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ABSTRACT

Observations have revealed ubiquitous transverse velocity perturbation waves propagating in the solar corona.
However, there is ongoing discussion regarding their interpretation as kink or Alfvén waves. To investigate the
nature of transverse waves propagating in the solar corona and their potential for use as a coronal diagnostic in MHD
seismology, we perform three-dimensional numerical simulations of footpoint-driven transverse waves propagating
in a low β plasma. We consider the cases of both a uniform medium and one with loop-like density structure and
perform a parametric study for our structuring parameters. When density structuring is present, resonant absorption
in inhomogeneous layers leads to the coupling of the kink mode to the Alfvén mode. The decay of the propagating
kink wave as energy is transferred to the local Alfvén mode is in good agreement with a modified interpretation
of the analysis of Ruderman & Roberts for standing kink modes. Numerical simulations support the most general
interpretation of the observed loop oscillations as a coupling of the kink and Alfvén modes. This coupling may
account for the observed predominance of outward wave power in longer coronal loops since the observed damping
length is comparable to our estimate based on an assumption of resonant absorption as the damping mechanism.
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1. INTRODUCTION

Recent observations by Tomczyk et al. (2007) show that wave
activity is ubiquitous in the solar corona. Their observations
with the ground-based coronagraph CoMP show transverse
oscillations propagating outwards everywhere. The waves were
initially reported to have phase speeds of about 1–4 Mm s−1,
but improved analysis by Tomczyk & McIntosh (2009) gives
about 0.6 Mm s−1.

Since the observed phase speed is approximately constant in
time, Tomczyk & McIntosh (2009) suggest that the waveguide
and driving mechanism are also stable over the same timescale.
However, there is a disparity between outward-propagating and
inward-propagating wave power, the outward power being much
larger. The fact that this occurs along closed loops suggests
significant attenuation in situ.

Other properties of the waves are: a broad power spectrum
with a peak period of about 5 minutes; propagation along field
lines; a correlation length greater than the correlation width, i.e.,
they are extended along magnetic field.

In Tomczyk et al. (2007), the propagating waves were
interpreted as Alfvén waves but this was disputed by Van
Doorsselaere et al. (2008a, 2008b) who interpret them as kink
waves. These different interpretations have consequences for the
inferred coronal magnetic field strength and the energy budget
calculations for the coronal heating problem.

Ruderman & Roberts (2002) show how resonant absorption
can damp coronal loop oscillations. Their work was motivated
by the global standing kink modes as seen by TRACE, and is
similar to the Edwin & Roberts (1983) configuration except for
the inclusion of an inhomogeneous layer of thickness l. Resonant
absorption takes place in this inhomogeneous layer, transferring
energy from the global kink mode to the Alfvén mode. The decay
time depends on the internal and external densities, the thickness
of the layer, and the period. By applying this to an observed
global kink oscillation, they calculated the layer thickness l
(normalized to the tube radius a) as being l/a ≈ 0.23 assuming

resonant absorption was responsible for the rapid decay of the
oscillation. Goossens et al. (2002a) performed the same analysis
for 11 loops and found l/a in the range 0.15–0.5 by assuming a
density contrast ρ0/ρe = 10. Arregui et al. (2007a) considered
the same data set without assuming this density contrast.

Terradas et al. (2008) considered excitation and damping
of transverse standing oscillations in a multi-stranded model
of 10 strands with individual densities and radii. They found
that the two dominant frequencies found are the global mode
and local Alfvén frequency. They found that mode conversion
was not compromised by the complicated structure and in fact
in this type of configuration resonant absorption can occur at
locations within the structure as well as at the external edge
since this region also happens to satisfy the condition that the
global mode frequency matches the local Alfvén frequency.
This result is consistent with that of Russell & Wright (2010)
who demonstrated the persistence of resonant wave coupling
in equilibria with a two-dimensional structure perpendicular
to the background magnetic field. Arregui et al. (2007b) also
considered the effect of internal density structuring of a coronal
loop on its oscillatory properties using a two-slab model. They
found that the internal structure did not significantly affect the
features of the resonantly damped fast mode oscillations (see
also Goossens et al. 2008).

