
The Astrophysical Journal, 731:73 (9pp), 2011 April 10 doi:10.1088/0004-637X/731/1/73
C© 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

PROPAGATING COUPLED ALFVÉN AND KINK OSCILLATIONS IN AN ARBITRARY
INHOMOGENEOUS CORONA

D. J. Pascoe, A. N. Wright, and I. De Moortel

School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, UK; dpascoe@mcs.st-andrews.ac.uk
Received 2010 October 27; accepted 2011 February 16; published 2011 March 24

ABSTRACT

Observations have revealed ubiquitous transverse velocity perturbation waves propagating in the solar corona.
We perform three-dimensional numerical simulations of footpoint-driven transverse waves propagating in a low
β plasma. We consider the cases of distorted cylindrical flux tubes and a randomly generated inhomogeneous
medium. When density structuring is present, mode coupling in inhomogeneous regions leads to the coupling of
the kink mode to the Alfvén mode. The decay of the propagating kink wave is observed as energy is transferred to
the local Alfvén mode. In all cases considered, modest changes in density were capable of efficiently converting
energy from the driving footpoint motion to localized Alfvén modes. We have demonstrated that mode coupling
efficiently couples propagating kink perturbations to Alfvén modes in an arbitrary inhomogeneous medium. This
has the consequence that transverse footpoint motions at the base of the corona will deposit energy to Alfvén modes
in the corona.
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1. INTRODUCTION

Magnetohydrodynamic (MHD) waves in the solar corona at-
tract attention as a possible mechanism for coronal heating in
some part of the solar atmosphere (see, e.g., Hollweg 1990;
Poedts 2002; Walsh & Ireland 2003 and references therein), as
well as solar wind acceleration, and as a seismological tool for
remote diagnostic of coronal plasma parameters (De Moortel
2005; Nakariakov & Verwichte 2005; Andries et al. 2009). Re-
cent observations of the solar corona by Tomczyk et al. (2007)
and Tomczyk & McIntosh (2009) with the ground-based coro-
nagraph CoMP revealed spatially and temporally ubiquitous
propagating transverse velocity oscillations. Their time series of
Doppler images revealed waves which are undetected by imag-
ing instruments because of their low amplitude which produces
neither significant intensity fluctuations nor resolvable loop dis-
placements. The observed dominance of outward-propagating
wave power over inward-propagating wave power along closed
loops suggests significant attenuation occurs in situ. The broad
power spectrum, peaked at periods of about 5 minutes, hints at
driving related to solar p-modes. Similar transverse oscillations
were observed by Hinode/Solar Optical Telescope in chromo-
spheric structures (De Pontieu et al. 2007) and by Hinode/
X-Ray Telescope in X-ray jets (Cirtain et al. 2007).

Due to their ubiquitous nature, there has been, and still is,
much interest in these observed oscillations. Although initially
interpreted as Alfvén waves, there has been considerable discus-
sion about their interpretation (see, e.g., Erdélyi & Fedun 2007;
Van Doorsselaere et al. 2008; Goossens et al. 2009). Pascoe
et al. (2010) show that propagating transverse velocity waves
launched from loop footpoints couple efficiently through mode
coupling to Alfvén waves when the medium is non-uniform. The
coupling happens within a few wavelengths and drains energy
from the driven kink mode oscillation. Observationally, this will
be seen as a decay of the driven wave fields, i.e., the transverse
oscillations, since the Alfvén mode component, which increases
in time, is unresolved by modern instruments.

The study by Pascoe et al. (2010), which was the first
to suggest mode coupling, was the key to understanding the
data: their work found “the most general interpretation of the
observed waves [is] as a coupling of the kink and Alfvén modes.”
They also “demonstrated that this coupling can account for the
predominance of outward wave power in longer coronal loops
as observed by Tomczyk & McIntosh (2009).” Pascoe et al.
(2010) also showed how the damping length of the kink mode
(Ld) could be estimated for a kink wavepacket in terms of its
decay time (τ ) and its group velocity (Vg):

Ld = Vgτ (1)

and found (for the dominant period of 300 s) a decay length
of 750 Mm. They noted that “this simple estimate of damping
length scales is therefore consistent with observations: loops
that are small (compared to the damping length) will have a
stronger inward propagating component than loops that are large
(compared to the damping length), or flux tubes that are open.”
In longer loops, the waves launched from the photosphere will
simply not survive long enough to set up a standing wave, so
will be seen as propagating waves.

