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MHD WAVE COUPLING IN INHOMOGENEOUS MEDIA 
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Abstract. The coupling of different MHD waves is impor- 
tant for an understanding of laboratory, space, and solar 
plasmas. In this paper we investigate fast and Alfv6n mode 
coupling in the cold plasma limi.t. The medium is assumed 
to have an invariant direction (e.g., slab or axisymmet- 
ric models) and carries an arbitrary solenoidal background 
magnetic field. Wave fields are Fourier analysed with wave 
number k a in the invariant direction. The coupled lin- 
earised wave fields are then expanded in a power series (of 
ka) to yield a decoupled hierarchy of inhomogeneous wave 
equations. The higher order terms in the series represent 
wave coupling phenomena such as the resonant excitation 
of Alfv6n waves, and the damping of a magnetospheric cav- 
ity mode. 

Introduction 

The basic behaviour of many space plasma phenomena 
can be understood in terms of MHD waves. For example, 
long period geomagnetic pulsations have been described in 
terms resonant Alfv6n wave excitation /Southwood, 1974; 
Chen and Hasegawa, 1974], and jovian magnetic field fluc- 
tuations have been interpreted as both fast and Alfv4n 
modes /Glassmeier et al., 1989]. Detailed modelling of 
MHD wave phenomena has been retricted in one way or 
another to date: Some models are analytical, but employ 
highly idealised media which yield seperable solutions of 
ordinary differential equations. Other models use realis- 
tic magnetic geometries, but impose a time dependence 
e iwt [Inhester, 1986; Chen and Cowley, 1989; Mond et 
al., 1990]. The more general studies (with arbitrary time- 
dependence and/or realistic magnetic field geometry) tend 
to be numerical [Allan et al., 1987; Inhester, 1987; Lee and 
Lysak, 1991]. 

One direction in which it would be desirable to develop 
modelling would be to consider time-dependent solutions 
of the cold plasma equations in general curl-free magnetic 
fields analytically. Such a calculation is presented briefly 
in the letter. Naturally, we must impose some simplifica- 
tions to achieve this goal: We require that the medium is 
invariant in one direction perpendicular to the background 
magnetic field (say,/•) and that all perturbations have an 
implicit dependence of exp(ikafi ). 
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Coupled Linear Equations 

The governing equations are linearised and written out in 
terms of field aligned spatial coordinates (c•,/3,-/) [Singer et 
al., 1981; Southwood and Hughes, 1983; Wright and Smith, 
1990]. The curl-free background magnetic field B lies par- 
allel to the ff direction everywhere, while /• is aligned 
with the invariant direction perpendicular to B. The right 
handed coordinate system is completed by &. (In an ax- 
isymmetric magnetosphere c• could be the L-shell parame- 
ter.) Such a coordinate system introduces a set of geomet- 
rical scale factors {ha, h a, h, which describe the magnetic 
field geometry [Davis and Snider, 1979]. A physical inter- 
pretation of the factors can be gleaned by •realising that a 
real space element dr is equal to &h•da + 
The explicit form of these scale factors for a three dimen- 
sional diople magnetic field is well known/C hen and Cow- 
ley, 1989; Wright, 1990a; and references therein]. The gov- 
erning linearised equations may be written• in terms of the 
perturbation plasma displacement 

(1) 

) DA(•a) ----- -ika both a ' O--• k ha ' •a 
(2) 

The fast mode wave operator DF and the Alfv6n mode 
wave operator DA are defined to be 

Evidently, when 0/0/3 = 0 (i.e. k a = 0) we have decoupled 
fast waves (the • wave field) and Alfv6n waves (the •a 
wave field)[Dungey, 19541. 

The linearised equations above retain the leading order 
terms (of order e, say) but neglect the second order terms 
(of order e2). The equations, as they stand above (when 
k a =fi 0), represent a coupled set of equations which are 
formidable to solve in general. Considerable simplification 
results if we employ the quantity k a as a second expan- 
sion parameter with which to expand the first order (in e) 
perturbations, 
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= + + + ... 
(4) 

(All quantities are dimensionless; both • and k• have been 
normalised relative to some appropriate background scale 
length.) The series in (4) can be taken up to an order 
n = Iln(e)/ln(k•) I before we need to include the nonlin- 
ear terms neglected i•n the initial linearisation (i.e., where 
k• -,• e). For the remainder of this paper we shall focus 
upon the first few terms in this series, and assume that 
Iln(e)/ln(k•) I > 3. 

Decoupled Hierarchy of Equations 

The highly coupled system of equations (1) and (2) is 
transformed by the series solution (4) in to a decoupled 
hierarchy of equations. Each equation in this hierarchy is 
of a relatively simple form, namely that of a driven wave 
equation. 

Zeroth Order Solution 

The lowest order (in k•) of equations (1) and (2) are 
simply the homogeneous wave equations 

Dr(½(• ø)) = 0; DA(½(a 0)) = 0 (,5) 

Thus, to lowest order, the solutions for the fast (•) and 
Alfv•n (•) waves are decoupled. 

