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[1] The auroral downward field-aligned current is mainly carried by electrons accelerated
up from the ionosphere into the magnetosphere along magnetic field lines. Current
densities are typically of the order of a few m Am�2, and the associated electrons are
accelerated to energies of several hundred eV up to a few keV. This downward current has
been modeled by Temerin and Carlson (1998) using an electron fluid. This paper
extends that model by describing the electron populations via distribution functions
and modeling all of the F region. We assume a given ion density profile, and invoke quasi-
neutrality to solve for the potential along the field line. Several important locations and
quantities emerge from this model: the ionospheric trapping point, below which the
ionospheric population is trapped by an ambipolar electric field; the location of maximum
Ek, of the order of a few mVm�1, which lies earthward of the B/n peak; the acceleration
region, located around the B/n peak, which normally extends between altitudes of 500
and 3000 km; and the total potential increase along the field line, of the order of a few
hundred V up to several kV. The B/n peak is found to be the central factor determining the
altitude and magnitude of the accelerating potential required. Indeed, the total potential
drop is found to depend solely on the equilibrium properties in the immediate vicinity of
the B/n peak.
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1. Introduction

[2] Field-aligned currents (FACs) are a common feature
of space plasmas, their main role being to couple two
different regions of plasma by carrying current between
them along magnetic field lines. In the Jovian system, FACs
couple Jupiter with Io and the Jovian magnetodisc. FACs
also flow along Earth’s auroral magnetic field lines, cou-
pling the cold, dense ionosphere with the hot, tenuous
magnetosphere. Upward FACs are carried by accelerated
downflowing electron beams, and interest in these currents
was originally piqued by their remarkable visible manifes-
tation, the aurora. The FACs flowing around the Earth are
easily observable, and give us insight into basic plasma
processes such as particle energization and instabilities.
There have been many observations of the downflowing
electron beams supported by large inverted-V converging
electric field structures. Until recently, however, there had
only been sporadic evidence for the existence of upflowing
electron beams by satellites and rockets including Viking
and FREJA [Marklund et al., 1994]. In 1996, the Fast
Auroral SnapshoT (FAST) satellite was launched, and it
has proved to be very successful in identifying downward
current regions. The diverging electric field structures and
upflowing electron beams associated with the downward
current region tend to exist at the edge of upward current
regions, and are much narrower in latitude. FAST’s im-

proved time resolution and continuous observance of all
pitch angles have enabled observers to analyze these
regions, and data have shown that upflowing electron beams
occur just as frequently as their downward counterparts.
[3] Studies of FAST observations of the downward cur-

rent region by Carlson et al. [1998], Ergun et al. [1998] and
Elphic et al. [2000] all indicate correlated increases in
electron energy and potential (inferred from

R
E� ds), which

suggest stability of the potential structures at least on the
electron acceleration timescale. These results support the
theory that the electrons are energized by quasi-static
parallel potential structures, and we have used this idea to
formulate a simple overview of the main features of the
downward current region. The observational studies, in-
cluding Andersson et al. [2002], also indicate that many
complex and small-scale features may sometimes occur in
this region: the narrow accelerating potential may extend for
�10 Debye lengths, followed by a similarly small region
where the accelerated beam can be observed. This beam is
unstable, and is rapidly stabilized thereafter by strong wave
turbulence and electron phase-space holes. Also, although
one might expect ions to be accelerated downward by this
electric field structure, observations point to the existence of
ion conics earthward of the potential structure, which are
trapped between their mirror point and this potential.
Statistical studies of the downward current region reveal
that the upward beams occur most often in the winter
hemisphere, pointing to the ion scale height and number
density as the key factors determining the nature of the
required acceleration [Cattell et al., 2004].
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[4] The single fluid Magnetohydrodynamic (MHD)
approximation, successful in many applications related to
large-scale current systems, is not suitable for modeling all
aspects of FACs since this limit neglects electron mass
compared with that of the ions. FACs are mainly carried by
electrons accelerated to energies of �keV: MHD cannot
describe the nature of this energization since massless
electrons are infinitely mobile and move to wherever they
are needed to carry any required current. Hence another
approach is needed. Quasi-neutrality has been a primary
modeling constraint for some time: Chiu and Schultz [1978]
and Stern [1981] both considered the generation of parallel
electric fields along an auroral field line embedded in a cold,
dense ionosphere near the Earth, and a hot, tenuous mag-
netosphere further away. Chiu and Schultz [1978] examined
upward currents, and found potential differences of the
order of 1 kV; in their examples, Ek maximized at an
altitude of 2000–2500 km and extended to �1 RE. Stern’s
[1981] model produced double layers (discontinuities which
can evolve due to the different plasma properties of the
ionosphere and magnetosphere) for equilibria and upward
and downward currents. More recently, Ergun et al. [2000],
Rönnmark [2002], Vedin and Rönnmark [2004] and Wright
and Hood [2003] have all modeled the upward current
region.
[5] Less attention has focused on modeling the downward

