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ABSTRACT

A nonuniform one-dimensional magnetohydrodynamic cavity is driven by a prescribed random boundary
motion which has a broadband frequency spectrum. The time-dependent behavior of the system is calculated
numerically, and two criteria are identified for the efficient excitation of an Alfvén resonance: (1) The fast, or
global, eigenfrequencies of the cavity must lie within the spectrum of the driving motions. (2) The fast eigen-
frequencies must lie within the Alfvén continuum. When these conditions are met, a broadband driving
motion will excite Alfvén resonances at frequencies corresponding to the fast eigenfrequencies—even though
these frequencies may not be particularly favored in the driving spectrum. Our results confirm the importance
of the fast global modes noted by previous studies which employed steady harmonic driving. Our principal
result is that resonant excitation of Alfvén waves can still occur when a cavity is driven by a non-
monochromatic source, and it gives confidence that resonant coupling may indeed play a key role in heating
the solar corona and establishing geomagnetic pulsations—situations in which nature does not provide a

monochromatic driving motion.

Subject headings: magnetic fields — MHD — Sun: oscillations — waves

1. INTRODUCTION

The coupling of different magnetohydrodynamic (MHD)
wave modes in nonuniform media is a fundamental problem of
interest to all plasma physicists. Laboratory plasmas may be
heated by resonant interaction between fast (magnetoacoustic)
and Alfvén waves (Vaclavik & Appert 1991, and references
therein), and it is believed that the same mechanism is
responsible for the high temperatures observed in the solar
corona (Ionson 1978). The same wave interaction is thought to
be at play during the excitation of low-frequency pulsations
in the Earth’s magnetosphere (Chen & Hasegawa 1974;
Southwood 1974), although the heating aspect of the solution
is not of primary interest in this context.

Despite the disparte settings mentioned above, the theoreti-
cal studies of resonant fast and Alfvén wave coupling demon-
strate a coherent investigation of a common problem,
regardless of the initial motivation. The driven Alfvén reso-
nance problem of laboratory, magnetosphere, and solar
plasma physicists may be regarded as a minor deviant of the
following problem: A nonuniform MHD cavity containing
field lines (with natural Alfvén frequencies that vary with
position) is driven by motion at the cavity boundary. In the
case of laboratory experiments the cavity boundary is the
surface of a plasma inside a toroidal chamber. This surface
is perturbed by currents flowing in an external antenna
(Poedts, Goossens, & Kerner 1989a). The magnetospheric
cavity is bounded by the magnetopause and may be disturbed
by the presence of the Kelvin-Helmholtz instability at the
interface (Southwood 1974; Chen & Hasegawa 1974), or by
dense clouds in the solar wind striking this boundary
(Southwood & Kivelson 1990; Wright 1992a). In the solar
problem, the cavity is a coronal loop or arcade whose field
lines are fixed in the denser photosphere. Motion of the photo-
spheric plasma due to convection serves as the cavity bound-
ary motion which is the source of wave energy in the cavity.

To some extent, particularly in early investigations, the
laboratory, magnetospheric, and solar communities developed
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their modeling independently. Nowadays there is much “cross-
fertilization” of ideas and techniques between the different
camps, most notably the adoption of the laboratory studies by
the solar community. The efforts of the magnetospheric com-
munity are, perhaps, not so well known in general. We shall
make a particular effort to cite some of the innovative or key
magnetospheric papers in an effort to further the fruitful ex-
change of ideas on resonant absorption.

Before giving a brief review of the past work, it is necessary
to establish some concepts and definitions. The Alfvén fre-
quency w,(r) is the natural frequency that an Alfvén wave on a
given field will oscillate at in an undriven system. For an inho-
mogeneous cavity in which magnetic field and/or density vary,
w,(r) will be a function of position—although constant on any
given field line. The other important wave mode for our study
is the fast (magnetoacoustic) wave. The fast mode, which is
somewhat similar to a sound wave in a neutral gas, is not
confined to specific field lines but extends throughout the
entire cavity. The natural fast-mode waves of a cavity are
termed “ global ” modes, and any cavity may support many of
these modes. (The definition of a global mode is given more
completely below.)

Sections 1.1 and 1.2 present brief reviews of solar and mag-
netospheric research, respectively. If the reader is already fam-
iliar with this material these sections may be omitted.

1.1. Solar Studies

The incompressible and cold (or low-§) plasma approx-
imations are the two limits which have been investigated in
most detail by the solar community. The equations governing
both these limits were studied previously in different contexts.
For example, solar research built on the mathematical simi-
larity between Sedlacek’s (1971) study of resonant singularities
in electrostatic plasma oscillations and the incompressible
MHD equations. Ionson (1978) exploited this similarity in a
series of papers and addressed coronal heating by resonant
absorption for analytical steady state one-dimensional models.
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(By “steady state” we mean all perturbations have a time
dependence of e, where w is real unless specified otherwise.)

Rae & Roberts (1981) and Lee & Roberts (1986) generalized
Tonson’s calculations by solving the undriven initial value
problem of incompressible ideal MHD. They noted that in the
ideal limit there is no heating, but simply a channeling of
energy into Alfvén waves. Asymptotically (¢t — oo) fine scales
develop (phase mixing), so even a small resistivity will ultimate-
ly give rise to plasma heating. More recently, Cally (1991) has
presented numerical solutions of this initial value problem and
his results show the development of increasingly small scales
most clearly.

The steadily driven incompressible problem was addressed
by Hollweg (1984, 1987), who found that the cavity produced
by coronal field structures could act as a resonator and absorb
energy from the surrounding medium very efficiently at certain
(natural) frequencies. He also confirmed that the decay rate
was independent of viscosity or resistivity—thus supporting
Ionson’s conjecture that the ultimate dissipation rate is simply
the ideal decay rate.

Further solar studies moved away from the incompressible
limit and considered both warm and cold (low-f) plasmas—
e.g., the one-dimensional steady state (¢’") calculations of
Hollweg (1990) and Sakurai, Goossens, & Hollweg (1990a, b),
the latter papers estimating the power that can be absorbed by
sunspots and deriving “connection formulae” or “jump
conditions” which must be satisfied at the resonant layer.
Continuing this line of research, Goossens & Hollweg (1993)
calculated the fraction of incident power upon a flux tube/
sunspot that could be absorbed and found they were able to
tune their model to produce no reflected power. Little effort
has been expended in obtaining time-dependent analytical
solutions to the undriven initial value problem for these equa-
tions (Radoski 1974), perhaps because of increased access to
computers nowadays.

Over recent years many numerical solutions to the one-
dimensional warm and low-f§ plasma equations have been cal-
culated, for example, the steady state (¢") calculations of
Grossman & Smith (1988), Poedts, Kerner, & Goossens
(1989b), and Poedts, Goossens, & Kerner (1990a), and refer-
ences therein. In particular the latter studies noted that efficient
conversion of fast-mode to resonant Alfvén wave energy
occurred when w was close to a fast global mode frequency—a
point to which we return later.

Time-dependent numerical solutions to these equations
have also been calculated (e.g., Poedts et al. 1990a, b; Steinolf-
son & Davila 1993). All of these studies drive the MHD cavity
with a periodic boundary motion (¢’) and study the time-
dependent way in which the solution asymptotically
approaches the steady state solution. (Most of these numerical
studies remove the resonant singularity by introducing a small
nonzero resistivity.) These calculations, and in particular Stein-
olfson & Davila (1993), stress the importance of driving the
boundary at a frequency close to a global mode frequency if
efficient heating is to be realized.

Of course, coronal magnetic structures are not really one-
dimensional. Motivated by laboratory experiments, Goed-
bloed (1975) considered steady state resonant absorption in
two-dimensional equilibria, and this has been continued
recently by Poedts & Goossens (1991).