Subsequent studies by Verth et al. (2010) and Terradas et al.
(2010) have explored the damped kink mode mechanism in more
detail. Terradas et al. (2010) considered the dependence of the
damping length on frequency, unlike Pascoe et al. (2010) who
only considered the dominant frequency in the data. Terradas
et al. (2010) deduced the property that the damping length
should be inversely proportional to the wave frequency. Verth
et al. (2010) confirmed that this feature was present in data
and this has provided compelling evidence for the decay of
propagating kink waves as being the correct interpretation of
the data; not only is the predicted damping length scale similar
to that in observations (Pascoe et al. 2010), but the variation
of the damping length with frequency is also seen (Verth et al.
2010).

The rapid damping of global kink standing modes was
considered by, e.g., Ruderman & Roberts (2002) and Goossens
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et al. (2002) in the context of flare-excited, transverse coronal
loop oscillations. These models require a finite-width region (of
width l) in which the resonant absorption takes place, extracting
energy from the global kink mode. The decay time depends
on several variables, such as the density ratio between the
coronal loop and its environment, the relative thickness of the
inhomogeneity layer, and the oscillation period. Goossens et al.
(2002) and Arregui et al. (2007b) applied these models to the
observed oscillations to derive constraints on some of these
input variables. A review of resonant absorption for standing
modes in one-dimensional and two-dimensional models can be
found in Goossens et al. (2006) and, more recently, Goossens
(2008). The coupling of propagating fast (kink and sausage)
modes to Alfvén waves in a waveguide has also received
considerable attention in the context of Earth’s magnetotail
(Allan & Wright 1998, 2000; Wright et al. 1999; Wright &
Allan 2008). Even though Pascoe et al. (2010) study damping
of propagating waves through mode conversion (to be able
to relate to the observations of Tomczyk et al. 2007), it was
found that the results may closely match the results derived
for resonant damping of standing modes. Similarly, Hood et al.
(2005) showed that normal mode calculations can be a useful
indicator of the behavior of propagating wavetrains when the
spatial and temporal scales match (see also Terradas et al. 2010).

The persistence of resonant mode coupling for standing
modes in models with structuring in the two-dimensional
transverse to the background magnetic field was demonstrated
by, e.g., Keppens et al. (1994), Arregui et al. (2007a), Terradas
et al. (2008), and Russell & Wright (2010). These authors
showed that resonant absorption in such an inhomogeneous
model takes place, not only at the edge of the structure but
also at all locations where the resonance condition is satisfied
(i.e., where the frequency of the global mode matches the local
Alfvén frequency).

The predominance of outward power observed by Tomczyk
& McIntosh (2009) suggests strong attenuation of the velocity
oscillations in situ. Hence, a model in terms of propagating
waves rather than standing (eigen)modes is more appropriate.
So, rather than focusing on standing modes, in this study we
investigate the effect of arbitrary transverse inhomogeneities on
the coupling between propagating kink and Alfvén modes.

The paper is organized as follows: an overview of the behavior
of propagating kink wavepackets is given in Section 2. Our
numerical model and driver are described in Section 3. In
Section 4, we present our results for the cases of distorted
(i.e., non-axisymmetric) cylinders and a randomly generated
medium. We discuss our results in Section 5.

2. DECAY OF PROPAGATING KINK WAVEPACKETS

In order to put our studies in context, we will first present a
brief overview of some existing literature on mode coupling.

The process of resonant absorption was first suggested by
Ionson (1978) as a mechanism for heating coronal loops. Since
then, there have been numerous studies, both analytical (e.g.,
Hollweg 1987; Davila 1987) and numerical (e.g., Steinolfson &
Davila 1993; Ofman et al. 1994, 1995), on resonant absorption
(see e.g., reviews by Goossens et al. 2006; Goossens 2008).

