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Abstract A Hele-Shaw cell  can be used to explore a 
variety of phenomena that involve surface tension 
and viscosity simultaneously. Being  essentially two- 
dimensional the effects are easy to observe, and often 
simple to calculate apart from fine details. Waves 
growing exponentially on an unstable interface, and 
tear drops falling dowly down the cell, are interesting 
examples. 

1. A simple experiment 
Phenomena  that  involve  the  motion of the  surface 
of a  viscous liquid  under  the  combined  effects of 
surface  tension  and  slow  viscous flow are usually 
complicated  by  being  three-dimensional.  However, 
they  can  be  made effectively two-dimensional,  and 
hence  more  simply  calculated  and  easier  to  ob- 
serve,  by  the  use of a Hele-Shaw cell. In this 
arrangement  one views  a layer of liquid  sandwiched 
between two closely-spaced  parallel flat plates,  but 
in the  present  experiments,  unlike  the  original  ones 
(Hele-Shaw  1898a,  b),  the  liquid  only  partially fills 
the  space  available  to  it, so that  there is a free 
boundary. 

A typical  experiment,  using  oil  between  perspex 
plates,  is  shown  in  figure 1. The plates are vertical 
and in (a) the  liquid fills the  lower half of the cell, 
which is closed  and  approximately  square.  Because 
the  oil  wets  the  plates  the oil-air interface is to  a 
good  approximation a half-cylinder of diameter 
equal  to  the  gap  between  the  plates;  it  appears 
simply  as a very  narrow  horizontal  straight  band 
with  sharp  edges.  The  cell is now  rapidly  inverted. 
The  new  configuration ( b )  is in  statical  equilibrium 
(the  cell  being  airtight),  but  the  equilibrium is un- 
stable. If the  cell  is  wide  enough,  waves (c) develop 
at  the  interface,  they  grow  unstably ( d )  and  eventu- 
ally c f )  the  liquid  comes  to  rest  again filling the 

t Lean  and  Wright were undergraduates when  this  work 
was done and it formed part of their final  year project. 

R b m e  On peut utiliser  une  cellule de Hele-Shaw 
pour itudier un grand nombre de phtnomknes qui font 
simultankment intervenir capillariti et viscositi. Les 
effets concern&, du fait de leur caractkre bidimensional, 
sont faciles B observer et souvent simples B analyser 
mathimatiquement, au  moins  en premibre approxima- 
tion. Comme  exemples particulikrement intkressants, on 
peut citer des ondes B croissance exponentielle B un in- 
terface instable et des larmes tombant lentement vers  le 
bas de la  cellule. 

Figure 1 A closed  vertical  Hele-Shaw  cell is  half  filled 
with liquid ( a )  and then inverted ( b ) .  Instabilities de- 
velop at the interface, (c) and ( d ) ;  at a later stage drops 
fall from the upper edge ( e )  and eventually the original 
state is restored v). 
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lower half  of the cell. The experiment (which takes 
about five minutes with the cell described in section 
4) can now be  repeated. 

From the great variety of phenomena to be seen 
between stages (b) and c f )  we have selected  a few 
for  detailed  study.  Just  after inversion (c) the  inter- 
face 'line' is quasi-sinusoidal with a  measurable 
wavelength. In section 3 we calculate this 
wavelength and in section 4 we compare it  with 
observations. At a later stage (e) drops of liquid 
(A) drift slowly downwards. At first they are con- 
nected by long tails to  the thin horizontal thread of 
liquid that remains along the  top of the cell. If its 
tail breaks  before  a drop reaches the main body of 
the liquid below it, the  drop very rapidly becomes 
circular (B)  and  continues its descent. In sections 5 
and 6 we calculate the shape  and velocity of these 
tethered drops. On the assumption that  the fluid 
velocity is uniform within a tethered  drop  the 
theoretical shape is universal, being independent of 
all constants.  This is borne out by the observations 
to a good approximation. The observed rough uni- 
formity in the spacing of these tethered drops can 
be  explained (section 4) by considering their origin, 
for they arise from instabilities in the thin thread of 
liquid at the  top of the cell. 