current region. Temerin and Carlson [1998] present an
ionospheric electron fluid model with fixed ion density,
using quasi-neutrality to constrain the solution and obtain
the required parallel potential drop. They obtain parallel
potential drops of several kV for current densities of a few m
Am�2. Jasperse [1998] uses a Vlasov model incorporating
ion heating and wave effects, which explains the production
of upward field-aligned electron beams, downward pointing
parallel electric fields and ion conics.
[6] The model presented here extends the work of

Temerin and Carlson [1998] via the use of electron distri-
bution functions. We also model the entire F region,
enabling us to predict the height at which the beam emerges
from the ionosphere, and the extent of the energization
region.

2. Model

[7] Following the approach ofWright and Hood [2003] in
their model of the upward current region, we consider a
one-dimensional Vlasov model of the motion of upward
accelerated electrons on an auroral field line within a few RE

of the Earth. We find the steady solution for the downward
current region by setting @/@t = 0, and model the equilib-
rium magnetic field, B, as being locally dipolar in the
acceleration region, giving

B ¼ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 sin2 q

p
cos6 q

; ð1Þ

where B0 is a constant, q is the latitude, and

r ¼ LRE cos
2 q; ð2Þ

where r is the radial distance to a point on the field line. L is
taken to be 10, giving an invariant latitude of 71.6� as the

field line enters the ionosphere. The arc length element
along B, d‘, is given by

d‘ ¼ dq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ dr

dq

� �2
s

ð3Þ

[8] Using equations (3) and (2), we can see that the length
along the field line, ‘, which increases on approaching the
ionosphere, is given by

‘ ¼
Z q

0

LRE cos q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 sin2 q

p
; ð4Þ

which can be solved to give

‘ ¼ LRE

2
ffiffiffi
3

p 1

2
sinh 2 sinh�1

ffiffiffi
3

p
sin q

� 	� 	
þ sinh�1

ffiffiffi
3

p
sin q

� 	� �
ð5Þ

[9] This model extends from a distant point in the
magnetosphere, ‘0, whose exact location is not important,
to the base of the F region, ‘m, taken to be at a radial
distance of 1 RE. We model the acceleration region as
having a dipole magnetic geometry, however, it is not
necessary that the field line remains dipolar beyond this
region. We impose a fixed ion density profile along the field
line. Obviously, potential variation along the field line will
affect the ions as well as the electrons; however, the ions are
much heavier than the electrons, so we assume that their
reaction is negligible, giving a short-timescale solution to
the problem. We use an exponentially decaying number
density of the form

n ¼ n0 þ nm � n0ð Þ exp � r � RE

h


 �
; ð6Þ

where nm and n0 are the ion number densities at ‘m and ‘0
respectively, and h is the ion scale height. Assuming that the
ions are singly charged and the plasma quasi-neutral,
equation (6) also gives the total number density of the
electron populations.
[10] In this paper, we take B0 = 25 nT, giving B in the