1.2. Magnetospheric Studies

The importance of MHD waves for understanding the
Earth’s magnetosphere was recognized as long ago as 1954 by

Dungey (see also Dungey 1967). Magnetospheric studies of fast
and Alfvén wave resonant coupling have largely concentrated
on the cold (low-p) plasma limit. The first analytical studies of
waves in one-dimensional equilibria considered the steady
state (e*) solutions (Southwood 1974; Chen & Hasegawa
1974). The governing equations were identical to those that
arose in the problem of radio wave propagation in the iono-
sphere, studied by Budden (1961). The solution has the pro-
perty of a logarithmic singularity at the field line where
w?(x) = w?. Southwood (1974) and Chen & Hasegawa (1974)
suggested that the Alfvén resonance (termed a “magnetic
pulsation ”) could be driven by boundary motions at the mag-
netopause (the cavity boundary) associated with the Kelvin-
Helmholtz instability. The nature of the singularity in
Budden’s and Sedlacek’s equations is identical, and many of
the techniques described by Sedlacek (1971) have been
employed by modelers in the magnetospheric community.

The heating associated with the currents in the Alfvén waves
is not of primary importance to magnetosphericists. To avoid
the unphysical singular nature of the solution it is necessary to
include some sort of dissipation. In the magnetosphere this is
traditionally included by introducing a finite conductivity in
the ionospheric boundary, rather than a finite resistivity in the
body of the cavity (Kivelson & Southwood 1986; Inhester
1986).

The one-dimensional time-dependent initial value problem
was addressed analytically by Radoski (1974). His asymptotic
(t —» o0) results show clearly how the initial fast-mode energy is
converted into Alfvén wave energy and the solution becomes
dominated by phase mixing in an ideal system. Radoski was
somewhat ahead of his time and as early as 1976 was per-
forming numerical solutions of the undriven one-dimensional
initial value problem. This pioneering study demonstrated the
importance of the global mode frequency. Regretably, Radoski
(1976) published his results solely as an internal US Air Force
report which was not widely available. This work was largely
unknown, and it was another decade before the ideas would be
advanced independently by other workers.

Observations of magnetic pulsations (Lin et al. 1992) show
that several discrete Alfvén resonances are generally excited in
the magnetospheric cavity. Although Radoski (1976) had
demonstrated this behavior, the idea was advanced indepen-
dently by Kivelson & Southwood (1985) a decade later. They
suggested that an impulsive excitation of the magnetospheric
cavity would cause it to oscillate at the natural fast (i.e., global
mode) frequencies of the cavity. They argued that on field lines
where w, is equal to a global mode frequency resonant coup-
ling will produce a particularly large Alfvén wave. They modi-
fied the steady state calculations of Budden (1961) and
Southwood (1974) to give what is referred to as the cavity
model of the magnetosphere (Kivelson & Southwood 1985).

The one-dimensional numerical solutions initiated by
Radoski (1976) were continued by, e.g., Allan, Poulter, &
White (1986a), Allan, White, & Poulter (1986b), and Inhester
(1987), who studied the undriven initial value problem and that
of a cavity with an impulsively driven magnetopause bound-
ary. Such calculations confirmed the importance of global
modes in determining the frequencies at which resonant excita-
tion would occur.

At this point it is worth defining the term “global mode”
more precisely. We have used it somewhat loosely so far to
mean a natural fast mode, and indeed this is the sense in which
many researchers use the term. The independent development
of solutions to the type of equations governing resonant
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absorption in many areas of mathematical physics has led to
several terms being coined for the same solution. Global modes
also go under the names “damped eigenmode,” “collective
mode,” and “quasi mode.” Sedlacek (1971) and Zhu & Kivel-
son (1988) note that, when the real part of the frequency of a
fast mode matches w, somewhere, there exists the possibility of
a solution in which every point in the plasma oscillates with
the same complex frequency, representing a damped oscillating
fast wave. The damping is not due to dissipation in this ideal
calculation, but represents the loss of fast-mode energy to the
growing Alfvén resonance.

The terms “global” and “collective” seem particularly
appropriate to these solutions; when the equations are solved
by a Laplace transform involving contour integration in the
complex w-plane it turns out that the position of the poles of
the integrand have no dependence on the spatial coordinate
. (Zhu & Kivelson 1988). Thus, on inverting the Laplace trans-
form, all points in the plasma have the same frequency depen-
dence. Some readers may be concerned that ideal MHD must
produce real eigenfrequencies, not complex ones. This is cer-
tainly true on the principal Riemann sheet. However, the
complex eigenfrequencies corresponding to the global modes
do not occur on the principal Riemann sheet, but are located
through a branch cut just off the real w-axis on the next
Riemann sheet. There is clearly a mathematical distinction
between a fast mode and global mode; a fast mode may be
called a global mode if the real part of its frequency matches an
Alfvén frequency somewhere (ie., it lies within the Alfvén
continuum), if not it is simply a fast eigenmode and will have a
real frequency.

The structure of the equilibrium field in the Earth’s magne-
tosphere is known in far greater detail than those of coronal
arcades or loops. Consequently, the magnetospheric com-
munity have had considerable motivation to develop resonant
coupling models in two-dimensional equilibria. The steady
state problem has been addressed by Southwood & Kivelson
(1986), Chen & Cowley (1989), Mond, Hameiri, & Hu (1990),
and Wright (1991). These studies produce a leading-order sin-
gular solution that is still logarithmic. Further calculations by
Thompson & Wright (1993) and Wright & Thompson (1994)
for the steady state two-dimensional problem are able to
recover both the singular and regular solutions. Wright &
Thompson (1994) also show how a numerical solution may be
matched on the analytical series solution at the resonance (cf.
the one-dimensional calculations of Grossman & Smith 1988
and Zhu & Kivelson 1988).

Some recent progress has been made on the two-
dimensional time-dependent initial value problem by analyti-
cal (Wright 1992a, b) and numerical (Lee & Lysak 1989)
methods, confirming the importance of global modes for estab-
lishing resonant Alfvén waves in two-dimensional equilibria.
Lee & Lysak (1991) also consider a cavity driven with a period-
ic boundary motion. For a more detailed discussion of magne-
tospheric studies, see the review by Wright (1994).

1.3. Time-dependent Forcing

Having detailed the investigations of resonant wave coup-
ling to date we are in a suitable position to explain how the
present calculation extends the existing literature. We investi-
gate the response of an MHD cavity to a nonperiodic driven
boundary motion. Such a broadband source may approximate
the photospheric motions that excite waves in coronal struc-
tures, or the unpredictable buffeting of the magnetospheric
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cavity by the solar wind. Mathematically, we idealize the cavity
to a one-dimensional equilibrium [uniform magnetic field and
p(x)] and neglect plasma pressure. The displacement of one
end of the cavity is then varied randomly, and the governing
equations are solved numerically in (x, t)-space.

Existing time-dependent numerical solutions all solve for
either (1) an impulsive driver (and subsequent undriven bound-
ary conditions) or (2) a periodically driven boundary condi-
tion. Both types of experiment can produce localized Alfvén
resonances. In case 1, the problem is essentially an initial value
problem following the short impulsive phase. The disturbance
may be thought of as a sum over the natural fast modes of the
cavity, and field lines where w, matches a fast eigenfrequency
may experience the growth of a resonant Alfvén wave
(Kivelson & Southwood 1985). In case 2, the system is being
forced with a single frequency, and not surprisingly a resonant
Alfvén wave is excited on field lines where w, matches the
driver frequency (Poedts et al. 1990a, b). Indeed, Poedts et al.
(1990b) find Alfvén wave excitation at a global mode frequency
also during the transient phase. However, as t — oo only Alfvén
waves of the driving frequency survive.

To the best of our knowledge the present results are the first
time an MHD cavity has been examined with a random broad-
band driven boundary motion. If a plasma is to be heated
efficiently through ohmic dissipation it is necessary to generate
large current densities—such as at a resonance. It is not clear
that a broadband driver will generate this feature.