Many studies consider a single parallel wavenumber compo-
nent k||, or multiples thereof for higher harmonics, and consider
a harmonic driver in time. The model can be reduced to a one-
dimensional problem by introducing an “azimuthal” wavenum-
ber (e.g., Berghmans & Tirry 1997). This leads to the “resonant
absorption” condition for wave coupling described as where the

Figure 1. Cartoon of the mode coupling mechanism for propagating kink
wavepackets. The wavepacket propagates along the flux tube at a group velocity
Vg and also has a phase velocity Vp associated with it. Mode coupling occurs
where Vp equals the phase speed of the Alfvén wave (VA(r)).

driving frequency matches the local Alfvén frequency. If the
“azimuthal” modes do not decouple, then a two-dimensional
PDE problem results and resonant wave coupling occurs again
where the driving frequency matches the local Alfvén frequency
(e.g., Tirry et al. 1997; Russell & Wright 2010). If field-aligned
standing modes do not exist, harmonic time solutions (i.e., prop-
agating modes) and/or complex kz solutions may exist. These
correspond to damping of compressional modes due to resonant
absorption: resonant coupling still occurs where the driving fre-
quency matches the local Alfvén frequency (e.g., Terradas et al.
2010).

Some models relax the assumption of a harmonic time
dependence for the driver. If k|| is quantized, the perpendicular
equilibrium structure supports natural compressional modes
with discrete eigenfrequencies. Again, resonant mode coupling
occurs where the local Alfvén frequency matches the natural
compressional frequencies (e.g., Wright & Rickard 1995; De
Groof & Goossens 2000, 2002; Terradas et al. 2006).

If we relax the assumption of harmonic studies in time and
in z, we no longer have the idea of resonant mode coupling,
or the notion of driving frequency, local Alfvén frequency, and
resonant singularities. The case of wavepacket propagation and
dispersion in coronal flux tubes in the absence of mode coupling
was first considered by Roberts et al. (1984).

If the tube boundary layer has a finite thickness, we now have
a more general time-dependent problem involving wavepacket
propagation and decay through mode coupling. There is a rich
history of such studies related to mode coupling occurring in
the magnetotail (e.g., Allan & Wright 1998, 2000; Wright et al.
1999; Wright & Allan 2008). Figure 1 shows the situation where
a wavepacket of the kink mode is being guided along the low
Alfvén speed central dense flux tube. Such a wavepacket could
be excited as a result of footpoint motions disturbing the ends
of the flux tube, or as a result of equilibrium reconfigurations
due to processes such as reconnection (as in the magnetotail).
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Once the kink wavepacket has been established, it propagates
along the flux tube at a group velocity Vg. The kink wavepacket
also has a phase velocity Vp associated with it. Allan & Wright
(2000) show that on field lines (in the tube boundary layer)
where VA(r) = Vp, efficient mode coupling between kink and
Alfvén waves can occur.

It is important to note that there is no resonant singularity
in this process, and there is no harmonic driving frequency (as
the kink pulse will provide a broad band of frequencies). The
criteria for mode coupling are now based upon matching the
phase speed of the kink disturbance (Vp) with the phase speed
of the Alfvén wave (VA(r)).

The Alfvén waves that are excited propagate with their group
velocity (also VA(r)) and run ahead of the kink mode since
VA(r) = Vp > Vg in dense flux tubes. The kink mode is
a moving source of Alfvén waves. The picture is similar to
someone running along (at Vg) while shining a torch that radiates
light ahead of it traveling at a greater speed.

Since the kink mode is losing energy to the Alfvén waves,
it will reduce in amplitude as it propagates. The study of the
growth of Alfvén energy (which is the focus of magnetotail
studies) has been complemented recently by Pascoe et al. (2010)
who have studied the damping of the kink wavepacket (in a
coronal setting) as it propagates. They also show how a judicious
use of the extensive “normal mode” and “resonant” studies
can be a useful guide to understanding the behavior of the
propagation and damping of kink pulses.

The magnetotail studies show how modes in which the
tube axis is not displaced will give rise to similar behavior.
These studies also show how a lack of a resonant frequency in
wavepacket coupling means there is not a resonant singularity,
but rather a broad layer at the tube boundaries in which mode
coupling occurs.