The simulations of a cylindrical flux tube discussed in this
paper can be regarded as complementing the simulations and
modeling of a Cartesian (slab) flux tube performed by Wright
et al. (1999), Allan & Wright (1998, 2000), and Wright & Allan
(2008). The context of these studies was the Earth’s magnetotail,
part of the Earth’s magnetosphere which has a rich history of
MHD wave coupling studies (see, e.g., the review by Wright &
Mann 2006).

Our studies show that the transverse waves we launch from the
boundary couple efficiently to Alfvén waves when the medium
is non-uniform. This is seen as a decay of the driven wave
fields. Once the energy is in the form of Alfvén waves, it is
well known that these fields will phase mix (Heyvaerts & Priest
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Figure 1. Density profile for the case ρ0/ρe = 2 and l/a = 0.5 (solid line). The
density structure reduces the local Alfvén speed (dashed line).

1983) and lead to the development of small transverse scales.
This is true of both standing Alfvén waves (Mann et al. 1995;
Poedts et al. 1990) and propagating Alfvén waves (Heyvaerts
& Priest 1983; De Moortel et al. 1999, 2000; Hood et al. 2002,
2005). These waves may become Kelvin–Helmholtz unstable
(Allan & Wright 1997; Browning & Priest 1984) or develop
large currents and lose energy through Joule heating.

The paper is organized as follows. The method of generating
an equilibrium state and our driver are described in Section 2.
In Section 3, the results of a parametric study are presented.
We discuss our results in terms of application to observed
coronal wave activity in Section 4, and Section 5 contains our
conclusions.

2. MODEL

Considering a global kink standing mode in a zero β cylin-
drical flux tube with an inhomogeneous layer, Ruderman &
Roberts (2002) derived the relationship

τ

P
= C

a

l

ρ0 + ρe

ρ0 − ρe

, (1)

where τ is the damping time, P is the period of oscillation,
a is the loop radius, l is the inhomogeneous layer thickness,
and ρ0 and ρe are the internal and external mass densities,
respectively. The constant C depends upon the density profile
in the inhomogeneous layer. For a sinusoidal density profile
in the inhomogeneous layer C = 2/π , whereas for a linear
density profile C = (2/π )2 (see, e.g., Hollweg & Yang 1988;
Goossens et al. 1992; Roberts 2004, 2008). The key parameters
we shall consider are therefore the density contrast ratio ρ0/ρe

and the thickness of the inhomogeneous layer l. In the following
numerical simulations, we use a linear density profile as its
constant gradient is more readily resolved numerically, since it
produces uniform phase mixing.

2.1. Equilibrium

In our model, we consider a straight, uniform magnetic field
in the z-direction. We use a zero plasma β approximation. Our
density profile describes a cylindrical tube aligned with the
z-axis and defines three regions: the core region with an internal
density ρ0, the external or environment region with density
ρe, and the inhomogeneous shell region in between, where the
density varies linearly from ρ0 to ρe:

ρ =
{

ρ0 if r � b < a
ρ0 + (ρe − ρ0)(r − b)/l if b < r � a
ρe if r > a,

(2)

Figure 2. Time dependence of our driver. The dashed line represents the
displacement (ξ ) of the tube axis. The corresponding velocity dependence (f (t))
is given by the solid line.

where r =
√

x2 + y2 and l = a − b. For ρ0 > ρe, the structure
is a minimum in the Alfvén speed and so a waveguide for MHD
waves (see, e.g., Edwin & Roberts 1983; Roberts et al. 1984).
The density and Alfvén speed profiles are shown in Figure 1 for
the case ρ0/ρe = 2 and l/a = 0.5.