The general  behaviour  between figure l(b) and 
l(e) is that areas of air ascend and  areas of fluid 
descend, changing their  shapes as they travel  but at 
first preserving their topology. The topology 
changes in two distinct ways: when two fluid areas 
touch they immediately merge, but when two areas 
of air come into contact  a liquid thread remains 
between  them (as in the  tether of a tethered  drop) 
which lasts for a comparatively long time,  thus 
temporarily preserving the topology. In the first 
case the cylindrical menisci meet with their concave 
sides facing one  another, while in the second they 
meet convex to convex. In this second case a  thin, 
narrow strip of film  is formed  perpendicular to  the 
plane of the cell, which  is a relatively stable ar- 
rangement.  Eventually, however, drainage  breaks 
the film, so that  the  thread suddenly disappears 
leaving a  little liquid on each  face of the cell. 

By turning the cell in a vertical plane other 
interesting configurations may be seen evolving, 
and by tilting the cell out of the vertical plane the 
effect of gravity can be continuously varied;  a vari- 
ety of static  interface  shapes can then  be  made that 
are governed simply by gravity and  surface tension 
(section 5). These include the two-dimensional 
analogue of the  pendant  drop shape much studied 
in three dimensions with cylindrical symmetry. 

An attractive feature of this kind of experiment 
is the ease with  which  it can be  done, once the cell 
is made,  and  the precision with which the interface 
can be observed. There is much more to see  (and 
calculate) than can be described here. A version of 
the cell made with three plates  and containing two 
independent  coloured liquids was bought in the 

USA by one of the  authors as an 'executive toy'. 
The traditional  Hele-Shaw cell has  arrangements 

for pumping the liquid between the plates  and is 
used as an analogue  for the three-dimensional flow 
of a fluid through  a  porous  medium; in both cases 
the velocity is proportional to  the gradient of a 
potential. In certain kinds of oil-well water is used 
to drive out  the oil from the porous  rock.  When the 
velocity of extraction is too high long tongues of 
water, analogous to  the tongues in figure l(d), 
penetrate  the oil and it emerges from the well 
mixed with water. Saffman and  Taylor (1958) and 
Chuoke et al  (1959) studied this in a Hele-Shaw 
cell and derived the condition for instabilities to 
develop  at the moving interface. The instability in 
figure l(c) is simply a special case where the origi- 
nal interface is stationary.  Various aspects of this 
fingering phenomenon in a  Hele-Shaw cell have 
been treated in subsequent  papers (Taylor and 
Saffman 1959, Pitts 1980, McLean and Saffman 
1981, Richardson 1972,  1981, Paterson 1981). If 
one of the plates of the cell is removed, so that  a 
thin sheet of fluid with a free surface now  flows 
over the remaining plate,  the problem becomes 
much more difficult; however, it  is interesting that 
the advancing edge of the fluid  can show similar 
unstable fingering (Huppert 1982). 

2. Basic equations 
The motions we study are so slow that inertia is 
negligible and there is quasi-static  equilibrium. The 
pressure drop as one crosses the interface into  the 
liquid will be taken as Y ( K ~ -  K ) ,  where y is the 
surface tension, K is the curvature as seen on the 
face of the cell (positive when the liquid is convex), 
and is the (much larger)  curvature in a  plane 
normal to  the cell walls. The curvature will be 
taken as constant,  but  for the theory that follows 
the value of the constant is not needed.  The simp- 
lest assumption,  for  a sufficiently small plate sep- 
aration b and  for  a liquid that wets the plates, 
would be  that K ~ =  2b"; but when the interface 
retreats it leaves a visible thin film of liquid on the 
plates, whose thickness must affect K g .  In the ex- 
periments reported  here we tried to wet the cell 
walls with a uniform film before  each  experiment. 
The assumption that K g  is constant  then proves 
adequate, but in more  accurate work it might be a 
source of difficulty, because I K " ~ > >   I K  I and so small 
proportional changes in could be large in abso- 
lute magnitude. 

The plane of the cell is supposed  tilted at a fixed 
angle p to the vertical. If  we define a  potential 

c # I = P + ~ ~ H + ~ K ~  
where P is the pressure, p is the density, g is the 
gravitational acceleration and H is the vertical 
height above  a fixed level, we have within the liquid 
the two-dimensional vector relation in the plane of 
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the  cell 

U = -a  grad 4. (1) 

Here U is the  velocity of the  liquid  averaged 
through  the  thickness of the  layer,  and a is a 
constant  equal  to b2/12q, where q is the viscosity 
(Lamb  1932).  Thus,  in  the  absence of gravity, U 
would  be  proportional  to  the  pressure  gradient. 