Considerable insight into the wave coupling process can be
gained from a ray tracing (or WKB) model (Wright et al. 1999)
and can be used to interpret the dense coronal flux tube in
Figure 1. The magnetoacoustic mode (i.e., kink or sausage) can
be described as a superposition of normal modes. A particular
mode and radial harmonic (having frequency ω, azimuthal
wavenumber m, and parallel wavenumber k||) propagates along
the ray trajectory as shown in Figure 2. As it encounters the
nonuniform Alfvén speed in the tube boundaries it is refracted
and turns around (for an axisymmetric tube) at rt where

ω2

V 2
A(rt )

= k2
|| +

m2

r2
t

. (2)

Beyond rt is the mode coupling location rA defined by

ω2

V 2
A(rA)

= k2
||. (3)

Magnetoacoustic perturbations are evanescent beyond rt, so
the compressional wave energy has to tunnel to the coupling
site (rA). Typically, as m increases the distance between rA and
rt increases resulting in an increased tunneling distance and
more rapid evanescence. In the case of large m, this results
in coupling to Alfvén modes becoming negligible. This effect
is offset at smaller m by the fact that as m increases, the
azimuthal gradients that drive the mode coupling increase. The
most efficient coupling typically occurs for m around 3 or 4
(Allan et al. 1986). Note that analytical treatments in which
the boundary layer is taken to be asymptotically small (thin-
boundary or TB approximation) will constrain rt and rA to be

Figure 2. Ray tracing sketch showing the trapping of magnetoacoustic energy
in a dense tube with turning point rt . Energy can tunnel to rA where it couples
to Alfvén waves.

in close proximity. In this case, the coupling efficiency may
continue to increase with m (e.g., Goossens et al. 2009). The
kink mode has m = 1.

3. MODEL

Considering a global kink standing mode in a zero β cylin-
drical flux tube with an inhomogeneous layer, Ruderman &
Roberts (2002) derived the damping rate by resonant absorption

τ

P
= C

a

l

ρ0 + ρe

ρ0 − ρe

, (4)

where τ is the damping time, P is the period of oscillation, a is
the loop radius, l is the inhomogeneous layer thickness, and ρ0
and ρe are the internal and external mass densities, respectively.
The constant C depends upon the chosen density profile in the
inhomogeneous layer. For a sinusoidal density profile in the
inhomogeneous layer C = 2/π , whereas for a linear density
profile C = (2/π )2 (see, e.g., Hollweg & Yang 1988; Goossens
et al. 1992; Roberts 2008). Pascoe et al. (2010) found that this
relationship also holds in the case of propagating wavetrains
with C = 0.9 for a linear density profile.

3.1. Driver

The driving condition is applied to the lower z boundary
to simulate excitation by footpoint motions and prescribes the
x- and y-components of velocity to have a time dependence f (t):

v = f (t)u, u = (ux, uy, 0). (5)

The time dependence of our driver is based on a single period
displacement of a flux tube axis. The displacement has the form
ξ ∝ sin(ωt) combined with an envelope of sin(ω

2 t) to provide a
smooth ramp up and down at the beginning and end of the driving

3



The Astrophysical Journal, 731:73 (9pp), 2011 April 10 Pascoe, Wright, & De Moortel

Figure 3. Time dependence of our driver, applied from t = 0 to t = P0. The
dashed line represents the displacement ξ of the flux tube axis (Equation (6)).
The corresponding velocity dependence f (t) is shown by the solid line
(Equation (7)).

phase. The corresponding velocity dependence is calculated as
the time derivative f (t) = dξ

dt
, i.e.,

ξ = sin(ωt) sin
(ω

2
t
)

, 0 � t � P0 (6)

f (t) = ω cos(ωt) sin
(ω

2
t
)

+
ω

2
sin(ωt) cos

(ω

2
t
)

, (7)

where ω = 2π/P0 and the driver is applied from t = 0 to
t = P0. The functions f (t) and ξ are shown in Figure 3 as
solid and dashed lines, respectively. This driver generates a
non-monochromatic propagating wavetrain with the dominant
period of oscillation in a Fourier spectrum being P ≈ 2

3P0.
The spatial dependence of the driver is based on a two-

dimensional dipole. We define a cylindrical core region with
radius r � b, surrounded by a shell region b < r � a. In the
core region, the velocity is constant u = (u0, 0, 0) and only in
the x-direction. We choose u0/CAe = 0.003 to be small to avoid
nonlinear effects. In the surrounding environment (r > a), we
have the two-dimensional dipole form

u = u0a
2

(
x2 − y2

(x2 + y2)2
,

2xy

(x2 + y2)2
, 0

)
. (8)

The flow described so far corresponds to two-dimensional
incompressible dipole flow around a circular tube that moves
with velocity (u0, 0, 0). In cylindrical coordinates, this would
be described as the m = 1 mode, in which ur is continuous
and uφ discontinuous at the tube boundary. To avoid numerical
problems with velocity components that are discontinuous we
change smoothly from the solution for the core to that for the
environment in the shell region.