2.2. Driver

The driving condition is applied to the lower z boundary to
simulate excitation by footpoint motions (e.g., De Groof et al.
2002) and prescribes the x and y components of velocity to have
a time dependence f (t):

v = f (t)u, u = (ux, uy, 0). (3)

The time dependence of our driver is based on a single
period displacement of the loop axis and is shown in Figure 2.
The dashed line shows the time variation of our displacement
ξ ∝ sin(ωt) combined with an envelope of sin(2ωt) to provide
the smooth ramp up and down at the beginning and end of
the driving phase. The corresponding velocity dependence is
calculated as the time derivative f (t) = dξ

dt
shown by the solid

line.
The driven velocity time dependence therefore has three

stages: an initial positive stage that displaces the loop axis,
followed by a larger negative stage that takes the loop axis back
through the starting point and then displaces it in the opposite
direction. A final positive stage then returns the loop axis to its
starting position. Note also that due to the non-harmonic nature
of the driver the driving time P0 is not directly equivalent to
the period of oscillation. By considering the three-staged f (t),
we may estimate the dominant period of oscillation in a Fourier
spectrum as P ≈ 2

3P0.
The spatial dependence of the driver is based on a two-

dimensional dipole. In the core region the velocity is constant
u = (u0, 0, 0) and only in the x-direction, where u0 = 0.002 is
chosen to be small to avoid nonlinear effects. In the surrounding
environment we have the two-dimensional dipole form:

u = u0a
2

(
x2 − y2

(x2 + y2)2
,

2xy

(x2 + y2)2
, 0

)
. (4)

The flow described so far corresponds to two-dimensional
incompressible dipole flow around a circular tube that moves
with velocity (u0, 0, 0). In cylindrical coordinates, this would
be described as the m = 1 mode, in which ur is continuous and
uφ discontinuous at the tube boundary.

To avoid numerical problems with velocity components that
are discontinuous, we introduce a velocity transition region that
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Figure 3. Spatial dependence of our driver. The arrows describe the velocity
field at t = P0/6 (for l/a = 0.5).

coincides with the shell over which the density changes. Within
the shell region, we change smoothly from the solution for the
core to that for the environment. Figure 3 shows the velocity
field at t = P0/6 for l/a = 0.5.

The simulations are performed using the MHD code Lare3D

(Arber et al. 2001). The numerical domain is much larger in the
z-direction than in x or y, but the resolution is higher in the x- and
y-directions as our main priority is resolving the activity in the
inhomogeneous layer. Typical values used are 400 × 400 × 200
grid points for a numerical domain 4×4×20 Mm (a = 1 Mm).

The boundary conditions are periodic in the x- and
y-directions, although these have little influence. Initially the
lower z boundary is driven, but after our driving phase (see
Figure 2) the driver is turned off and the z boundaries also be-
come periodic. This allows the pulse to propagate out of the top
of our domain and simply cycle through by re-entering at the
lower boundary. This is a numerically efficient way of avoiding
a large domain in the field-aligned direction (z).

3. RESULTS

In the case of a uniform medium (ρ0/ρe = 1), the Alfvén
speed is constant everywhere. From t = 0 to t = P0 = 10 s
(for a normalization based on an external Alfvén speed
CAe = 1 Mm s−1 and a = 1 Mm), the driver is applied at
the lower z boundary as described in Section 2.2. The perturba-
tion at the lower boundary propagates upwards uniformly (see
Figure 4). After t = P0, the driver stops and the upper and
lower boundaries become periodic. The wavetrain continues to
propagate in the z domain and at later times demonstrates a very
small amount of dispersion due to numerical effects. Figure 4
shows vx in the x = 0 plane at time t = P0 for a uniform
medium (ρ0/ρe = 1). Also shown is the same wavetrain at the
later time t = 5P0, by which time it has propagated through
the upper boundary and re-emerged from the lower boundary.
The wavetrain does not show signs of any significant attenuation
or dispersion.

The driven perturbations in this case are Alfvénic and do not
couple to any other mode. This solution is similar to the “Alfvén
wings” that are established on the field lines disturbed by the
“Io flux tube” in the Jovian magnetosphere (see Neubauer 1980;
Wright & Southwood 1987).

Although we do not drive the boundary for many cycles, and
hence do not have a quasi-monochromatic source, the driver

does have a well-defined nodal structure and is dominated by
a timescale of P ≈ 2

3P0. Indeed, we could think of having a
broadband driver with power concentrated at a frequency of
fd = 3

2f0, where f0 = P −1
0 . The Alfvén wave dispersion

relation can then be used to infer the parallel wavelength of
the driven wave packet to be λd = CAP ≈ 7, in agreement with
the structure visible in Figure 4.