Assuming  incompressibility (div U = 0) it follows 
from  equation (1) that 4 is two-dimensionally  har- 
monic: 

v24 = 0. (2) 

3. The predominant  wavelength  at an unstable 
interface 
We  now  allow  the  straight  interface in figure  l(b) 
to  have a small  sinusoidal  perturbation  and  calcu- 
late  whether  the  amplitude  grows  or  diminishes. 
We  can  expect  that  surface  tension will tend  to 
stabilise  perturbations of very  small  wavelengths, 
whereas  those of very  large  wavelength,  although 
gravitationally  unstable, will only  be  able  to  grow 
very slowly because  the  slope of the  interface is 
small.  This  suggests,  as  we  now  calculate,  that  there 
will be  an  intermediate  wavelength  for which the 
perturbation will grow  at  the  fastest  rate,  and  this 
will be  the  wavelength  observed in experiments. 
We neglect  end effects, on  the  grounds  that  the cell 
is many  wavelengths  wide; a narrower cell requires 
a separate  analysis. 

Consider,  therefore,  to  start  with, a semi-infinite 
layer  and  take  axes Ox, Oy in the  plane of the cell, 
with 0 at  the  unperturbed  interface, Ox horizontal 
and Oy uphill. Let  the  (small)  deviation of the 
perturbed  interface  from Ox be 

f ( x ,  t )  = sen sin kx (3) 

E ,  r and k being  constants,  and t being  time,  with 
the  liquid lying above  the  curve. If we  take  the  air 
pressure  as  constant  and  use  this  as a pressure 
datum,  the pressu,re at a point  just  inside  the  liquid 
is Y ( K  - ~ ~ ) = y ( d - f / d x ' - ~ , , ) .  Hence, if the  datum 
height  for 4 is y = 0. 

d' f  
4 = Y 2 + P g y f  

(g, = g cos p ) .  To first order  this is also  the  value of 
4 on y = 0. At  y + m ,  where  there is no  distur- 
bance, 4 + 0. We shall  assume,  further,  that  the 
velocity of the  free  boundary is obtained simply by 
taking  the  normal  component of U at  the  boundary. 
This is an  approximation  because U is an  average 
velocity  through  the  thickness  derived on the  as- 
sumption of a parabolic  velocity  profile  between 
the  plates,  and  near  the  moving  boundary  the flow 
will not  be  like  this; in fact  its  details  are still not 
well understood.  With  this  approximation U,, the y 
component of the  velocity  at  the  boundary,  and 

therefore  at y = 0 to first order,  must satisfy U, = 
afldt. Hence,  from  equation (l), d+/dy = -a"df/dt. 

The solution of equation ( 2 )  that satisfies these 
conditions is, in  terms of a constant  wavenumber k, 
defined  by k i  = pg,/y, 

4 = sy  ( k i  - kz)en-ky  sin kx (4) 

with  the  rate  constant r that  appears in equation (3) 
given  by 

r = ayk(k:- k2). 

The  quantity k i '  is a capillary  length  appropriate 
to  the  angle  the  cell  makes with the  vertical.  For 
k > k, (small wavelengths) r is negative,  indicating 
exponential  damping  and  therefore  stability,  while 
for k < k, (large  wavelengths) r is positive  and  the 
disturbance is unstable, which is the  behaviour 
expected.  The  wave  that  grows  fastest  (maximum r )  
is that  for which  k = k,& a result  quoted by 
Saffman  and  Taylor  (1958,  p. 316) and  derived by 
Chouke et al (1959). 

If the  layer of liquid  does  not  extend  to infinity 
but is of finite  height h, the  boundary  condition is 
U, = 0 at y = h. The appropriate  solution, in place 
of equation (4), is then 

C$ = s y ( k g -  k2)e"(cosh ky -tanh  kh  sinh  ky)  sin kx 

with 

r = ayk(ki-  k2)  tanh  kh. (6) 

The  fastest  growing  wave  now  has  the  wavenumber 
K that satisfies the  transcendental  equation 

(k i -3KZ)s inh2hK+2hK(k~-K2)=0.  (7) 

As h + 0, K -+ k,/& while as  h -+m, K -+ ko/& 
as  previously  derived. These two  extreme  cases  are 
analogous  to  shallow  and  deep  water  dynamical 
waves,  respectively. 