The simulations are performed using the MHD code Lare3D

(Arber et al. 2001). The numerical domain is much larger in the
z-direction than in x or y, but the resolution is higher in the x- and
y-directions in order to resolve the activity in the inhomogeneous
layer for as long as possible, particularly when phase mixing
takes place. Typical values used are 400×400×200 grid points
for a numerical domain of 4 × 4 × 20 Mm (a = 1 Mm).

The boundary conditions are periodic in the x- and
y-directions, and are placed sufficiently far away to not affect
the results. Initially, the lower z boundary is driven, but after

Figure 4. Wave energy integrated over direction of propagation z at time t = 4P0
for a wavepacket propagating through an undistorted cylinder. The solid lines
are contours of density; the innermost and outermost contours show the edges of
the core and shell regions, respectively. The dashed line represents the location
where the mode coupling condition is satisfied.

(A color version of this figure is available in the online journal.)

our driving phase (t � P0) the driver is turned off and the z
boundaries also become periodic. This avoids the need for a
large domain in the field-aligned direction (z) by allowing the
wavetrain to propagate out of the top of our domain and simply
cycle through by re-entering at the lower boundary.

4. RESULTS

We wish to consider the case of a general nonuniform
medium. In order to proceed in a tractable way we initially
consider the case of a cylinder as in Pascoe et al. (2010) with
distortions introduced only in the inhomogeneous (shell) region.
We first consider a simple, symmetry decreasing azimuthal
distortion, and then the case of a completely asymmetric cylinder
with multiple distortions. Following these, we will move from
the case of a single, cylindrical flux tube to a randomly generated
inhomogeneous medium with multiple structures.

In our models, we consider a straight, uniform magnetic field
in the z-direction. We use a zero plasma β approximation.

4.1. Non-axisymmetric Coronal Loops

In our first case, the density profile describes a cylindrical
tube aligned with the z-axis and defines three regions: the core
region with an internal density ρ0, the external or environment
region with density ρe, and the inhomogeneous shell region in
between, where the density varies linearly from ρ0 to ρe:

ρ =
{

ρ0 if r � b < a
ρ0 + (ρe − ρ0)(r − b)/l if b < r � a

ρe if r > a,
(9)

where r =
√

x2 + y2 and l = a − b. Here, we choose a/b = 4
to provide a large shell region which is the main focus of our
attention (a = 1 Mm). For ρ0 > ρe, the structure is a minimum
in the Alfvén speed and so a waveguide for MHD waves (see,
e.g., Edwin & Roberts 1983; Roberts et al. 1984). We choose a
density contrast ρ0/ρe = 2.

Figure 4 shows the wave energy (integrated over the entire
z-range) at t = 4P0 for the case of an undistorted cylinder. This
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Figure 5. Wave energy integrated over z at t = 4P0 for a cylinder with an
azimuthal distortion in the inhomogeneous region. Line contours as in Figure 4.

(A color version of this figure is available in the online journal.)

is the case studied in detail in Pascoe et al. (2010). The energy
has been coupled in to Alfvén modes in the inhomogeneous
region. The line contours represent density or Alfvén speed.
Due to the symmetry of the cylindrical structure, the upper and
lower mode coupling sites show the same behavior. The thick
dashed line represents the contour for which the mode coupling
condition is satisfied, i.e., ω = VA(r)kz, where ω is the dominant
(angular) frequency of the kink wavepacket, VA(r) is the local
Alfvén speed, and kz is the local longitudinal wavenumber. The
wave energy is centered on this contour and the two maxima
represent the two antinodes of the azimuthally polarized Alfvén
mode. Wave energy is located all along this contour, except at
the two nodes, which are located at y = 0, which correspond
to nodes in the magnetic pressure gradient of the kink mode
(Russell & Wright 2010).