In the case of an inhomogeneous layer (ρ0/ρe > 1) the
simulation proceeds in the same way. However, as the driver
acts over all three density regions, the Alfvén speed now varies
for different regions of the driver (see Figure 1). The Alfvén
speed CA(r) varies continuously in the inhomogeneous layer and
resonant absorption occurs where the condition ω = CA(r)kz is
satisfied, where ω is the (angular) frequency of oscillation and
kz is the local longitudinal wavenumber.

Figure 5 is a similar format to Figure 4. It shows a wavetrain
at the early and late stages for the case of a structured medium
with density contrast ratio ρ0/ρe = 2. At early times, we already
see signs of phase mixing occurring in the inhomogeneous shell
region 0.5 < |y| < 1.0. By the later stage, we see that the
wavetrain has undergone complete attenuation in the core region
|y| < 0.5 and only the strongly phase-mixed Alfvén wave in
the shell region remains.

This coupling of the wavetrain to a local Alfvén mode causes
a decrease in wave energy in the core (and the environment)
and hence appears to damp the tube oscillation. Also, since
the Alfvén mode is in an inhomogeneous layer, it is subject
to phase mixing. The corresponding characteristic spatial scale
becomes smaller as a function of time and when it becomes
comparable to the simulation grid scale defines a maximum
runtime. We therefore ensure we have sufficient resolution of the
inhomogeneous layer that our results do not become unresolved
and unphysical.

Fast MHD waves are highly dispersive, i.e., ω = ω(k). In
considering the wavenumber of our wavetrain parallel to the
direction of propagation, k||, from the thin tube approximation
(Edwin & Roberts 1983) we have

ω ≈ k||Ck, (5)

where ω = 2π/P and the kink speed is Ck =√
2/(1 + ρe/ρ0)CA0 for the case of a uniform magnetic field

B0 = Be. This approximation is considered in Figure 6, which
shows vx at time t = 4P0 for ρ0/ρe = 2 and l/a = 0.5 (see
Figure 5). vx is plotted as a function of z at x = 0 and in the
middle of the inhomogeneous layer, i.e., y = a − l/2. The dot-
ted lines mark the maximum and minimum of the wavetrain.
The thick horizontal line corresponds to a distance λ||/2, i.e.,
the distance between the peak and the subsequent trough, calcu-
lated as λ|| = 2π/k|| using k|| from Equation (5). The two agree
surprisingly well, suggesting the thin flux tube results can be
a useful guide to interpreting our simulation results. (Note the
thin flux tube approximation is valid when kza � 1, whereas in
Figure 5 kza ∼ 1.)

Mann et al. (1995) calculated the time dependence of the
phase-mixing length Lph as

Lph = 2π

ω′
At

, (6)

where ω′
A ≈ k||v′

A and v′
A = dvA/dr ≈ (CAe − CA0)/l.

Figure 7 shows vx as a function of y at time t = 4P0 for
ρ0/ρe = 2 and l/a = 0.5. The dashed lines correspond to Lph



No. 2, 2010 COUPLED ALFVÉN AND KINK OSCILLATIONS 993

Figure 4. vx at x = 0 and at time t = P0 (left) and t = 5P0 (right) for ρ0/ρe = 1
and l/a = 0.5.

Figure 5. vx at x = 0 and at time t = P0 (left) and t = 4P0 (right) for ρ0/ρe = 2
and l/a = 0.5.

calculated from Equation (6) and agree well with the transverse
wavelength of the phase-mixed Alfvén wave in our simulations.

Figure 6. vx at time t = 4P0 for ρ0/ρe = 2 and l/a = 0.5 (see Figure 5). vx

is plotted as a function of z at x = 0 and for y = a − l/2. The dotted lines
mark the maximum and minimum of the wavetrain. The thick horizontal line
corresponds to λ||/2 calculated using Equation (5).