ionosphere of 5 
 104 nT, n0 = 106 m�3, nm = 1012 m�3,
and h = 100 km, unless stated otherwise. We show the
variation of B/n with s in Figure 1, which has the charac-
teristic single peak at an altitude of 1720 km, where s is the
field-aligned coordinate measured from the ionospheric end
given by s = ‘m � ‘. Thus s = 0 at the base of the F region
and increases with altitude.
[11] Following Wright and Hood [2003], we model the

ionospheric electron population via a gyro-averaged distri-
bution function fI(‘, vk, v?, t), where vk and v? are the
parallel and perpendicular components of the electron
velocity, and t is time. This distribution function satisfies
the general guiding center gyrotropic Vlasov equation,

@f

@t
þ @f

@‘

d‘

dt
þ @f

@vk

dvk

dt
þ @f

@v?

dv?

dt
¼ 0 ð7Þ

and we assume that the magnetic moment, m = mv?
2 /2B, is

conserved on an electron trajectory. We seek a solution of
the form

fI ¼ F ‘; vk; v?; t
� 

g mð Þ ð8Þ
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where g(m) is an arbitrary function of m. Since fI and m are
both conserved on an electron trajectory, we can deduce that
F is also conserved on an electron trajectory. Following
Wright and Hood [2003], we substitute equation (8) into
equation (7), using m invariance and noting that m(dvk/dt) =
�eEk � m(@B/@‘), and find that

0 ¼ g mð Þ @F

@t
þ vk

@F

@‘
�

eEk

m
þ v2?
2B

@B

@‘

� �
@F

@vk

�
þ

vkv?

2B

@B

@‘

@F

@v?

�
ð9Þ

[12] We take g(m) = (m/p�m)d(m/�m), where d is a standard
delta function, and �m is a normalizing constant, to focus on
field-aligned motion since observations and m conservation
both give a highly collimated electron beam. We can
integrate g(m) over v? space by multiplying by 2pv?dv?,
and integrating from 0 < v? < 1 as follows:

Z 1

0

g mð Þ2pv?dv? ¼
Z 1

0

m

p�m
d

m
�m

� �
2pv?dv?

¼
Z 1

0

2Bd
m
�m

� �
d

m
�m

� �
¼ B ð10Þ

[13] Using this result, we integrate equation (9) over v?
space in the same way to give

B
@F

@t
þ vkB

@F

@‘
�
eEkB

m

@F

@vk
¼ 0 ð11Þ

and F = F(‘, vk, v? = 0, t). F serves as a simplified
distribution function for the ionospheric electrons and has
units of m�4sT�1. Equation (11) shows how our assumption
of small m (implicit in the choice of g) means the mirror
force is not important for the ionospheric electrons. In
equation (9), the coefficient of @F/@vk represents the
parallel components of the E and �mrB forces. The latter
is absent in equation (11). We assume steady fields, and thus

describe the electric field in terms of f, where E = �rf,
giving

Ek ¼ � @f
@‘

ð12Þ

[14] The magnetospheric electrons are assumed to be
perfectly trapped, and are described separately via an
isotropic Maxwellian distribution function given by

fM ¼ nM
m

2pkT

� 	3
2

exp � 1

kT

m

2
v2k þ v2?

� 	
� ef

� 	� �
ð13Þ

where nM is the Maxwellian electron number density at ‘0,
kT is the magnetospheric electron thermal energy and f is
the potential variation along the field line between ‘0 and ‘.
Thus f(‘0) = 0 and we denote f(‘m) = fm.
[15] We obtain the following expressions for the electron

number density (n) and field-aligned current (j) by integrat-
ing the total distribution function f = fI + fM over perpen-
dicular and parallel velocity space:

n ‘ð Þ
B ‘ð Þ ¼

Z 1

�1
F ‘; vk
� 

dvk þ
nM

B ‘ð Þ exp
ef
kT


 �
ð14Þ

j ‘ð Þ
B ‘ð Þ ¼ �e

Z 1

�1
vkF ‘; vk

� 
dvk ð15Þ

3. Downward Current Solution

3.1. Model Overview

[16] We begin by giving a basic overview of the model
and important locations which arise from it, to orientate the
reader through the calculations which follow. Figure 2
shows the setup of the model, and the important locations

Figure 1. The variation of B/n, normalized by B0/n0, along
an L = 10 field line. The path length is measured from the
base of the F-region (s = ‘m � ‘). The B/n peak occurs at
s/RE = 0.271.