4. Experimental tests of the predominant 
wavelength 
For  the  experiments a square-shaped cell 280mm X 
280mmx 1.4mm was half-filled with  oil (Shell 
'Turbo  T-25')  and  held vertically. The cell  walls 
were first evenly  wetted by very slowly turning  the 
cell in its own  plane,  and  then  the cell was  rapidly 
inverted  as in figures ] ( a )  and ( b ) .  Photographs 
(such  as  those in figure 2) typically showed  uneven 
wave  trains.  Their  crests  and  troughs  tended  to fall 
into a number of groups, so that  within  any  one 
group  they  were  rather  evenly  spaced,  but  the 
phase  jumped  between  groups (waves near  the  ends 
were  excluded  from  the  measurements).  It  was  as if 
wave  trains of limited  length  but  rather  definite 
wavelength  were  nucleated  at  different  places with 
no  particular  phase  relation  between  them. 
(Theoretically  the  spectrum  has a peak  at k = ko/& 
that  rises  exponentially  with  time  and a bandwidth 
that  decreases  as t"'2.) The  separate  groups of 
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waves were  used to estimate the predominant left  running  along the top edges of the cell). These 
wavelength: a total of 30 estimates from 12 photo- eventually develop into the roughly  equally  spaced 
graphs gave a wavelength A = 20.8+ 0.6 mm. This pendant tethered drops, figure 3(d), whose shape we 
compares with a theoretical value,  calculated  from examine in sections 5 and 6. It is evident that the 
the formula k = ko/& and measurements of the spacing of these drops is decided by the wavelength 
Laplace  length L = ( - y / ~ g ) ” ~  of A = 20.4* 1.3 mm. of the initial  instability. Whether it corresponds to 
The best way  of handling the data needs further k = k,/& has  still to be tested. 
study, but this  result  suggests that the theoretical Even when the cell  is  half full before inversion a 
factor l/& is correct to within 10%. A more series of roughly  uniformly  spaced pendant drops, 
detailed investigation  would measure the changing  originating in a residual  thin thread at the top of 
spectrum of the wave trains and compare it with the cell, is a notable feature of the final  stage 
the theoretical form. (figure l(e)) before all the liquid reaches the lower 

A test of the shallow  layer  case,  where theoreti- half of the cell. As mentioned earlier, if a vertical 
cally the predominant wave  has k = k,/&, could  be thread in figure l(e) breaks before the  drop itself 
made by observing a thin thread of liquid at the has reached the main  body of the liquid, the tear- 
very top of the cell  (figure 3(a)) .  Ripples can be shaped drop (like A) rapidly  becomes  circular  (like 
seen  developing in it, and  as  soon  as their amp- B) and continues to fall.  We  examine  both  kinds of 
litude grows to the height of the layer,  figure 3(b),  drop theoretically in the next section. 
the thread becomes a series of almost independent 
drops, figure 3(c)  (they are actually weakly con- 
nected by the two  very fine threads of liquid now 5. The shapes of falling  drops and static 

interfaces 
There is  an interesting family of interface curves 

Figure 2 (Below.) Two photographs of the  unstable that correspond to uniform  downward  velocity U in 
interface, with oil above  and  air  below.  The  vertical the fluid.  This  includes the family of purely static 
segments  at  the  extreme  right  and  left in each  picture shapes (u = o), the falling circular drops and, to a 
run down  the  edges of the cell. 

Figure 3 (Bottom.) A shallow  liquid  layer  at  the  top of In ‘gure 4 the fluid and the jnterface are as- 
the cell ( a )  is unstable ( b ) ,  but  produces  drops ( c )  and sumed to be moving downwards uniform1y with 
( d )  of fixed volume, which can  be  brought to rest by velocity U. The pressure, relative to the air Pressure, 
tilting  the cell to  reduce  the effect of gravity. at a point just inside the fluid  is P = ? ( K  - K ” ) ,  K 

being  positive  as  drawn. The potential 6, defined 
just as before, is at  this  point 6 = YK + pg,y and 
hence, in view  of equation (1) (and noting that 

good approximation, the falling tethered drops. 

U, = -U) 

u = ay-+apg,. 
dK 

dY 
(8) 

Figure 4 Coordinate  system. 