Figure 7. vx as a function of y at time t = 4P0 for ρ0/ρe = 2 and l/a = 0.5.
The dashed lines correspond to the phase-mixing length Lph calculated from
Equation (6).

Figure 8. Lph as a function of time for ρ0/ρe = 2 and l/a = 0.5. The solid line
is the analytic expression given by Equation (6).

Figure 8 shows Lph as a function of time for ρ0/ρe = 2
and l/a = 0.5. The decrease of the phase-mixing length with
time is expected since phase mixing generates increasingly
large gradients. The dependence is in good agreement with the
analytic approximation (solid line) given by Equation (6).

3.1. Decay Rates

In order to quantify the behavior in our model, we calculate
the wave energy density as (see also Terradas et al. 2006, 2008)

E = 1

2

(
ρ
(
v2

x + v2
y + v2

z

)
+

1

μ

(
b2

x + b2
y + b2

z

))
, (7)

where b(t) = B(t) − B(t = 0).
Figure 9 shows the spatially integrated wave energy (normal-

ized) as a function of time for a uniform medium and ρ0/ρe = 2.
The solid line represents the total wave energy. The integrated
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Figure 9. Integrated wave energy (normalized) as a function of time for a
uniform medium (top) and ρ0/ρe = 2 (bottom). The solid line represents the
total integrated wave energy. The integrated wave energy in the core, shell,
and environment regions are represented by the dashed, dotted, and dash-dotted
lines, respectively.

wave energy in the core, shell, and environment regions are
represented by the dashed, dotted, and dash-dotted lines, re-
spectively. In the uniform case, the wavetrain propagates in the
z-direction without modification (see Figure 4) and so is con-
stant in all three regions after the driving phase, i.e., for times
t > P0. The two local maxima seen during the driving phase
correspond to the time dependence described in Figure 2.

In the non-uniform case, the effect of resonant absorption is
readily seen. Mode coupling in the inhomogeneous shell causes
the wave energy to become localized there with a corresponding
decrease in energy in the core and environment regions. The
damping of the wave energy in the core may be quantified by
fitting the profile for t > P0 to an exponential decay with
decay time τE . Note that the decay time of the wave fields will
be τ = 2τE since E ∝ u2. Although the energy associated
with the kink-like mode clearly decays, it is important to
note that we have a decaying propagating wave packet, not
a decaying standing mode (upon which the existing literature
focuses). However, Hood et al. (2005) show that normal mode
calculations can be a surprisingly good indicator of wave packet
behavior, when the spatial and temporal scales are similar.
With this in mind we compare our wave packet decay rates with
the Ruderman & Roberts (2002) formula in Equation (1) with
C = (2/π )2 (see Figure 10). Given that our simulations are not
of a thin flux tube with a thin inhomogeneous layer, or a standing
structure, the agreement is surprisingly good. Slightly better
agreement is found with additional initial value simulations we
performed where the equilibrium was the same, but a standing
mode of λz = π/(PCk) was used (see the triangles in Figure 10).
It would appear that the vast literature on standing modes could
provide a useful guide to wave packets having similar scales.

In order to make further comparison with the analysis of
Ruderman & Roberts (2002), we performed a parametric study
to investigate the behavior as a function of density contrast ratio

Figure 10. Ratio of damping time (τ ) to period of oscillation (P) for the
propagating wavetrain (crosses) as a function of density contrast ratio (ρ0/ρe)
for l/a = 0.5. The solid line represents the analytical relationship derived for
standing modes (see Ruderman & Roberts 2002). The dashed line represents
a best fit (see Equation (1)). The triangles are for numerical simulations of
standing modes having the same parameters as the propagating wavetrains.

and inhomogeneous layer thickness, considering in particular
the damping time τ of the core oscillations.