Figure 2. Diagram showing three electron populations:
mirroring magnetospheric electrons, ionospheric electrons
trapped by a small ambipolar electric field, and the beam.
This diagram is not to scale; the magnetospheric population
is much more energetic (�1 keV) than that in the ionosphere
(�1 eV). Key locations in the model are: ‘m, the base of the
F region; ‘c, the ionospheric trapping point; ‘e, the point
where Ek has its largest amplitude; ‘p, the location of the B/n
peak; and ‘0, a distant reference point in the magnetosphere.
This figure is for the Northern Hemisphere.
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along the flux tube calculated from the model. We consider
a converging flux tube, where ‘m is the point at the base of
the ionospheric F region and ‘0 is a distant point in the
magnetosphere whose exact location is not important. We
take the magnetic field and ion number density profiles
given in equations (1) and (6) respectively, where we are
free to choose B0, n0, nm and h, and define the antiearth-
ward electron populations at ‘m and the earthward popula-
tion at ‘0. The flux tube naturally divides into two regions
separated by ‘c, the ionospheric electron trapping point
contained within the F region. The ionospheric electron
population is mostly trapped earthward of ‘c, in the region
‘c < ‘ < ‘m since the solution to the Vlasov equation
produces a small ambipolar potential in this region. A
small beam of the most energetic ionospheric electrons,
although slowed by this ambipolar electric field, manages
to escape into the magnetosphere. It penetrates the mag-
netospheric electron population, taken to be a mirroring
Maxwellian, in the region ‘0 < ‘ < ‘c, where it is energized
to carry the required downward current. Following Temerin
and Carlson [1998], we assume that a negligible fraction
of the Maxwellian magnetospheric electrons penetrates
beyond ‘c, and that the contribution of these electrons to
the current is also negligible (see Appendix B). The B/n
peak is located at ‘p and is determined by the equilibrium
model, and ‘e, the point where Ek maximizes, is found to be
located earthward of this peak, within three density scale
heights.

3.2. Boundary Conditions and Constraints

[17] We impose an ionospheric boundary condition
on F(‘, vk) at ‘m: we take a top-hat distribution such that
F(‘m, vk) = F1, �am � e � vk � am, where am corresponds
to the ionospheric electron distribution thermal velocity
width. The section �am � vk � am corresponds to the
trapped ionospheric population, and the component given
by �am � e � vk < �am forms the current-carrying beam.
We also impose a magnetospheric boundary condition such
that f = F2 at ‘0 for the mirroring Maxwellian population.
[18] Although the F region of the ionosphere defined in

terms of ion density extends well above ‘c, this location is a
natural mathematical dividing line in our model between the
trapped ionospheric population and the mirroring Maxwel-
lian where solutions must be matched, so we refer to the
region ‘c < ‘ < ‘m as the ‘‘ionosphere,’’ and ‘0 < ‘ < ‘c as the
‘‘magnetosphere.’’
[19] We assume that the ion profile remains unchanged in

time, and we keep the plasma quasi-neutral by equating the
total electron number density to that of the ions, given in
equation (6). We also impose current continuity on the
model, i.e., r � j = 0, which can be expressed as

j ‘ð Þ
B ‘ð Þ ¼

jm

Bm

ð16Þ

where jm and Bm are the current density and magnetic field
strength at ‘m. Hence B/n / the mean electron drift speed
[Swift, 1975], giving a measure of the electron speed needed
to carry the current in our model. We also make use of
Liouville’s theorem in the formulation of our equations,
which states that a distribution function is constant on an
electron trajectory, as given in equation (7).