2 
\ t p%<- 

X- 
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Thus K is linear in y unless, exceptionally, v = apg,, 
in which case K is constant and  the interface is 
circular. It follows that circular drops of different 
radii all fall with the  same velocity apg, (provided 
their  perimeters  are stable). Excluding this case of 
circular drops, let us choose the origin for y so that 
K = 0 on y = 0. Then, by integration 

(wg, - U ) Y  = - a v  (9) 
an  equation, well known in static  surface  tension 
problems (e.g. Isenberg 1978), that describes a 
family of curves having curvatures  proportional to 
height. 

It is convenient to introduce as a scale length a 
velocity-dependent  Laplace  length 

1’ = l{apg,/(apg, - v)}112 

l = (ylpg,)”’ = &l. 

where 

Thus, in the static case U = 0, l ’  = l .  Then, writing 
X = x/ l ’  and  Y = y/l‘, equation (9) is simply 

Y = -dO/dS (10) 

where tan 8 = dY/dX  and S is the dimensionless 
distance along the curve.  Putting dS = dY/sin 8 this 
equation integrates to 

;y2 = C +COS e (11) 

in which the constant c determines the different 
members of the family of curves. Evidently c 2 - 1 .  
The most straightforward,  but crude, way of com- 
puting the curves is to  return  to equation (10) and 
use the finite difference equations 

AX= AS cos 8 
AY = AS sin 0 1 (12) 
A0 = - YAS. 

The integration is started at 6 = O  where,  from 
equation (ll), choosing the negative square  root, 
Y = -{2(c+ l)}”’. Put X =  0; then, taking equal 
steps AS, the values of 0 and hence of X and Y can 
be  computed in succession along the curve. A more 
accurate way of computing  a  representative section 
of the curve is to use 0 as a parameter,  to obtain 
Y(0)  from equation (ll),  and  to express X ( e )  as 
the integral 
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(where  Y < 0). However, the integrand is singular if 
the inflexion point 0 = cos”(-c) is encountered, 
and then it is better  to change  from 6 to  the 
alternative parameter $ = (c +COS 0)l” with 

( Y  < 0). This  integrand is singular at 8 = 0. Thus, by 
using either  form (13a) or (13b), a  complete sec- 
tion of the curve below the X axis can be covered 
without singularities. The integrals in equations 
(13) are also expressible in terms of elliptic inte- 
grals of the first and  second  kinds; Bakker (1928), 
Wolf (1959) and Princen (1969) give further  de- 
tails. 

Figure 5 shows how the  shape of the curve 
changes dramatically as c takes values from -1 to 
+m. For -1  <c < 1 there  are inflexions at  Y = 0 
with slope 6 = COS-~( -C) ,  and these are centres of 
symmetry. Note that  the liquid is,  by definition, 
always to  the left of the positive S direction. The 
case c = - 1 gives the straight line Y = 0, with 8 0 
(liquid above), which we have  already  found to  be 
unstable to long-wave perturbations.  As c increases 
the equilibrium curve  develops  meanders, until at 
c = co= 0.46237 corresponding to a  slope  at the 
inflexion of 8 = *117.540”, successive waves touch 
one another.  The part of this curve marked P in 
figure 5 corresponds to  the  tethered  drop  that we 
will consider in more detail in section 6 (the tether 
itself needs  a different treatment).  At larger values 
of c the curve crosses itself, but  at c = cl = 0.65223 
successive loops fall exactly on  top of one  another 
so that  the curve becomes closed. Successive ap- 
proximation is needed to find c,, and cl.  At c = 1 
(exactly) the distance  between successive loops  be- 
comes infinite, and, with our choice of X origin, the 
inflexion point, where the slope is now zero, is at 
infinity (an origin at the inflexion point would have 
given the obvious  straight line solution  Y = 0 with 
the liquid below). For 1 < c  <a there is no longer 
an inflexion and the curve has two independent 
branches. Finally, as c + m the curve becomes two 
small remote circles with centres  at heights Y = 
342~)”’ and of radius (2c)-”’. One circle repre- 
sents  a very small liquid drop and the  other a very 
small air  bubble. As static  shapes (v = 0) one is the 
inverse of the  other. But, if v = apg,, the length 
scale becomes infinite and we have the previously 
excluded case of the descending circular drop of 
indefinite size. A  corresponding ascending circular 
bubble  does not exist because it  is not compatible 
with uniform downward motion of the fluid. Thus, 
while downward moving drops  are circular, even 
when large,  and  have  a velocity independent of 
their  radius, upward moving bubbles are visibly 
non-circular and their velocity depends  on their 
size. The curves in figure 5 are called undulating 
elastica (c < l), separating elastica ( c  = 1) and  nodal 
elastica (c > 1). The undulating elastica is the locus 
of the  centre of a  hyperbola rolling on a  straight 
line, while the nodal elastica is the locus of the 
centre of an ellipse rolling on a  straight line 
(Greenhill 1892, Huh 1969). 