The first type of deformation we consider is an azimuthal
perturbation to the density of the form sin θ . Figure 5 shows the
wave energy integrated over z for this case. The distortion is
added such that the density in the inhomogeneous layer never
rises above the core density ρ0 or falls below the external density
ρe. This distortion has the effect of increasing the gradient in the
inhomogeneous layer at the upper (y > 0) mode coupling site,
and decreasing the gradient at the lower (y < 0) mode coupling
site. The wave energy is centered on the dashed contour but is
more localized for the upper mode coupling site than for the
lower site due to the larger gradient there.

Finally, Figure 6 shows the wave energy integrated over z for a
cylinder with multiple distortions. The distortions are generated
by adding Gaussian structures of varying sizes and locations to
the density profile in the inhomogeneous layer. The distortions
are added such that the total mass is conserved with respect
to the undistorted case, and the density in the inhomogeneous
layer never rises above the core density ρ0 or falls below the
external density ρe. Once again, the locations of the wave energy
maxima can be seen to be centered on the dashed contour where
the mode coupling condition is satisfied, and the wave energy is
more concentrated in regions of higher gradient.

Figure 7 shows the (normalized) wave energy in the core
region integrated over the entire z domain. This has the advan-
tage that the only wave perturbations in the uniform core region

Figure 6. Wave energy integrated over z at t = 4P0 for a cylinder with multiple
distortions to the density profile in the inhomogeneous region. Line contours as
in Figure 4.

(A color version of this figure is available in the online journal.)

Figure 7. Wave energy integrated over the core region for the three cylindrical
structures in Figures 4–6. The solid line shows the case of the undistorted
cylinder. The dashed and dotted lines represent the cylinders with azimuthal
and random distortions, respectively.

will be kink waves, and allow a direct way of identifying them
and their decay (through mode coupling to Alfvén waves). The
solid line shows the case of the undistorted cylinder. The dashed
and dotted lines represent the cylinders with azimuthal and ran-
dom distortions, respectively. The wave energy increases during
the driving phase to a maximum value at t = P0 = 10 s. Once
the driver stops, the energy in the core region decreases expo-
nentially as energy is transferred from the kink mode in the core
region, to the Alfvén mode in the inhomogeneous shell region.
The decay rate of the kink mode shows little sensitivity to the
details of density structuring.

4.2. Randomly Structured Medium

Next, we consider a randomly structured corona where the
driver is no longer prescribed to be aligned with a particular
structure. The density profile is generated as the sum of 10
Gaussian structures, each with a random position, height, and
width. The density profile is shown in Figure 8. Each individual
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Figure 8. Density profile for randomly structured medium composed of
Gaussian density enhancements.

(A color version of this figure is available in the online journal.)

Gaussian structure can be considered to be the equivalent of the
cylinder in Equation (9) with l = a (i.e., b = 0) and having a
nonlinear gradient in r. The driver remains the same as in the
simulations considered in Section 4.1 (with a/b = 2); however,
it is now no longer associated with any particular structure, and
in the case shown in Figure 8 it is actually centered on a region
of low density.

Figure 9 shows the wave energy density integrated over z
at time t = P0 = 10 s, i.e., just after the driver stops, and
at 4P0. The lines show the density profile contours. At early
times, the wave energy is concentrated in the driven wavepacket,
approximately in a cylinder of radius a = 1 Mm centered on
x = y = 0. At later times, the wave energy shows four maxima
(labeled 1–4). The dashed line represents the location where
the local mode coupling condition is satisfied, i.e., the kink
and Alfvén phase speeds are equal, where the local density

Figure 9. Wave energy (integrated over z) at t = P0 (top) and t = 4P0 (bottom).
The wave energy is initially dominated by the dipole flow of the driver, whereas
at later times four maxima are seen to emerge. The dashed line represents the
location where the local mode coupling condition is satisfied.

(A color version of this figure is available in the online journal.)

maximum is used to calculate the kink phase speed

Ck =
(

ρ0C
2
A0 + ρeC

2
Ae

ρ0 + ρe

)1/2

, (10)

where CA0 = (B2
0/μρ0)1/2 and CAe = (B2

e /μρe)1/2. This simple
estimate of the coupling location is merely intended as a rough
guide as the medium can, at best, only locally be described as
a distorted cylinder. Despite this obvious limitation, there is a
reasonable correspondence with the locations of wave energy
maxima.

