-
rounding corona (Xia et al. 2012; Soler et al. 2009). Therefore,
slow waves have not been considered for this purpose.

5. Conclusions

Oscillatory motion has been detected in the 2015 March 15
prominence observed with SDO/AIA (193 Å). Data reduction
was performed to properly locate the edge of the prominence.
This allowed us to measure the amplitude of the oscillation
across a set of slices. From this we derived the velocity of the
propagation for three separate wave-like motions; these speeds
are 14, 8, and 4 km s−1. Both the low values and the presence of
the decrease over time shows that this motion cannot be inter-
preted as MHD waves. Instead, we suggest that this is evidence
for superslow propagation, which is an illusionary effect created
by phase mixing of standing and/or slow waves trapped in closed
magnetic structures in the prominence. The case we studied is
possibly not an exception, but it could very well be that apparent
superslow waves occur rather often in solar prominences.

We have generalised the concept of superslow waves to three
dimensions and extended it to gravity waves in prominences, as
proposed by Luna & Karpen (2012), where we have assumed
that the radius of curvature of the prominence field lines is a
flux function.

When using the measurements for seismology we can con-
clude that the Kippenhahn-Schlüter model is too simple to get
any results, as the radius of curvature is constant everywhere.
Using a modified model including a spatially varying guide-field
we derive the dependence of the radius of curvature with height.
We can conclude that the scale of the magnetic field in the verti-
cal direction plays no role in the concept of apparent superslow
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waves. Fitting our formula for the apparent speed in the super-
slow propagation to the data, we learn that the moment of exci-
tation happens roughly one oscillation period before the end of
the eruption and we obtain a value of 103 Mm for the distance
between the filament and flux rope axis. Thus, for the first time,
we have performed seismology of superslow propagating waves
to characterise the magnetic structure of a prominence.
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