Because the curves for c >co cross themselves 
they  cannot  describe the boundary of a  semi- 
infinite portion of fluid. Nevertheless, parts of these 
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c >l C D 1  

-7 
Figure 5 The one-parameter family of curves  having curvature proportional to height. The successive  values of the 
parameter c are: -1. -0.5, 0, 0.25,  c,,=0.46237, 0.5, c l  =0.65223,  0.85, 1, 1.1, 1.6, 2, 5 .  The scale unit l ' ,  as 
shown in the first diagram, is the same throughout. 

curves  can  correspond  to  physical  configurations 
and  are  seen in experiments.  For  example,  the 
section  marked Q in  figure 5 (lower  left)  represents 
a pendant  bubble;  that is, a bubble of air  resting 
against  the  top  edge of a nearly  full  cell  (or,  alter- 
natively,  the  lower  side of a bubble of air  floating 
on  the  upper  free  surface of a part-filled cell). On 
the  other  hand,  the  mirror-image  sessile  drop  shape 
given by  the  lower  branch is not  realised in our 
experiments  because  the  liquid  wets  the  boundary 
of the cell. A triangular-shaped  portion of fluid  in 
an  upper  corner of the cell, such  as R, is another 
example. 

The  series of undulatory  shapes  with -1 < c  <co 
are  not  seen in experiments  as  the  lower  boundary 
of a semi-infinite  portion of fluid, presumably  be- 
cause  they  are  then  unstable.  This  can  be  under- 
stood  as  follows.  The  wavelength of the  static 
meanders,  when c just  exceeds -1, is 2 d ,  i.e. the 

wavenumber is l - ' ,  which  happens  to  be precisely 
equal  to  the  critical  wavenumber ko  that  we  found 
dividing  stable  from  unstable  sinusoidal  pertur- 
bations  (equation (5)). The  repeat  distances of the 
static  curves  with -1 < c  < c u  are all less  than 2 d .  
Consider  then a family of undulations of 
wavelength slightly  less than 2 d ,  of fixed phase  but 
of adjustable  amplitude A. The state A = 0 is in 
equilibrium  and  equation (5) shows  that it is stable 
with  respect  to  changes in A. However,  we  now 
know  that  two small values of A on  either  side of 
zero, in fact A = *l{2(c + l)}'", also give equilibrium 
(they  are  the  static  curve  just  described  for c near 
-1 and  its  mirror  image in y = 0). By continuity of 
the  potential  energy  curve  these  flanking  equilibria 
must  necessarily  be  unstable. As c + -1 from 
above  the  three  equilibria  approach  one  another 
and  the  potential  energy  curve  at A = 0 becomes 
quartic  rather  than  parabolic (as we  could  have 
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expected  from  the  earlier  perturbation  analysis). 
Although  these  shapes  with -1 < c  <co are  un- 

stable  when  taken  as  the  boundary of a semi- 
infinite  portion of the fluid,  they  can  nevertheless 
be  found  stably in static  experiments  by  starting 
with a shallow  layer  at  the  top  edge of the  cell  as in 
figure 3. After  stage 3(b) an  almost fixed volume is 
trapped in each  loop. If the  cell is now  tilted  to 
reduce  the  component of gravity,  an  angle  can  be 
found  at  which  the  drops  no  longer  grow.  The 
shape is then a part of one of the  statical  equilib- 
rium  curves  with -1 <c  <co. The fixing of the 
volume  evidently  stabilises  the  shape.  Boucher  and 
Jones (1983) have  discussed  the  closely-related 
problem of the  stability of two-dimensional  pen- 
dant  drops,  not in a Hele-Shaw  cell. 