Figure 10 shows the damping per period (τ/P ) as a function
of density contrast ratio (for l/a = 0.5). Note the damping
time τ corresponds to the rate of mode conversion rather than,
say, viscous damping. The solid line represents the analytical
relationship derived for standing modes by Ruderman & Roberts
(2002). The dashed line represents a best fit of the asymptotic
expression, i.e., Equation (1) with C = 0.9. The damping per
period depends strongly on the density contrast ratio up to
ρ0/ρe ≈ 2, after which it quickly saturates. The triangles are
for numerical simulations of standing modes having the same
parameters as the propagating wavetrains, i.e., same value of
longitudinal wavenumber kz and same spatial dependence of the
driver u with v = u sin (kzz). The standing mode simulations
were run as an initial value problem (with b = 0), and the
damping rate and period estimated from the time development
of the fields. Comparing the results for propagating wavetrains
with the numerical and analytical results for standing modes,
it can be seen that the normal mode analysis is a useful
guide to the behavior of the propagating wave packets. The
quantitative difference between the analytical relationship and
the numerical standing modes is due to the non-applicability
of the analytical approximations, namely a thin tube with a
thin inhomogeneous layer. Our results are comparable with Van
Doorsselaere et al. (2004) who considered standing modes with
a complex frequency in the regime of thick inhomogeneous
layers.

Figure 11 shows the damping per period as a function of the
inhomogeneous layer thickness (for ρ0/ρe = 2). As l → 0, we
recover the solution of Edwin & Roberts (1983) for a harmonic
kink mode in a magnetic cylinder with τ/P → ∞. The dashed
line represents the best fit of Equation (1) with C = 0.9. Note
that for our simulations we find C = 0.9 for all values of ρ and l
considered. Choosing this value of C, the Ruderman & Roberts
(2002) result in Equation (1) can be regarded as providing an
empirical fit to our simulation results. That the value of C differs
from that in the Ruderman & Roberts (2002) calculation can be
attributed to the fact that our model is not accurately described
as a thin flux tube with a thin boundary layer.

4. DISCUSSION

In Section 3, we showed how our non-monochromatic driver
on the lower boundary produced an upwardly propagating
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Figure 11. Damping per period as a function of inhomogeneous layer thickness
l for ρ0/ρe = 2. The loop width a is 1 Mm. Solid and dashed lines are as in
Figure 10.

wavetrain. In the case of a non-uniform medium, the wavetrain
was subject to mode coupling through resonant absorption. Here
we will discuss these results in the context of the observations of
Tomczyk et al. (2007) and the interpretation of Van Doorsselaere
et al. (2008a, 2008b) as kink waves. In this case, our driver
corresponds to some general photospheric motion and our
wavetrain corresponds to the Doppler shift in coronal emission
observed by Tomczyk et al. (2007).

Damping of transverse waves propagating in the solar corona
is reported by Tomczyk & McIntosh (2009). We have demon-
strated that such waves propagating in a medium with trans-
verse structure in density (and hence Alfvén speed) will un-
dergo damping due to resonant absorption. By considering
Equation (1) we can see a finite damping time will occur in
all but two specific cases: the homogeneous case (ρ0 − ρe = 0)
and the case of a perfectly discontinuous density profile (l = 0).
In the homogeneous case, the Alfvén speed profile is uniform
and the transverse velocity wavetrain corresponds to an un-
damped propagating Alfvén wave with a two-dimensional dipo-
lar flow pattern (m = 1) outside the tube (e.g., Neubauer 1980;
Wright & Southwood 1987). In the limit of l → 0, we recover
the analytical model of Edwin & Roberts (1983) and the mode
perturbing the loop axis is described as an undamped kink mode.
There is also an Alfvén wave corresponding to the uncoupled
m = 0 which is a torsional oscillation of the flux tube (Spruit &
van Ballegooijen 1982).

In the most general case of a continuously non-uniform
corona, we expect the behavior demonstrated by our numerical
simulations: that of a quasi-mode composed of the kink mode
coupled to the Alfvén mode. Due to resonant absorption and
the introduction of a characteristic (damping) time (τ ) the time-
dependent nature of the mode must be considered. In the limit
t > τ resonant absorption leads to the wave energy being
concentrated in the Alfvén mode, whereas for t < τ the behavior
is described by the kink mode of Edwin & Roberts (1983). The
coupled nature of MHD waves in a non-uniform plasma is also
discussed by Goossens et al. (2002b, 2009).