Figure 10 shows a cut in vx at y = 0 and at times t = P0
(left), t = 4P0 (middle), and t = 8P0 (right) for a wavetrain
propagating through the inhomogeneous medium in Figure 8.
The contours in each panel are plotted with the same scale. At
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Figure 10. vx (x, y = 0, z) at times t = P0 (left), t = 4P0 (middle), and
t = 8P0 (right) for a wavetrain propagating through the inhomogeneous medium
in Figure 8.

(A color version of this figure is available in the online journal.)

early times, the wavetrain has a well-defined structure consisting
of three anti-nodes, reflecting the driver applied at the lower
boundary (see Figure 3). The numerical domain has a length of
20 Mm in the z-direction, with periodic boundary conditions at
the upper and lower boundaries after the driving phase. Here,
we have shifted the cuts in vx vertically in order to highlight
the propagating nature of the wavetrain, i.e., in the middle panel
the wavetrain has propagated through the periodic z boundaries
once, and in the right panel it has propagated through three
times.

The left part of the wavetrain propagates through a region
where the mode coupling condition is satisfied (near maximum
1 in Figure 9) and so shows significant attenuation. The right part
of the wavetrain propagates near maximum 4 in Figure 9, where
the medium is only weakly nonuniform and so the wavetrain
shows little attenuation but does become distorted at later times
due to the gently varying Alfvén speed.

Figure 11 shows the integrated wave energy at the four
maxima in Figure 9. In all cases, the wave energy increases from
t = 0 to t = P0 during the driving phase. Subsequently, three
of the cases (maxima 1–3 in Figure 9) show an increase in wave
energy with time until reaching saturation at approximately
t = 6P0. In the case of the fourth maximum (maximum 4
in Figure 9), the wave energy instead remains approximately
constant at the level of the driven energy.

The growth of energy at the three maxima resembles the
concentration of energy in the inhomogeneous layer in the case
of a cylindrical density structure considered in Section 4.1 and
Pascoe et al. (2010). This suggests these are sites of mode
conversion, as expected from the qualitative agreement with the
estimated location based on phase speeds (Figure 9). This result
is analogous to the study of Terradas et al. (2008). These authors
investigate standing modes in an inhomogeneous flux tube and
found that the coupling between fast and Alfvén waves is not
affected by the complicated geometry. They are also located
close to the region where the driver acts. It is likely that there
are other locations in the profile where the condition for mode
conversion is satisfied, but where the driven wave energy is
too low to produce significant concentrations, or nodes in the

Figure 11. Wave energy (integrated over z) for the four maxima seen in the lower
panel of Figure 9. The solid, dashed, dotted, and dash-dotted lines correspond
to maxima 1–4, respectively.

Figure 12. Phase mixing: the solid, dashed, and dotted lines show vx at t = 6P0,
8P0, and 10P0, respectively.

Alfvén wave energy may occur, as in the intersections of the
mode coupling contour and the x-axis in Figure 4. An example
of such a location is the density concentration in the bottom left
of Figure 9 where no wave energy accumulates.

Since the Alfvén modes are in an inhomogeneous layer, they
are subject to phase mixing. This can be seen in Figure 12 which
shows vx as a function of the transverse direction y through
maximum 1 (at x = −0.6) in Figure 9. The solid, dashed,
and dotted lines show vx at time t = 6P0, 8P0, and 10P0,
respectively. At later times, the phase mixing length scale is
seen to decrease, corresponding to the development of larger
gradients.

In order to support our interpretation of the wave energy
maxima in Figure 9 as Alfvén modes, including the case of
the maximum that shows no growth, we look at the transverse
components of velocity and magnetic field at these four locations
as a function of longitudinal direction z at t = 4P0. We use the
normalized Alfvén wave relations,

bx + ρ1/2vx = 0, by + ρ1/2vy = 0, bz = 0, (11)

where b = B − Bt=0. Figure 13 shows ρ1/2vx,y , −bx,y and bz as
solid, dashed, and dotted lines, respectively. The overlap of the
solid and dashed lines, and the negligible values of the dotted
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Figure 13. Alfvén mode diagnostics. Wave fields plotted as a function of z at
t = 4P0 for the four maxima seen in the lower panel of Figure 9.