It may be argued that, if the time-dependent solution is cal-
culated for a series of periodically driven boundary conditions
(¢*"), then the solution arising from a more general temporal
boundary condition may be synthesized by taking an appro-
priate Fourier sum (cf. Grossman & Smith 1988). While this is
certainly true of the linear wave fields, it is not obvious that the
quadratic energies of the periodic solutions (when summed)
have any physical meaning. Indeed, it is not immediately
obvious whether a solution constructed by such a Fourier inte-
gral approach will contain the fine-scale structure required for
laboratory and coronal heating. If it does, are the small scales
distributed evenly throughout the cavity, or concentrated in a
“resonance”? In a magnetospheric context, we do not know
whether to expect discrete magnetic pulsations to be excited by
a broadband source. It is in an effort to answer these questions,
and understand the physical mechanisms which operate in
MHD cavities, that the present work is presented.

The paper is structured as follows: § 2 considers the coup-
ling of boundary motions to the fast mode in a (uniform)
cavity. In § 3 we speculate about the excitation of the fast mode
in a nonuniform cavity, and how it may couple to Alfvén reso-
nances. We identify two criteria for the efficient excitation of
Alfvén waves in a cavity driven by a broadband source. Section
4 presents numerical simulations of an MHD cavity driven by
a broadband source. Section 5 discusses the results, and § 6
summarizes our main points.

In keeping with the underlying unity of resonant absorption
studies in all areas of plasma physics we do not direct our
paper or results at any single application, preferring to address
the fundamental physics operating in these systems. (In § 5 we
discuss briefly the implications of our work for magnetospheric
and solar physics.)

2. FAST MODE DRIVEN BY BOUNDARY MOTIONS

Consider a low-f plasma of density p(r) with uniform resis-
tivity # permeated by a uniform magnetic field B = BZ. The
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MHD equations governing the linear velocity (#) and magnetic
field (b) perturbations are
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where V2 = B?/u, p is the Alfvén speed squared. Note that we
have not allowed for the fact that the plasma will be heated by
ohmic dissipation—we shall either consider the ideal limit
(n — 0), or assume that heat is radiated/conducted away on a
short timescale compared to MHD wave periods so that the
low-f equations above are a good approximation.

Throughout this paper we shall assume that the field lines
are line-tied in the z-direction and consider solutions that are
standing in z with wave number k,, and periodic in y with wave
number k,.

We begin by considering normal-mode solutions to the
equations (1) in a uniform density cavity and assume all vari-
ables have a time dependence of e*". The governing equations
may be reduced to

ﬁ?+(§;—@_k9%=o. @
The general solution to equation (2) has the form
u(x) = A, sin (k,x) + A, cos (k.x), 3)
where
wZ
ko) =33 — k3 — k2 @

and A, and A, are constants.
Suppose that there are perfectly reflecting boundaries at
x = 0 and x,,e.8.,

u0) =0, ufx0)=0, ®)

then the solution to equations (3) and (4) requires A, = 0 and
k, = nm/x,. Thus the natural eigenfrequencies of an undriven
cavity are

2.2
w? = Vz(f'—’:— k24 k3> . ©)
Xo

Now let us focus on the solution when the boundary at
x = 0 moves periodically. Clearly this is an important aspect of
the resonance problem since energy will arrive at the resonant
field lines in the form of a fast wave (unless the footpoints of a
field line are disturbed). Assuming the velocity at x = 0 to vary
as ug €', the boundary conditions become (suppressing the e'*

dependence common to all perturbations)

u0) =uo, ufxo)=0. O]
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The boundary condition at x = 0 is rather like a piston in
hydrodynamics. We assume that u,(0) has this form regardless
of any waves that may be incident upon it from within the
cavity—such waves will simply be reflected. This description is
reasonable if the energy density of the “piston” motion is
much greater than the energy density of the MHD cavity
waves (cf. large photospheric or magnetosheath kinetic energy
densities relative to the magnetic energy density). We note that
boundary motions at x = 0 are not the ideal way to simulate
photospheric driving, which would move the boundaries at the
ends of the field lines. However, the present method (besides
being appropriate for a magnetosphere driven by magneto-
pause motions) has the merit of requiring explicit solution in
only one spatial coordinate. For this reason many previous
solar studies have employed a similar “side boundary ” type of
driving (e.g., Poedts et al. 1990a; Steinolfson & Davila 1993).

Employing equation (7) to determine the constants 4, and
A,, we find the solution for u (x, t) = u,(x)e’",

cos (k. x,)
sin (k, x,)

u(x) = uo[cos (kex) — sin (k, x)] , (8)
where k. () is given in equation (4).
Evidently the amplitude of u, becomes large whenever

k.xo=nn (e, 0~ 0?), )

equivalent to requiring that the frequency of the boundary
motion be close to a natural (fast or global) mode frequency of
the cavity. This behavior is demonstrated in Figure 1, which
plots | u,| at x = 0.3x, as a function of @ when k, = k, = n/x,.
The result is not surprising; however, it is important to estab-
lish this property clearly for interpreting later solutions.

If we are to couple boundary motions to Alfvén waves, the
information must reach these field lines via a fast mode. More-
over, if we require a large conversion of fast-mode energy to
Alfvén energy, then we will require a correspondingly large-
amplitude fast mode to exist.

Some studies calculate the “fractional absorption” (f,) as a
function of frequency (Grossmann & Smith 1988; Poedts et al.
1989a; Steinolfson & Davila 1993), representing, essentially,
the rate of increase of resonant Alfvén energy for a unit ampli-
tude driver. These studies find f, has a peak when the driving
frequency matches a global mode frequency. Although no
explanation for this result has been offered, we suggest that it is

10_ T T L

8t ]

(]
T
1

lu,l/u,

0 5 10 15 2
@X/V 0
F1G. 1.—Amplitude of the x-component of velocity in a uniform MHD

cavity driven by a boundary motion u (0, t) = u,e. The peaks occur at
frequencies equal to a natural fast eigenfrequency of the undriven cavity.
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a result of a relatively large amlitude fast mode being excited
when the driver and global frequencies are matched, which in
turn drives a relatively large Alfvén wave. Thus we arrive at
our first criterion for efficient resonant excitation of Alfvén
waves: the global (or fast) mode eigenfrequencies of the cavity
must lie within the frequency spectrum of the driving motions.

3. EXCITING RESONANT ALFVEN WAVES

Resonant excitation of Alfvén waves may occur when the
cavity is inhomogeneous. It is sufficient to let the density vary
in the x-direction, p(x). The ideal form of equations (1) may
now be written in terms of u,(x):

2 2 2
d_“;__z_lfzz____z iln %—kz—kf du,
dx*  ?/V2—kZ|dx \V Y dx

2
+<“’——k§ —kf)ux=0, (10)

V2
which contains a singularity at x,, where
wi(x,) = k2 Vix,) = w?. §5))

This position is where the local Alfvén frequency (defined
above) matches the driving frequency. It is well known that in
the ideal calculation (n =0) b,, u, ~In|x — x,| and b, u, ~
1/(x — x,), while b, is regular at x, (Southwood 1974). If some
dissipation is included in the form of resistivity, then the singu-
larity is resolved into a finite-size region centered on x, whose
width varies as n'/3,

The perturbed quantities u,, b,, and b, (away from x,) are
associated with the fast mode, whereas b, and u, (particularly
when near x,) are predominantly Alfvénic perturbations.

Another characteristic position in the solution to equation
(10) is found from WKB theory. The fast mode is able to prop-
agate into higher and higher Alfvén speed regions until x = x,
(the turning point, defined below) beyond which it is evanes-
cent (Southwood 1974):

w? = (k2 + k2)V2(x) . (12)

Evidently the position of the resonance is always located in
the evanescent tail of the fast mode. (From egs. (4) and (11),
k(w, x,) is always imaginary.)