If we are interested in the existence of fast modes in 

the terrestrial magnetos. phere, to lowest order, we simply 
solve Dr(•(• ø)): 0 with the appropriate boundary condi- 
tions. For example, a Kelvin-Helmholtz source at the mag- 
netopause would produce a •(•6) that was spatially evanes- 
cent and temporally os. cillatory. It is also relatively easy 
to solve for the magnetospherid cavity modes discussed by 
Kivelson and Southwood [1985]. Alternatively, a fast mode 
could be excited by thd collision of a dense plasma cloud 
with the magnetopause, or the motion of reconnected flux 
along the magnetopause. Once suitable boundary condi- 
tions have been prescribed the homogenous wave equation 
can be solved. 

The lowest order Alfvdn solution satisfies the homoge- 
nons wave equation Da(• (ø)) = 0. Once again it is a matter 
of defining boundary conditions to permit us to describe 
a variety of Alfvdn waves from those excited by Io [Smith 
and Wright, 1989] to the large scale current system associ- 
ated with the acceleration of torus plasma [Glassmeier et 
al., 1989]. 

Decoupled calcula..tions may provide much insight into 
the behaviour of a system and can often represent the low- 
est order solution. However, in most non-trivial systems 
wave coupling is an inevitable and important property 
[Cross, 1988; Wright, 1990a; Wright, 1990b; Wright and 
Evans, 1991] and provides the motivation for the present 
study. We can see below that the first order solutions 

(k•(• •), k•(• •)) are a correction to the deconpled solutions, 
and represent the effect of wave coupling. 

First Order Solution 

The first order (in k•) terms of the coupled equations (1) 
and (2) give us the next two equations in the decoupled 
hierarchy 

0 Dr(½(•')) =-i•-•a •, h• 
DA(•2 )) = -i h.• . • (•;O)heB) (7) h•h• Oa 

The inhomogeneous wave equations above demonstrate 
clearly how an mfvn wve win couple to a fast mode 
(•(•)), and how the fast mode (•(•0)) will drive an Alfvdn 
wave response 

The driven A•fv•n fields ((2)) could represent a mag- 
netic pulsation. Indeed, our formulation can be shown to 
exhibit the •resonant' coupling familiar in simpler geome- 
tries. First, we need to consider the normal Alfvdn modes 
of the operator Da. For perfectly conducting massive lono- 
spheres we have a Sturm-Liouville problem. Each field line 
(a) has a set of normal modes {½•n(a, 7)} which oscillate at 
their natural frequencies {w•n(a)} respectively. It is well 
known that on any given field line two different modes are 
orthogonal [Morse and Feshbach, 1953] 

77:(a) B 2 (8) 

(The ends of the field lines are at 7•(a) and %(c0. ) The 
modes are also complete, in the sense that we may write 
an arbitrary disturbance as a sum over the modes weighted 
with appropriate coefficients {a(•,)(a,t)} [Chen and Cow- 
ley, 1989; Wright and Smith, 1990], for example, 

The evolution of any coefficient ' 0) ta•,) can be found by sub- 
stituting (9) into (7) and employing the orthogonality prop- 
erty (8). (This technique is familiar in quantum mechanics 
where it is known as 'time-dependent perturbation theory' 
[Schiff, 19681.) 

dt 2 
: 0) i/72(a) Bh• , 0 • + w•,•a•,• = s?,(a} h• • • (h•B•(•ø)) d? (10) 

If •(•0) has an oscillatory behaviour (at frequency w•), 
then we may represent the r.h.s of (10) by the driver 
C,(•(a)exp(iw•t). On field lines where w• is equal to a 
natural Alfvdn frequency (say, w•,(ar) = -Fw•) the res- 
onant coefficient grows secularly and is dominated by a 
term like 

a(•i,.)(o,. t) = -C•(?(c•r)t . e iw'•' (11) ' 2t.•ot 

In fact it can be shown that the width of the peak in a(•Z? 
is proportional to 1It so that the resonant response can 
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be approximated as a delta function at the resonant field 
lines ar [Wright, 1992a]. (cf. the peak in the distribution 
function during Landau damping.) 

At first sight it would appear that the secular nature 
of the solution in (11) yields an unbounded and badly- 
behaved solution. This is not the case since the response 
around a resonant layer is like a delta function and inte- 
grates to give a finite energy and a finite driving term in 
higher order equations [Wright, 1992a]. 

It is noteworthy that the amplitude of the resonant 
Alfv•n fields is proportional to the 'coupling coefficient' 
C?o ). This coefficient is proportional to the overlap inte- 
gral in (10) which represents how effectively the fast mode 
disturbance •(•0) can drive the Alfv•n fields kga(•,)•g, (el. 
Southwood and Kivelson [1986]). 