3.3. Ionospheric Equation

[20] The total energy of an ionospheric electron, W0, can
be expressed as

W0

m
¼

v2k

2
� F ‘ð Þ ð17Þ

where F(‘) = ef(‘)/m, f(‘) is the electric potential variation
along the field line, and vk is the parallel electron velocity. If
we know that an electron has a speed vkm at ‘m, where F =
Fm, then we can determine its speed at any other point since

v2km

2
� Fm ¼

v2k ‘ð Þ
2

� F ‘ð Þ ð18Þ

giving

vk ‘ð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2km þ 2DF ‘ð Þ

q
ð19Þ

where DF(‘) = F(‘) � F(‘m) = F(‘) � Fm, the change in
normalized potential. Thus with DF(‘c) = DFc = �am

2 /2, we
trap all of the ionospheric electrons except the current-
carrying beam component with�am� e� vkm <�am. At an
arbitrary point between ‘m and ‘c, an electron with speed

�(am + �) at ‘m will map to vk(‘) = �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am þ �ð Þ2þ2DF ‘ð Þ

q
.

Electrons with� am� vkm� 0 are turned around between ‘m
and ‘c and return to ‘m. So, an electron with speed am at
‘m will map to vk(‘) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m þ 2DF ‘ð Þ

p
. Thus, by Liouville’s

theorem, the distribution at each point is a top-hat dis-

tribution such that F = F1, �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am þ eð Þ2þ2DF

q
� vk �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2m þ 2DF
p

. So, we can equate the electron and ion

number densities in the ionosphere to obtain

n ‘ð Þ
B ‘ð Þ ¼ F1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am þ �ð Þ2 þ 2DF

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m þ 2DF

q� �
ð20Þ

3.4. Magnetospheric Equation

[21] The magnetospheric equation contains a term
corresponding to the mirroring isotropic Maxwellian popu-
lation, and another corresponding to the emerging beam.
The Maxwellian population gives a number density of F2

exp(ef/kT). The only ionospheric electrons to emerge above
‘c are those with velocities in the range �am � e � vkm <
�am at ‘m, so, again using Liouville’s theorem, they
contribute a number density divided by B of

n*

B
¼ F1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am þ �ð Þ2 þ 2DF

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m þ 2DF

q� �
ð21Þ

giving the relation for charge neutrality in the magneto-
sphere (‘0 < ‘ < ‘c) as

n ‘ð Þ
B ‘ð Þ ¼

F2

B ‘ð Þ exp
m

kT
DFþ Fmð Þ

� 	

þ F1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am þ �ð Þ2 þ 2DF

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m þ 2DF

q� �
ð22Þ
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3.5. Evaluating Constants and Nondimensionalizing
Equations

[22] We can use equation (15) for field-aligned current
density to evaluate the constant F1 in the ionospheric
equation. Now, the trapped ionospheric electrons contribute
no net current since the current carried by upflowing
electrons is cancelled by corresponding downflowing ones.
So, the only contribution to this current comes from the
beam since the beam electrons have no downflowing
counterparts. So, at ‘m, electrons contributing to the current
are those with speeds of �am � e � vkm < �am. So,

jm

Bm

¼ �eF1

Z �am

�am��

vkdvk ð23Þ

[23] From this, we can deduce that

F1 ¼
jm

eBm� am þ �
2

�  ð24Þ

[24] We can find the magnetospheric distribution function
amplitudeF2 by evaluating the magnetospheric equation (22)
at ‘0, where DF(‘0) = �Fm, the normalized potential at ‘m,
giving us

F2 ¼ n0 � F1B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am þ �ð Þ2 � 2Fm