6. Tethered drops 
The  tethered  drops in the  experiments  have a vari- 
ety of sizes,  but  the  analysis in section 5 shows  that, 
provided  the  assumption of uniform U is valid,  they 
all have  the  same  universal  shape,  namely  that fim 6 ( a ) .  Five SuPCrimPosed Photographs of 
corresponding to c = co (although  the  tether can tethered  drops of different sizes but with the  enlarge- 
have any length). This is possible because U enters ments  adjusted so that the images  coincide.  The  shape 

the length scale. To represent the size Of a drop let drop  compared with the  theoretical  shape  (crosses). 
us  choose  its  maximum  width W .  By calculation Width = s.2mm. 
W = 1.28591', and so from  the  definition of the 
length  scale I' we  find 

is independent of size. ( b ) ,  A photograph of a  tethered 

to  be  pulled  upwards.  In a cell of given tilt 6, falling 
tethered  drops  should all have  widths  greater  than 

An  experimental  test of equation (14) was  made 
as the  relation  between  velocity  and  size. Of by first measuring  the  velocity of free circular  drops 
course, a lower limit to  the  permissible W is set by in a vertical  cell. The  fact  that  the  drops  are  circu- 
the  separation of the  plates of the  cell. As W +m, lar, in spite of the  lack of symmetry  implied by 
U + apg", which we  have  already  noted  as  the  their  motion, is a sensitive  test of the  assumption 
velocity of circular  drops.  Thus,  as  the  tethered  that K~~ is constant.  The  velocity  measurements  gave 
drop  becomes  larger,  its  shape  stays  the  same  but apg, = apg = 3.38*0.06 mm S '. Then U was  plot- 
its  velocity  approaches  that of a circular  drop (of ted  against w . ~ '  for  tethered  drops.  Most of the 
any  size).  However,  this  result  must  be  qualified by velocities of the  tethered  drops  were  within  about 
remarking  that  the  results of section 3, when  ex- 2% of those  expected  from  equation (14), but a few 
tended  to U # 0, suggest  that  above a certain  size  moved 20-30% faster.  After  the oil has  reached 
the  shape of a tethered  drop will be  unstable  to  the  bottom of the cell  (figure l(a)) a thin film of oil 
small  perturbations.  remains  on  the walls and  the visible unevennesses 

( W l ' )  (l4) that  given by equation (16). 
U = apgs 1 - 1.6536 7 

To study  the effect of tilting  the  cell  through  an 
angle /3 to  the vertical  we  write  equation (14) in 
terms of the  unmodified  Laplace  length L = 
(-Y/PP)"~, thus 

U = U ~ ~ ( C O S  p - 1.6536LZ/w2). (15) 

This  shows  that a tethered  drop of given W can  be 
brought  to  rest by making /3 such  that 

L2 
COS 0 = 1.6536 7 .  (16) 

W 

In  this  state  the  component  down  the  slope of the 
weight of the  drop is just  balanced  by  the  surface 
tension of the  tether.  Further  tilting  causes  the  drop 

in its  thickness  are  observed  to affect the  course of 
the  later  sequence (figures l(b)-(f)). This,  and  un- 
wanted  variations in the  spacing  between  the cell 
walls, are  probably  the  cause of the  deviant  results. 

Photographs of falling  tethered  drops  showed 
that,  although  their  shapes  were  very  close  to  the 
calculated  one,  nevertheless  there  were  small sys- 
tematic  deviations.  The  angle 8 at the inflexion was 
systematically  high,  between 120" and 124" com- 
pared  with  the  theoretical  value of 117.540". The 
explanation is almost  certainly in the  assumption 
that U is uniform  within  the  falling  drop.  This 
ignores  the  small  amount of fluid left  behind in the 
tether  as  the  drop  descends,  which  must  mean  that 
U changes  rapidly  from  the  bulk  value  to  nearly 
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zero  over a small  distance  near  the  neck of the 
drop. 

However,  the  shape  analysis  ought  to  apply  very 
accurately if a drop is brought  to  rest by tilting  the 
cell.  Figure  6(a)  shows five superimposed  photo- 
graphs of stationary  tethered  drops  with  widths 
ranging  from 5.2 to  6.8mm,  the  enlargements 
being  adjusted  for  the  best  registration;  the  shapes 
are  indistinguishable  from  each  other,  as  predicted. 
Figure  6(b)  compares  the  shape of one of these 
with  the  theoretical  curve. The fit is excellent,  even 
at  the  top  where  the  apparent  slight  discrepancy is 
caused by the  fainter  part of the  inside of the 
meniscus  not  being  reproduced  in  the  printing.  Full 
accounts of the  experiments  are  given by Lean 
(1983)  and  Wright  (1983). 
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