Equation (10) may also be solved for the near-resonant 
field lines close to the sheet a = at. In this case the familiar 
off-resonance behaviour is found 

(12) 

The resonance becomes infinitely narrow for a steady driver 
e iw"t. The eigenfrequencies w•r(c•) of the resonant and 
near-resonant modes are assumed to vary smoothly across 
the resonant layer, and may be expanded according to 

= + (13) 

where the prime denotes differentiation with respect to 
c•. The/3 component of the magnetic field perturbation 
around the resonance is given by the time-integrated in- 
duction equation, 

b• = F(a, 7)' (14) 
C• -- C•r 

-c5)(.) o 
v) = (15) 

A self-consitent ordering of perturbations requires that V- 
b = 0 is satisfied to lowest order by the two transverse 
components of the magnetic field. (cf. then and Cowley 
[1989]). Although the b• component is strictly a second 
order quantity (in k•), it may be infered from integrating 
V. b = 0 across the resonant layer 

= h13h.• f b13h,,h.•da 
Expanding the function F(a, 7) as a Taylor series around 
c• = c•r, we may integrate (16) to find the leading behaviour 
of b,•. 

b,• = ik•eiW"'F(ar, 7)' ln(a - (18) 

It is well-known that 'box' model magnetospheres have a 
logarithmic singularity under steady excitation. The anal- 
ysis above shows that this is also true in more realistic 
geometries, and is a generalisation of earlier calculations. 

Second Order Solution 

The decoupled hierarchy can be solved as far as is nec- 
essary (up to order I this letter we 
shall only consider one more order. The second order cor- 
rections to the fast and Alfv4n fields are the solutions of 

the driven wave equations 

• •,-•-• (19) 
B h.• -(o) 0 (20) 

The first order solutions deriv• in the previous subsec- 
tion act as drivers in the inhomogeneous wave equations 
governing the second order solutions. 

Discussion 

It is interesting to apply our formulation to the damped 
cavity mode model of magnetic pulsations suggested by 
Kivelson and Southwood [1985], and modelled quantita- 
tively by Zhu and Kivelson [1988]. In the cavity mode 
model the fast mode is damped as it loses energy to the 
Alfv&n resonance. The damping rates have been calculated 
explicitly in simple geometries by Zhu and Kivelson [1988], 
and are typically two orders of magnitude smaller than the 
oscillatory frequency. 

In our series solution (4), we would represent the (fast) 
cavity mode to lowest order by •(•0). Employing the usual 
boundary conditions of perfectly reflecting ionosphere, 
plasmapause and magnetopause we solve the fast mode 
equation (5) to find that •(•0)is a fast eigenmode which os- 
cillates at it's natural eigenfrequency. (In general •(•0) will 
be a sum of several eigenfunctions [Lee and Lysak, 1991].) 
We shall focus upon a single eigenmode here - say, •c(C•, 7) 
with natural frequency w,,c. Note that to lowest order there 
is no damping present (•(•0) oc •exp(iw•t)). We shall as- 
sume that there are no lowest order Alfv&n fields and set 

= o. , 
The principal first order effect of the oscillatory fast mode 

•o) will be to drive an Alfv•n resonance on a specific sheet 
of field lines (at) where w•r(ar) = q-w•, as described 
above. We also reasoned that the Alfv•n fields could be 

approximated in the form (cf. Southwood and Kivelson 
[1986], Wright [1992a1) 

(21) 

There is no driving term for the first order fast mode •(•), 
and accordingly we set •(•) = 0. Note that to first order 
there is still no evidence of cavity mode damping. 

Now consider the second order solutions (•(•2), •(2)). Since 
•(•) = •(•0) = 0 there is no driving term in the wave equation 
for •?), (20), and we may set •?) = 0. However, the •(•) 
solution (21) will act as a driver for the •(•2) equation (19). 
Moreover, since •(•) was excited resonantly it will oscillate 
at a frequency w•c- see (11) and (21). Thus the wave equa- 
tion (19) will be driven at one of its natural frequencies, 
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and yield a secular solution for •(,2). The second order es- 
t.2 •(2) • will timate of the fast mode wave field (•. = •(•) q- •Ss. J 

represent a damped oscillatory fast cavity mode. 

Conclusions 

We have presented some new techniques for modelling 
MHD wave coupling in a cold inhomogeneous magneto- 
plasma. By employing the wavenumber k s as an expan- 
sion parameter we are able to transform the coupled wave 
equations into a hierarchy of decoupled equations. The for- 
mulation has the advantage that we are able to solve the 
resulting inhomogeneous wave equations in an arbitrary ge- 
ometry and with unspecified time-dependence. The zeroth 
order (in ks) solutions represent decoupled fast and Alfvdn 
solutions. The first order terms introduce corrections that 
describe wave coupling effects (such as the excitation of 
resonant Alfv•n waves). The second order corrections de- 
scribe higher order coupling effects, such as the damping 
of a cavity mode following the excitation of an Alfv•n res- 
onance. Future calculations will investigate the Alfv6n re- 
sponse (solutions of (7) and (10)) to a variety of fast waves 
[Wright, 1992b], and will also consider the damping of cav- 
ity modes in realistic geometries [Wright, 1992a]. 
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