The coupling strength between fast and Alfvén waves
depends upon the equilibrium and wavenumbers (Budden
1961; Kivelson & Southwood 1986). In particular, the coupling
is weak when k, = 0, or k, - co. However, if the fast wave (u,)
is to drive an Alfvén resonance, it is necessary that somewhere
in the cavity equation (11) be satisfied; i.e., the frequency of the
fast mode must lie within the Alfvén continuum. This is our
second criterion for the efficient excitation of (or heating by)
Alfvén waves.

What is the fate of the fast eigenfrequencies (eq. [6]) in a
nonuniform cavity? Suppose the region 0 < x < x, corre-
sponds to the propagating region; then the WKB estimate of
the nth eigenfrequency w, is

Xt 2
J /%—kg—kfdx=(n+a)n, n=1,23, ..., (13)
0

the phase factor a being determined by the boundary condi-
tions in x (Inhester 1987). Alternatively, equation (10) may be
solved numerically to find w, (Zhu & Kivelson 1988). Which-
ever method is employed, the important feature is that natural
fast or global modes still persist in a nonuniform cavity, and
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consequently, we would expect the qualitative behavior of
Figure 1 to be representative of nonuniform cavities.

We noted previously that it is possible to sum many linear
solutions in an effort to generate a more general time-depen-
dent solution. Figure 1 suggests that such a sum will weight
the solutions with w ~ w, very heavily—and it seems likely
that these “global mode” resonances will dominate the solu-
tion. This conjecture is tested by our numerical calculations.

A discussion of the energetics of a “summed” solution is
appropriate only when the summed fields are inserted into the
energy equation. It is not physically meaningful to sum indi-
vidual energy equations; to identify this summed energy as the
energy equation of the summed wave fields is misleading (cf.
Grossman & Smith 1988; Poedts et al. 1990a).

It is somewhat difficult to anticipate the final summed
solution—especially when we take the limit of the sum becom-
ing an integral. For example, an ideal solution of frequency w
has a logarithmic singularity at x, defined in equation (11).
When we sum a continuous range (i.e., do an integral) of such
frequency-dependent solutions, do all the logarithmic singu-
larities persist or cancel out?

The questions raised above have motivated us to perform a
numerical solution to the one-dimensional time-dependent
equations when one boundary is driven by a random broad-
band displacement. The results are reported in the next section.

4. CHARACTERISTIC FREQUENCIES

The numerical results reported later in this paper are calcu-
lated for an MHD cavity similar to that employed by Steinolf-
son & Davila (1993). The density has the following explicit
variation with x:

p(x) = po[0.1 + 0.9 exp (—x¥] . (14)

The cavity extends over the range 0 < x < 3, and Steinolfson
& Davila (1993) argue that this may represent half of a coronal
loop when driven from the x = 0 boundary. This cavity could
also represent the Earth’s magnetosphere, the x = 0 boundary
being the magnetopause. Employing the normalized space
dimension implicit in equation (14) and the values of B and p at
x = 0, the remaining physical quantities may also be normal-
ized. Figure 2 shows the variation of the normalized Alfvén
speed.

To proceed further we must specify some boundary condi-
tions. In the succeeding sections we shall drive the cavity, but

4 ;

Alfven Speed

of -
0 1 2 3
X
F1G. 2.—Variation of Alfvén speed with x for the model cavity employed in
the numerical calculations (see eq. [14]).
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for the moment we focus upon the properties of the undriven
cavity in an effort to provide a framework for interpreting later
results. Steinolfson & Davila (1993) assumed that all pertur-
bations at the boundary x = 3 decay as exp [—(kZ + k2)'/2],
which is appropriate when w?/V3(x = 3) < k2, k2, ie, when
Va(x = 3) becomes very large. However, since V ,(3)/VA(0) = 3,
this limit is not met very well, and it is not clear what physical
interpretation may be placed upon this boundary condition.
We prefer to impose simple reflecting boundary conditions,

Ouyx=3)
O0x -

the latter being chosen because the plasma inertia at x = 3 is
relatively low. Our outer boundary will trap all energy within
the cavity and is likely to give us an upper estimate for the
efficiency with which fast-mode energy may be coupled to
Alfvén waves (because the fast mode is not able to escape to
x = o0). However, we are not likely to seriously overestimate
this efficiency because any component of the fast mode which
drives a resonance will also have a turning point x, < x,, and
so is effectively trapped and insensitive to any boundary condi-
tion at x = 3.

The Alfvén continuum and the fast eigenfrequencies depend
upon the wavenumbers k, and/or k.. We adopt a small wave-
number k, of 0.1 in order to facilitate comparison with the
results of Steinolfson & Davila (1993). Although this value of k,
may not be particularly appropriate to the coronal situation, it
is very convenient for our theoretical investigation of the
general nature of time-dependent resonant coupling: Fast
eigenfrequencies may be estimated from WKB theory (eq. [13])
or (in view of the small value of k) from shooting for the
eigenfrequencies of equation (10) when k, is set to zero. (The
latter method relies on the fact that dw,/0k, ~ 0 for small k,
and is the procedure adopted here. The eigenfrequency esti-
mates are reliable to better than 1% ; cf. Zhu & Kivelson 1988.)
The optimum coupling rate probably occurs for some value of
k, larger than 0.1, and we could scan k, to determine the exact
value. However, as the present paper is concerned with estab-
lishing criteria for when relatively efficient coupling takes place
we employ k, = 0.1 throughout the remainder of the paper.
Future studies may adjust k, to truly optimize coupling, but for
the purposes of the new concepts we wish to establish in this
paper a constant value of k, is quite adequate.

We leave k, as a free parameter, and by searching in k,
parameter space we may “tune ” our cavity to have 0, 1, 2, etc.,
resonances and may also adjust the frequencies. This will
provide an elegant way of examining the two criteria we have
identified for efficient resonant absorption. The upper and
lower limits of the Alfvén continuum are given by

Wp(x =0, k) =k, Vy(x=0),
wA(x=3,k)=k,Vi(x=13).

Figure 3 shows the variation of the limits of the Alfvén contin-
uum (dashed lines) with k,. The solid lines are the variation of
the fast (global) eigenfrequencies for the first five harmonics.
When k, < 0.6 no fast eigenfrequencies lie within the Alfvén
continuum; for 0.6 < k, < 1.6 the first fast eigenfrequency lies
in the continuum; when 1.6 < k, < 2.6 the first two fast eigen-
frequencies lie in the Alfvén continuum, etc. Based upon our
second criterion for efficient coupling established in § 3, we
anticipate that Figure 3 will play a central role in understand-
ing our results.

u(x=0)=0 and 0, (15)

(16)
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10( ARaEgE

F1G. 3—Variation of the upper and lower limits of the Alfvén continuum
[@4(0) and w,(3)] and the first five global fast eigenfrequencies (w,,, n = 1, 2,
..., 5)with k,.

gn>

If we assume, for the moment, that the global fast modes do
in fact drive Alfvén resonances at the fast eigenfrequencies,
then we can calculate the location of the resonance quite
simply: For a given k, Figure 3 yields the fast eigenfrequencies,
which together with equations (14) and (11) can be used to
evaluate x,,—the position of the resonance driven by the nth
fast harmonic. This procedure was repeated over a range of k,
to produce Figure 4. The presence of 1, 2, or more resonances
for different values of k, is again apparent.

5. NUMERICAL RESULTS

In this section we present the numerical results of the cavity
described in § 4 when a random, broadband frequency driving
term is included. The numerical scheme used to solve the equa-
tions is the leapfrog-trapezoidal algorithm of Zalesak (1979)
and is second-order accurate in both space and time. The size
of the space and time steps is dependent upon the choice of
resistivity which limits the spatial scales which can be realized.
When the governing equations (1) are cast in dimensionless
form [length scale a, velocity V,(0), etc.], the resistivity is nor-
malized by pu, V,(0)a. We present results with values of di-
mensionless resistivity (equivalent to the reciprocal of the
Lundquist number) equal to 107 and 10~ %, When n = 10™*
and 107 the grid spacing is taken as 6 x 1073 and 2 x 1073,

20
i
1sf
X 0
1.0f
0.5F ]
; ﬂ
000y .
0 1 2 3

k

F1G. 4—Dependence of the location of the Alfvén resonance on k,: x,, is
the position where w,(x,,) is equal to the nth fast eigenfrequency, w,,.