Figure 14. Wave energy (integrated over z) at t = 5P0 for the shifted density
profile. Line contours as in Figure 9.

(A color version of this figure is available in the online journal.)

lines represent the solution of Equation (11). This suggests
the wave energy maximum that does not show any growth
(maximum 4) is an Alfvén mode excited by the driver directly
(e.g., Tirry & Berghmans 1997; De Groof et al. 2002) rather than
by mode coupling from the kink mode. This is also consistent
with the maximum being far from the locations where the local
mode coupling condition is satisfied (Figure 9). Throughout the
simulation this maximum propagates without growth or decay
following the driving phase, as Figure 11 demonstrates clearly.
It is interesting to see that even Alfvén waves that do not have
sufficient symmetry to be decoupled are able to survive without
decay for the duration of our simulation. A review of Alfvén
waves excited both directly and indirectly by footpoint motions
can be found in Goossens & De Groof (2001).

In the model described so far, the driver was aligned with
a local minimum in the density. Figure 14 shows the wave
energy (integrated over z) at t = 5P0 for the same randomly
generated density profile but shifted such that the driver is now
aligned with one of the local density maxima. It is clear that the
wave energy remains near this local structure with the results
strongly resembling the case of the distorted cylinder discussed
in Section 4.1.

5. DISCUSSION

We have considered the propagation of a wavetrain through
an inhomogeneous low β plasma. In Section 4.1, we moved
from a case of an ideal cylindrical structure to an increasingly
distorted cylinder. In Section 4.2, we applied the same ideas to
an arbitrary inhomogeneous two-dimensional density profile.

When the density structure could be regarded as a flux
tube (albeit distorted) with a uniform core region, we could
clearly see how the kink oscillations present in the core decayed
through mode conversion to Alfvén waves. This gave an estimate
of the damping time of the kink wavepacket, and hence the
timescale on which energy is transferred to the Alfvén waves.
The three tubes considered all showed similar timescales. When
we considered the randomly structured medium, it was less easy
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to get an unambiguous measure of the fast (kink) mode energy
and monitor its decay through wave coupling. However, it is
easy to monitor the Alfvén wave energy at the sites of strong
coupling, and we see this shows a rise in energy (after the
driving phase), presumably as fast-mode energy is coupled in
to (i.e., tranferred to) the Alfvén waves. Thus, we have direct
evidence of wave coupling, this time from wave growth rather
than wave decay. The timescales for wave coupling in Figures 7
and 11 are similar, despite vastly different density structures (for
comparison, the total mass in the randomly structured medium
is ≈11% higher than for the distorted cylinders).

The Alfvén wave energy enhancement in Figure 9 labeled
as maximum 4 shows no growth following the driving phase
(Figure 11). This is probably because it is located close to
a maximum in the Alfvén speed. Consequently, the medium
is, locally, almost uniform and hence decoupled wave modes
are the appropriate solutions. Hence, the Alfvén wave energy
deposited here during the driving phase simply remains as a
decoupled Alfvén wave.

Further evidence of the role of fast/kink-like waves can be
seen in Figure 9. The energy distribution in the two panels is
different. In particular, it has redistributed itself across field
lines. The Alfvén wave cannot transport energy perpendicular
to the magnetic field, so this must be accomplished by the
presence of fast-mode perturbations (such as kink oscillations
in the axisymmetric models).

In all cases considered, modest changes in density (i.e.,
local density enhancements comparable in magnitude to the
background) were capable of efficiently converting energy from
the driving footpoint motion to localized Alfvén modes. We have
demonstrated that mode conversion efficiently couples kink-like
perturbations to Alfvén modes in an arbitrary inhomogeneous
medium. In fact, comparing Figures 9 and 14 shows that the
mode coupling is equally efficient whether the driver is centered
on a local density maximum or not. This suggests that any
transverse footpoint motion at the base of the corona will
effectively deposit energy in Alfvén modes in the corona. Since
these Alfvén modes will then phase-mix, the footpoint motion
energy eventually becomes localized to small scales and so may
contribute to coronal heating, which we will investigate in a
future paper.
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