According to this interpretation, the transverse waves ob-
served by Tomczyk et al. (2007) are in the regime t ≈ τ and
so are an intrinsically coupled mode. This will be true even for
a very weak density contrast. The properties of the observed
Doppler shifts will predominantly resemble a kink mode. The
coupled Alfvén mode component is generally unresolved by
modern solar instruments, and so will contribute to the Doppler
shifts incoherently. However, its presence is necessary to ex-
plain the rapid damping. Jess et al. (2009) report the possi-

Figure 12. Damping length for a transverse wave packet propagating in the
solar corona as a function of density contrast ratio. The dashed line shows an
analytic estimate.

ble observation of a torsional Alfvén mode in the lower solar
atmosphere.

Figure 12 shows the damping length as a function of the
density contrast ratio, based on our numerical results and the
observed period P ≈ 300 s (Tomczyk & McIntosh 2009).
The dashed line shows the analytic estimate Ld = Vgτ, where
Vg is the group speed of the wavetrain. We see that resonant
absorption becomes effective for modest density contrasts of
2–3 and tends quickly to an asymptotic value. Here we have
assumed l/a = 0.5, typical for our numerical simulations, but
only expect τ to vary linearly with a/l. Based on this estimate,
if resonant absorption is responsible for the damping then we
expect Ld ≈ 750 Mm as a lower limit. If we consider closed
loop structures, this would correspond to a footpoint separation
of 2Ld/π ≈ 500 Mm. Tomczyk & McIntosh (2009) show in
their Figure 7(c) that the outward-directed wave velocity power
dominates the inward-directed power for loop structures with a
footpoint separation greater than 300 Mm. For loops smaller
than this, the outward and inward wave powers are similar
in magnitude. This simple estimate of damping length scales
is therefore consistent with observations: loops that are small
(compared to the damping length) will have a stronger inward
propagating component than loops that are large (compared to
the damping length), or flux tubes that are open.

5. CONCLUSIONS

We have performed three-dimensional numerical simulations
of footpoint-driven transverse waves propagating in a low β
plasma. This is motivated by the observations of ubiquitous
transverse velocity waves propagating in the solar corona. We
have both considered the case of a uniform medium, and per-
formed a parametric study for a field-aligned, loop-like den-
sity structure with varying density contrast and inhomogeneity
width.

We apply a small amplitude perturbation as our driver
corresponding to a transverse displacement of the “loop” axis.
When density structuring is present, resonant absorption in the
inhomogeneous regions leads to the coupling of the kink mode
to the Alfvén mode. The decay of the propagating kink wave
as energy is transferred to the local Alfvén mode is in good
agreement with a modified interpretation of the analysis of
standing kink modes by Ruderman & Roberts (2002).

As mode coupling is present unless the medium is uniform or
discontinuous, our work supports the most general interpretation
of the observed waves as a coupling of the kink and Alfvén
modes. We demonstrated that this coupling can account for the
predominance of outward wave power in longer coronal loops



996 PASCOE, WRIGHT, & DE MOORTEL Vol. 711

as observed by Tomczyk & McIntosh (2009). The damping rate
due to resonant absorption depends on the density contrast ratio
and the gradient of the density. The observed propagating waves
therefore have potential as a coronal diagnostic in MHD coronal
seismology, assuming these observations can be repeated for a
number of magnetic field configurations and viewing angles
allowing our interpretation to be confidently applied. We have
also assumed that the background loop structure remains stable
over the course of several wave periods.

Although our simulations are for propagating wave packets,
we find the results of the existing literature on standing modes
can provide a useful guide to our results if the spatial and
temporal scales of the pulses and standing modes are matched.

Our assumption of a zero plasma β makes our model more
applicable to the solar corona than the lower atmosphere. In
future work we will consider the case of a finite plasma β.
This will allow us to calculate a temperature profile and use
forward modeling (De Moortel & Bradshaw 2008) to predict
the observational signature of transverse wavetrains propagating
in the solar corona and so allow a direct comparison with
observations such as those analyzed by Tomczyk et al. (2007).
We will also consider the effects of the Kelvin–Helmholtz
instability for large amplitude perturbations.
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