4
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respectively. The time step was chosen to be a fraction
(between 0.05 and 0.1) of the minimum propagation or diffu-
sion time across a grid cell. The convergence of our scheme was
testecg, and continuity of energy was met to typically 1 part
in 10°.

5.1. Boundary Conditions

The boundary condition of du,/0x =0 at x = 3 is imple-
mented simply as a symmetry condition. The boundary at
x = 0 is driven by specifying its displacement as a function of
time. For the purposes of the present study we want a bound-
ary motion that does not contain a dominant driving
frequency, unlike most previous investigations. We devised
the following method for producing a broadband driving
frequency spectrum. The method relies upon generating a
random set of data (£,,, t,) for the x-displacement of the
- boundary at x = 0 at given times, ¢,. The data sequence is then
fitted with a cubic spline to provide a piecewise continuous
expression of £ (x = 0, t) [the velocity u(x = 0, t) of the driver
may then be obtained by differentiation of the spline function].

In order to avoid transients at ¢ = ¢, = 0, when our experi-
ment begins we impose &, =0 and u, =0. [This was
achieved by creating a symmetrical set of data points (¢, _,,
t_p) = (. —t,), n > 0, before fitting the spline curve.] Before
generating the data points two time intervals are specified, At,
and At, (At, < At,). The algorithm is as follows: (1) A random
number generator produces a value for £,, in the range —1 to
+ 1. (2) The time t, is determined by ¢, = t,_, + At, At being
chosen as At; with a probability of 90% and At, with a prob-
ability of 10% based upon the output of a second random
number generator. (3) Steps 1 and 2 are then repeated until ¢,
exceeds the time we wish to solve over. (4) One proviso is that,
following a choice of the long time step (At,), the next two time
steps must be At, then a random choice is made. Condition 4
was introduced because the long time step At, leaves the cavity
effectively undriven, and two such steps in close succession
allow perturbations to decay significantly with the large
resistivities employed in our numerical calculations.

The method described above produces a displacement
£ (x =0, t) that moves in a random fashion between —1 and
+ 1. The time derivative of the displacement is the velocity at
x = 0, which may be used to drive the system of equations (1).
Given the velocity and field perturbations over the grid at one
time, the state after the next time step may be found from
updating # and b with equations (1) over the entire grid, except
for u, at x =0 (which is given by the boundary condition
algorithm). Of course, equation (1a) actually predicts the accel-
eration of the plasma at x = 0, and this is in general different
from the conditions imposed. The mismatch between the two
represent an inhomogeneous or driving term that launches
waves into the cavity. Centered derivatives are used for calcu-
lating 0/0x and 0%/0x? except for cells at the x = 0 boundary,
where one-sided derivatives are employed.

For the results presented here At, = 1.25 and At, = 12.5.
Figure 5a shows the driving condition u,(0, t) and Figure 5b
shows the Fourier transform. The spectrum has the features we
require; a broad frequency range with no single frequency
dominating the spectrum.

5.2. Cavity Response

To examine the behavior of waves in a driven cavity, we
present detailed solutions and energy diagnostics for a case
study where k, = 1.23 (the results of this run are shown in Figs.
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F1G. 5—a) Random £ velocity of the driven boundary at x = 0 as a func-
tion of time. (b) Normalized frequency spectrum (FFT) of the driving signal
in (a).

FFT

6-9). When the cavity is driven with the velocity in Figure 5a
waves are excited in the cavity. Figure 6a shows the velocity at
a point within the cavity (x = 2) as a function of time. It is
evident that this velocity has a more coherent oscillatory
nature than the driving velocity in Figure Sa and is readily
verified by taking the Fourier transform of the signal (see Fig.
6b). The presence of preferred frequencies is evident. Moreover,
the fast or global mode eigenfrequencies for k, = 1.23 are 2.54,
4.35, 5.38, 7.41, and 9.11 (e.g., from Fig. 3) and are shown by
dashed lines in Figure 6b—these correspond exactly to the
locations of the peaks. (Note that we have actually plotted the
square root of the Fourier transform in Fig. 6b in an effort to
make the high-frequency peaks clearer.)

For small k, the fast mode comprises essentially pertur-
bations u,, b,, and b,, thus Figure 6 represents basically the
amplitude of the fast-mode waves in the cavity. We see that the
cavity acts as a filter of the driving spectrum and suppresses
frequencies that are not natural frequencies of the cavity. Com-
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F1G. 6.—a) £ component of the velocity measured at a point within the
cavity (x = 2). (b)) Normalized FFT of the signal in (a)—we have actually
plotted the square root of the FFT to make the high-frequency peaks clearer.
The dashed vertical lines mark the values of global fast eigenfrequencies.
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paring with Figure 1, it appears that a nonuniform cavity > 1.0F
behaves in a similar fashion to a uniform cavity in this respect. Ei 0.8F

Consider the relative amplitudes of the peaks in Figure 6b: 2 06
The largest (at w & 2.54) occurs at a position in the driving > 04F
spectrum (Fig. 5b) which has a significant amplitude—thus this g e
mode is driven strongly. The peaks of the harmonics at higher 5 02F
frequencies (w = 4.25 and higher) map to the low-amplitude 0.0t
tail of the driving spectrum (Fig. 5b)—thus these modes are > 5.0
driven weakly. (We specifically turned our cavity, by choosing @ 4.0 (b)
k,, to demonstrate this behavior.) This explanation agrees well & 30 k
with our results and supports our first criterion for efficient C; '
coupling of boundary motion to field line resonances: Some 520 ’
global/fast eigenfrequencies must lie within the frequency spec- 210 :
trum of the driving motions. Yoo

Note that even when the cavity is effectively undriven
(25 <t < 50 and 95 < t < 130) the fast mode within the cavity
u,(2, t) remains oscillatory. Energy is stored within the cavity
and provides a constant reservoir during the random injections
of energy from the boundary. In fact, the fast-mode wave in
Figure 6 is so coherent (monochromatic) that we would expect
it to be an excellent driver of Alfvén resonances provided its
eigenfrequency lies within the Alfvén continuum.

5.3. Energy Densities

The energy total density of our system (E;) may be expressed
(in normalized units) as

Ep = 3p@? + ul) + 3(b% + b2 + b?). 17

In the limit k, = O the fast and Alfvén waves decouple, and we
may define the energy densities associated with the fast (E)
and Alfvén (E,) waves separately:

Ea = 3(pu; + b)), (18a)
E; = 3(pu + b2 +b2). (18b)

If k, # O pure fast or Alfvén solutions do not exist, but are
replaced by coupled wave solutions. Nonetheless, the partition
of energies in equations (18) remains a surprisingly good
method for classifying the dominant character of disturbances
unless k, is particularly large (Rickard & Wright 1994).

Figure 7a shows the energy densities E, and E; at t = 200
for n = 10™*. The fast-mode energy extends across the entire
cavity, being evanescent at large x (large V,). The Alfvénic
energy density (E,) is confined to a small range 1.1 < x < 1.25,
which may be understood by considering the frequency of the
global/fast mode which drives the resonance: the fundamental
fast eigenfrequency is 2.54 and is equal to the natural Alfvénic
frequency of field lines at x, =~ 1.18 (see Fig. 4). Thus it appears
that the broadband frequency boundary motions in Figure S
can indeed drive a localized resonance if the fast eigen-
frequency lies within the Alfvén continuum—our second cri-
terion. This result is of paramount importance to resonant
absorption models of coronal heating and is the principal
result of our paper. '

Figure 7b presents the same information as Figure 7a but is
taken from a run where = 1075, The distribution of E ;s
almost identical to that in Figure 7a—a property we emphasize
by plotting E, for n = 107° as the dashed line in Figure 7a.
The minimal change in E; while # changes by two orders of
magnitude suggests that the structure of the fast mode is inde-
pendent of 5, as one would expect. In contrast the Alfvénic
energy density changes radically with #. Estimating the

0 1

FIG. 7.—(a) Spatial variation of the fast and Alfvén energy densities (E . and
E,) att = 200 when n = 10™*. (b) Same as (a), but for n = 107, Note how the
E, peak becomes narrower and taller as n decreases, while the distribution of
E is hardly changed—a property demonstrated by plotting E  for = 10 ¢ as
the dashed line in (a).

FWHM of E,, from enlargements of these figures, we find that
the energy density narrows by a factor of 4-5 when 7 changes
from 10~* to 107% Such a change is in surprisingly good
agreement with the steady state (e*) analysis which suggest
the width should scale as #'/*—a reduction by a factor of 4.6.
The peak of E, increases as 5 decreases, being a factor of 26
times larger in Figure 7b compared with Figure 7a. (Steady
state theory predicts E, oc n~2/3, giving a scaling of 22.)

5.4. Ohmic Heating

The ohmic dissipation in the plasma (nj?) provides an esti-
mate of the heating rates that may be achieved in the corona
and can give a measure of the coupling strength between fast
and Alfvén waves. Figures 8a—8c show the spatial variation of
the time-integrated (0 < ¢ < 200) ohmic dissipation for each of
the current components when n = 10™* [i.e., 0, = [ nj2 (x, t)dt,
etc]. The field-aligned current heating (nj2) is clearly associated
with Alfvén waves (cf. Fig. 7a), as one would expect; j, ~
0b,/0x, and Alfvén waves have a large b,,. It is apparent from
the top panel that there is some j, current and heating as-
sociated with the Alfvén resonance, although it is much
smaller than j,. At the resonance j, & —k,b,,and V :j=0is
met largely by the field-aligned current being directed in the
x-direction. (There is no significant j, current at the resonance.)
Note that the j, heating also shows some evidence of currents
associated with the fast mode in the range 0 < x < 0.9; j, ~
k,b,. Heating from j, currents (O,; in Fig. 8b) arise from the
fast mode (j, = k, b, — 0b,/0x).

Figures 84-8f display the same quantities as in Figures
8a-8c, but for a run when = 107 ¢, Note how the form of the
Jy heating (0,) is unchanged. This is to be expected since j, is
associated with the fast mode, whose structure does not
depend upon 7 (see Fig. 7a). The magnitude of the j, heating
has been reduced by a factor of 96, showing an approximate
scaling with 5. The fast-mode j, heating has been reduced by a
similar amount and is not visible in Figure 84. The Alfvénic j,
current heating has been narrowed, in line with expectations
from Figure 7, and reduced in magnitude by a factor of ~5.
Steady linear theory would suggest j, ocj,Axocb, from
V - j = 0. Since the resonance width Ax oc #'/> and b, oc 173,
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0.008F @ ] mode and has a peak-to-peak period of 1.2, which is half of the
0.006 - E first fast eigenperiod (27m/2.54 = 2.47): This result is to be
S 0.004f E expected—if j, is oscillatory and periodic over 2.47, then nj2
E E will be periodic over half this interval. That j, is associated with
0.002 E the fast mode is reflected in the fact that the envelope of the j,
0.000 —————=x heating reproduces the behavior of the u, envelope in Figure
g'gg 3 (b) 3 6a—we would expect even closer correlation, with the enve-
“E E lope of u2. Note that when 7 is reduced to 10~ (Figs. 94-9f)
.. 0.15F E . . . . .
O 10k 3 the j, heatlng rate is reducpd, scaling as n (Flg. 9e). .
3 3 Now consider the heating from field-aligned currents, j(P,).
g'gg 3 E The heating curves in Figures 9c and 9f are surprisingly free
6 from oscillations at the resonant Alfvén period (2.47). (Note
5F © : that the heating rates in Fig. 9 are integrated over x, but are not
LAE : integrated or averaged in time in any manner.) When n = 10™#
o 3¢ ] the variation of j, heating (Fig. 9c) approximately follows the
f i | envelope of the j, heating (Fig. 9b), but there appears to be a
0 slight time delay. For example, j, heating has a peak at t = 69,
0.0015F @ ] whereas j, heating has a peak at ¢t = 78. By comparing the
0.0010F ]
c : ] 154105
0.0005 - ] o
i 1.0-10°5F
0.0000C o 6
0.0025¢ ; [y
0.0020 (e 3 5010 :
.. 0.0015F E oL
0.0010F 3 0.0040
0.0005 F- 3 0.0030F ()
0.0000 £ : Q™ 0.0020 3
20F ] AL
i () E 0.0010 T —— R
F 3 0.0000 ‘.Jumm\immm\.1\mMmUU”mhﬂhlndﬂhmmmﬁﬂMMUMUmh‘Uhﬁdumhm‘\nmuu‘um‘.umnmmm
o 10r E 0.0050
sE 3 0.0040 F-
ob E o~ 0-0030¢
0 1 2 3 0.0020
X 0.0010F
FiG. 8.—Spatial variation of the ohmic heating rates associated with each 0-0090
component of the current integrated over the interval 0 <t <200, O, = 3.0-10 7
{ nj2(x, O)dt, etc. (a)—(c) employ n = 104, while (d)-(f) have n = 10~°. gg'l g_ E
o 15107 F
.. . . . . 1.010° E
we anticipate that the magnitude of the j, heating (2 oc n*/3) 5.0108E
should be reduced by a factor of 4.6 from Figure 8a to Figure _55
8d, and this is close to the observed result of 5.5. The j, heating 4.0-10
peak in Figure 8f has also narrowed in x (by a factor of ~4.2), 3.010°F ()
while the magnitude of the peak has increased by ~3.6. Thus o> 2.0105E E
the total dissipation by j, (ie., the area under the j, heating 1 0105 i At
Il?:glﬁtlg(}:lllgStge)alsyagf(;(l)l}:tlg:l;elll)lllel:Setgzg;i;n ;toli Zvl(?efl:?tnf":-gﬁ 0 ‘mmJnmnnuunumJIU‘UUUMMJI!MUUUHMU”MﬂumI.mMﬂmhmjﬂd“muﬂmuuﬂmmmum
Figure 8 that as 7 is reduced further (to realistic coronal values g'ggig i o
of order 10~ '2) the only significant heating contribution will ’ ®
be from the field-aligned current at the Alfvén resonance. Q" 0.0030 ¢ 3
The present experiment is time dependent and consequently 0.0020¢ k
not posed in a simple enough fashion to permit a straightfor- g'gggg ] ’
ward derivation of universal scaling laws with 5. Nonetheless, 0 50 100 150 200

it is apparent from our results that steady state theory may
provide a useful guide to predicting the amplitude and widths
of resonances. Departures from the steady state scaling will be
addressed later.

Figure 9 shows the variation of total ohmic heating within
the cavity as a function of time for # = 10~* (Figs. 9a-9¢) and
n = 10~° (Figs. 94-9f) [i.e., the quantities P, = [3 njZ(x, t)dx,
etc.]. Once again, the heating from j, is associated with the fast

time

F1G. 9—Temporal variation of the ohmic heating rates associated with
each component of the current integrated over the range 0 <x <3, P, =
§ nj2(x, t)dx, etc. (a)—(c) employ n = 10~*, while (d)—(/f) have n = 1075, The
oscillations in the heating from j, and j, (P, and P,) are associated with the
fast eigenmode oscillation. There are no such fluctuations in the heating pro-
duced by j,(P,), which arises from the Alfvén wave. These heating rates have
not been time averaged. The “offset ” referred to in the text is indicated by a
dashed line in (a) and (d).
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times of several such features in these plots we estimate that the
Jj. features in Figure 9c appear ~ 10 time units after the feature
has occurred in the j, envelope (Fig. 9b). We return to this issue
later. We also note that the effect of reducing # on the j, heating
is to produce a gradual rise in heating and to smooth out many
of the features present when n = 10~ (cf. Figs. 9c and 9f).
However, the magnitude of the heating appears to be indepen-
dent of .

It was noted from Figure 8 that j, had contributions from
both the fast and Alfvén modes. This is supported further by
examining the j, heating (P, in Fig. 9a), which we shall divide
into two components: The first (the “offset ”) may be defined
by joining consecutive local minima together (Fig. 9a, dashed
line). The second component is the oscillatory behavior above
the offset level. The oscillations are associated with the fast
mode and scale proportional to # (identical to the j, heating).
The offset of the j, heating follows the general variation of the
Jz» or Alfvénic, heating for both values of 5. Further evidence
that this offset arises from Alfvénic heating may be gained by
considering the scaling with #: A steady state calculation gives
the j, heating integrated in x scaling as #j2 Ax oc n?/* (since
Jjxoc 1713 and Ax oc n'/3). Thus a steady state analysis suggests
the offset in Figure 9d should be 22 times smaller than the
offset in Figure 9a. It is difficult to choose a suitable time in our
simulation for comparing the j, heating offset because of the
time-dependent nature of our calculation. However, the
heating offsets in both runs are relatively constant over the
interval 100 < ¢ < 150 and give reduction by a factor of 22—in
surprisingly good agreement with the steady state scaling of 22.

5.5. Optimal Coupling/Heating

We have suggested that two criteria must be met if we are to
couple boundary motions efficiently to Alfvén resonances.
Moreover, since any energy deposited in Alfvén waves will
ultimately be dissipated as ohmic heating, the heating rate may
be used as a measure of the energy coupled into the resonance.
This is particularly true for small #, where we have seen the
heating comes almost exclusively from the Alfvén resonance.
Thus we anticipate that the total ohmic dissipation will be a
measure of the efficiency with which the boundary motions
drive a resonance, and it is in this spirit that we employ Q =
| nj*dx dt as a diagnostic. (We integrate over 0 < x < 3 and
0<t<200)

Figures 10a and 10b display the energy dissipated as a func-
tion of k, for # =10"* and 1079, respectively. The results
presented previously had k, = 1.23, and these runs supplied the
points in Figure 10 for this value of k,. Identical experiments
were performed for different k,, and the plots in Figure 10
resulted. Apart from a slight difference in amplitude (discussed
later) the plots are very similar. Perhaps the features over
0.7 < k, < 0.9 when n = 10™* are due to the fast mode, since
these are absent in the n = 10~ results. Nevertheless, the two
curves are very similar and appear to be exhibiting some
asymptotic behavior as 7 is reduced. Since Figure 10b will be
closer to any asymptotic results, we shall interpret this data set.

A clear rise in heating is observed for k, ~ 0.6. This is
because for k, < 0.6 there is no global/fast eigenfrequency
inside the Alfvén continuum (see Fig. 3). For k, 2 0.6 one or
more fast eigenfrequencies lie in the Alfvén continuum and are
thus able to drive a resonance. Thus our second criterion
explains the step in heating at k, ~ 0.6.

Other features in Figure 10 include four strong heating
spikes for k, = 1.075, 1.16, 1.26, and 1.35. We have developed
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F1G. 10.—Total ohmic heating integrated over 0 < x < 3 and 0 < ¢t < 200

(Q = | nj*dx d) for runs with varying k,: (a) n = 10™* and (b) n = 1075, Sig-
nificant energy is dissipated for a limited range of k, (from 0.6 to 1.5).

the following ad hoc explanation of these peaks: Since the
fundamental global/fast mode must be driving the resonances
we may use Figure 4 to estimate its position. Knowing the
position (and thus the Alfvén speed; Fig. 2) and k, we may
estimate the frequency of the Alfvén resonance. This procedure
gives resonant positions of 1.22, 1.19, 1.17, and 1.14, while the
resonant frequencies are 2.38, 2.49, 2.56, and 2.67, respectively.
Figure 11 shows an enlargement of Figure 5b, the Fourier

1.0
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0.6}

FFT
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2.0 2.2 24 2.6 2.8 3.0

F1G. 11.—Enlargement of Fig. 5b (the FFT of the driving velocity) over the
range 2 < w < 3. The four peaks at 2.385, 2.48, 2.54, and 2.64 may be identified
with the four heating peaks in Fig. 10.
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transform of the boundary motion driving spectrum. We see
that there are actually local peaks in the driving spectrum at
frequencies 2.385, 2.48, 2.54, and 2.64 which correspond well
with the k,, or equivalently w,, peaks in heating rate. (Note
that we have not determined the true location of the peaks in
Fig. 10 very accurately.)

The small heating rates in Figure 10b above k, = 1.5 may be
understood by a similar analysis; k, = 1.5 gives x, = 1.125, so
Va(x,) = 1.855 and w,(x,) = 2.83. We see from Figure 11 that
this frequency is in the high-frequency tail of the driving spec-
trum and so is weakly driven. Indeed, k, = 1.5 is the point
above which our first criterion (namely, that the fast eigen-
frequencies lie within the driving spectrum) is violated, conse-
quently when k > 1.5 coupling is weak.

The criteria we propose if efficient coupling of boundary
motions to Alfvén resonance is to be achieved give a window in

-k.-space of 0.6 < k, < 1.5 in which we anticipate strong coup-
ling may be realized. This is in excellent agreement with our
numerical results.

6. DISCUSSION

We now consider some of the finer details of our time-
dependent results. Ideal time-dependent resonant absorption
studies by Mann, Wright, & Cally (1995) have shown how
the resonance develops increasingly fine structure with time.
They demonstrated how an important scale length across the
resonance could be estimated reliably from the decoupled
(k, = 0) phase mixing length, L. Taking a wavenumber in the
z-direction and setting d/0y = 0, the governing equations (1)
give a decoupled equation for u, or b, the solution of which is

u, or b, = A(x) exp [iws(x)t] . (19)

y

Taking the derivative in x, and introducing a local wavenum-
ber k(x), gives

%% = %4 exp (iw, 1) + i) thy, = ik (x)b, , (20)

where w), = dw,/dx. For large times k, ~ wj t, and the local
scale length of perturbations in x is

2n 2=m

=—=— 21
PRk, ot @)

This defines the phase mixing length, which decreases with
time as neighboring field lines drift more and more out of
phase.

Equation (21) can be inverted to give a phase mixing time
(t,n) by which we mean the time it takes for phase mixing to
achieve a given scale L:

2n
toh = m . (22)

In the coupled mode problem of § 5 (k, # 0) we shall not
have solutions of exactly the form in equation (19). Neverthe-
less, the time and spatial scales given in equations (21) and (22)
still provide reliable estimates of these scales. We shall now use
these notions to understand some of the features in our
coupled results.

Recall that in Figures 9b and 9¢ we noted that the j,
(Alfvénic) heating curve was delayed relative to the j, (fast)
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heating envelope by ~ 10 time units (§ 5.4). When n = 10™* the
width of the Alfvénic energy density (Fig. 7a) and the Alfvénic
spatial heating (j, heating in Fig. 8¢) suggest the resonance has
scale length of ~0.074, corresponding to the length at which
diffusion dominates convection (L ). From a dynamic point of
view we could argue that Alfvénic energy is initially excited
with a scale length much greater than the diffusion length, and
then phase mixing commences. For short times, when L; < L,
there is little ohmic dissipation, and the Alfvén waves phase
mix without loss of amplitude. However, by the time L, = L,
for some Alfvénic component, its amplitude has been much
reduced, and all its energy is essentially dissipated. The ohmic
dissipation of these phase mixing Alfvén components will
occur on scales 2 L,;, and a length of 2L, would be a reason-
able “average” dissipation length. Thus we would anticipate
that, once energy has been coupled into Alfvén waves, it will
take a delay of order t,, = n/(wj) L,) for the Alfvén waves to
phase-mix to a length at which ohmic dissipation occurs. For
the results in Figures 9b and 9c, this suggests j, heating should
be delayed behind j, heating by ~9 time units—in good agree-
ment with the observed value.

Reducing 5 from 10~* to 10~ ¢ reduces the width (and dissi-
pation length) by a factor of ~ 5. Thus we expect j, heating in
Figure 9f to be delayed by ~50 time units compared with j,
heating (Fig. 9e). It is difficult to corroborate this prediction as
we only run up to t = 200. However, we do note that the peak
Jj, heating is at ¢t = 70, while that of j, is at ¢t = 120, providing
some support for our claim.

As 7 is reduced the energy resides in the Alfvén waves for
longer times before being dissipated, since energy must cascade
or phase-mix, to finer scales. It is this property, coupled with
the fact that energy is really dissipated at varying rates on a
range of scale lengths, that probably provides the averaging or
smoothing effect when comparing the j, heating in Figures 9¢
and 9ffor n = 10~ * and 10~ ¢, respectively.

The magnitude of the total energy dissipated when n = 10™4
and 10~ ¢ (see Fig. 10) changes by a factor of ~ 2. The difference
can probably be attributed to the fact that for smaller 7 it takes
longer for Alfvén waves to dissipate their energy—a fact sup-
ported by the very gradual rise in j, (Alfvénic) heating when
n = 107 ° compared to 10™* (Figs. 9c and 9f). The areas under
these j, heating curves are essentially the total heating (Fig. 10),
and evidently the slow rise at early times produces a smaller
total energy dissipation for smaller #.

It is interesting to note that Figures 3 and 4 predict that the
first fast harmonic enters the Alfvén continuum when k, ~
0.55. Thus in Figure 10b the point k, = 0.6 should contain an
Alfvén resonance, yet it exhibits remarkably low heating. The
reason for this may be understood by considering the positions
of the resonances. For k, = 0.6, 0.7, and 0.8, the Alfvén reso-
nances occur at x, = 1.5, 1.37, and 1.31, at which points v, =
0.67, 2.12, and 3.03. Note that /, is much smaller for k, = 0.6
and x, = 1.5—due principally to the decreasing Alfvén speed
gradient as x changes from 1.4 to 1.6 (see Fig. 2). Since w/,(x,) is
so small for k, = 0.6 the phase mixing time for dissipation is
very large (~260 time units), and given that we only run for
200 time units, there is very little dissipation. The phase mixing
times to 2L, for k, = 0.6, 0.7, and 0.8 are 260, 84, and 60 time
units, so for a flat driving spectrum we expect the total energy
dissipation to increase with k, over this limited range.

Recall the spatially integrated heating rates displayed as a
function of time in Figures 9¢ and 9f. A remarkable property of
this figure is the absence of fluctuations with a period similar to
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that of the Alfvén resonance. To our knowledge the observa-
tion of a temporally steady Alfvénic heating rate has not been
reported previously—perhaps because most studies time-
average the heating in some fashion.

In an effort to study the steady Alfvénic heating we drove
our boundary with a harmonic motion of period 2.64, which
corresponds to the first fast eigenperiod as we set k, = 1.075 for
this run (x, = 1.21). After ¢t = 600 the transient disturbances
have been dissipated (y = 10™*) and our solution essentially
has a time dependence of exp (i2n¢/2.64). The ohmic dissipation
should be periodic over half the driving period (i.e., 1.32), and
Figures 12a—12e show R, = #j2(x, t) for times 0.0, 0.33, 0.66,
0.99, and 1.32, respectively, following t = 600. We see that
there are waves of current density (or ohmic heating) propagat-
ing across the resonance. The heating peaks have been labeled
1,2, and 3. Following their time development we see that these
peaks begin at large x, where they are very small. As the peak
moves to the center of the resonance it grows and thereafter
moves to smaller x and diminishes in size. (Note that Steinolf-
son & Davila’s Figure 7 shows three heating spikes and has a
phase somewhere between our Figs. 12b and 12c). These
heating spikes evidently have the property that the area under
them at any time is constant. This may have implications for
signatures of heating in the corona.

On grounds of current continuity we expect j, oc | j, dx, and
so the Alfvénic j, heating should have two peaks in x. Once
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FIG. 12.—Spatial variation of the j, ohmic dissipation [R, = nj2(x, t)]
across the Alfvén resonance for a cavity that has been driven harmonically
with a period 2.64 (n = 10™%). By t = 600 transients had died away, and all
perturbations oscillated with the driving period. The panels display snapshots
of the ohmic heating at times (a) 0.0, (b) 0.33, (c) 0.66, (d) 0.99, and (e) 1.32,
subsequent to ¢t = 600, and thus cover one cycle of the heating perturbations.
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again, [ #j,dx integrated across the resonance appears to be
independent of time.

7. CONCLUSIONS

In this paper we have considered the time-dependent coup-
ling of broadband frequency boundary motions to Alfvén
resonances—a problem relevant to geomagnetic pulsations
and coronal heating. We find two criteria must be met for
efficient coupling. First, the global or fast eigenfrequencies of
the MHD cavity must lie within the frequency spectrum of the
driving motions. (This ensures that a relatively large amplitude
fast mode will be excited within the cavity.) Second, the fast
eigenfrequency must also lie within the Alfvén continuum.
When these conditions are satisfied the broadband driving
source is effectively “filtered” by the cavity, producing dis-
turbances in the cavity that are essentially a superposition of
fast eigenmodes. Each of these modes oscillates with its own
natural frequency and provides a coherent driver suitable for
establishing an Alfvén resonance (cf. Kivelson & Southwood
1985 for the undriven case).

Boundary motions readily excite fast eigenmodes within a
few periods, where they subsequently store energy. Transient
boundary motions simply add more energy to the cavity where
the fast modes do not exhibit transient behavior: In the
absence of dissipation the amplitude of the fast mode will be
related to the time-integrated Poynting flux normal to the
boundary—thus discontinuities in Poynting flux do not
produce discontinuities in fast-mode amplitude. The steady
accumulation of fast-mode energy can be seen in Figure 6a.
The fast-mode amplitude within the cavity is so free from tran-
sients that it acts as a quasi-steady driver of Alfvén resonances;
we have found that the steady state scaling laws (with #)
provide a remarkably good description of the resonance.

For smaller # it takes longer for the ohmic heating at the
resonance to grow, and we can explain this in terms of the
phase mixing time—the time it takes Alfvén waves to develop
fine enough structure (i.e., large enough field-aligned currents)
to dissipate energy. We expect this time to scale as n'/3. We
have also given a physical interpretation to the importance of
fast or global modes for efficient coupling to resonances noted
in previous studies. The fast/global mode acts as an interme-
diary that communicates the boundary motion’s energy to the
location of the Alfvén resonance. In fact, we could view the
whole process as two resonances: the first is the resonant exci-
tation of a fast eigenmode by boundary motions; the second is
the Alfvén resonance driven by the fast eigenmode.

In future studies we shall apply the ideas developed in this
paper to resonance problems in magnetospheric and solar
theory. For example, it seems evident that the Kelvin-
Helmbholtz instability which has been invoked at the magneto-
pause in order to supply a steady harmonic driver of
geomagnetic pulsations is not essential: General, time-
dependent disturbances of the magnetopause can be filtered by
the magnetospheric cavity and thus produce a suitable driver
of pulsations. Coronal heating by resonant coupling to Alfvén
waves should be possible on closed field line structures that are
driven by quite random footpoint, or boundary, motions. Once
again the arcade or flux tube will filter the driving spectrum to
produce a fast-mode disturbance that will be suitable for estab-
lishing Alfvén resonances.

This work was carried out while A. N. W. was supported by
a UK PPARC Advanced Fellowship.
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