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m � 2Fm

q� �
ð25Þ

[25] We wish to express the ionospheric and magneto-
spheric equations (20) and (22) in terms of dimensionless
parameters. Now, using (14) and (24), we can write that

nm

Bm

¼ 2jm

eBm�
ð26Þ

[26] From this, we can deduce an expression for the beam
width, �:

� ¼ 2jm

nme
ð27Þ

[27] Thus, as the current density increases, so does the
beam width, as more current-carrying electrons will be
required; as the ionospheric number density increases, the
beam width decreases proportionally to carry the same
current.
[28] There are four characteristic electron speeds or

energies in this model: am and �, the ionospheric back-
ground and beam thermal velocity widths at ‘m; kT, the
thermal energy of the background magnetospheric popula-
tion at ‘0; and v*(‘0) � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m � 2Fm

p
, the parallel velocity

of the beam at ‘0. These four characteristic speeds and
energies can be expressed succinctly in terms of three
dimensionless ratios with which we may reformulate our
equations. Firstly, we define a = �/(2am), the ratio of the
beam width in velocity space to the trapped ionospheric
population width, am. Thus, using equation (27),

a ¼ jm

nmeam
ð28Þ

and a corresponds to a normalized current density. Now, we
can use equations (21) and (24) to find a relation for n*, the
beam number density:

n*

B
¼ jm

eBm� am þ �
2

�  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am þ �ð Þ2 þ 2DF

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m þ 2DF

q� �
ð29Þ

and v*, the average velocity of the beam, using
equation (19):

v* ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am þ �ð Þ2 þ 2DF

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m þ 2DF

q� �
ð30Þ

[29] Now, the current density, j, can be expressed as

j ‘ð Þ ¼ �n* ‘ð Þev* ‘ð Þ ð31Þ

so jm � n*meam, where n*m = n*(‘m). Thus we can deduce that
a � n*m/nm, the ratio of the beam number density to the total
ionospheric electron number density at ‘m. For downward
currents in the Northern Hemisphere, a is positive, and a
typically lies in the range 10�5–10�3. The second
dimensionless parameter we introduce is

h ¼ ma2m
2kT

ð32Þ

representing the ratio of the kinetic energy of the iono-
spheric electron population to the thermal energy of the
magnetospheric electron population. This again is a small
parameter: ionospheric electron temperatures are generally
�1 eV, while magnetospheric electron temperatures can
vary from �100 eV to several keV. Thus h is typically of
the order of 10�4–10�2. The third, and final, normalized
parameter we define relates to the electric potential
difference, so that

D~F ¼ DF= a2m=2
� 

ð33Þ

and

~F ¼ 2ef
ma2m

ð34Þ

[30] Thus, substituting the average beam velocity v* into
equation (18), D~F � v*2(‘)/am

2 � 1. Using these dimension-
less parameters, we obtain the nondimensionalized equa-
tions for the ionosphere and magnetosphere respectively:

n ‘ð Þ
B ‘ð Þ

�
n0

B0

¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2að Þ2 þ D~F

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D~F

p� �
ð35Þ

n ‘ð Þ
B ‘ð Þ

�
n0

B0

¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2að Þ2 þ D~F

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D~F

p� �

þ B0

B ‘ð Þ 1� ACð Þ exp h D~Fþ ~Fm

� � 
; ð36Þ
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where

A ¼ nm

n0

� �
B0

Bm

� �
1

2 1þ að Þ : ð37Þ

and

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2að Þ2 � ~Fm

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~Fm

q
ð38Þ

[31] The magnetospheric equation (36) can be written as
ntot = n* + nmag i.e., the total electron number density in the
region ‘0 < ‘ < ‘c is the sum of the beam and Maxwellian
number densities. In equations (36) and (38), ~Fm corre-
sponds to the total potential difference across the field line.
For downward currents, ~Fm is negative, so the total potential
increase along the field line is given by �~Fm.

4. Results

[32] We can solve equations (35) and (36) numerically
to find the potential variation along the field line, and the
total potential increase along the field line, �~Fm. This is
the current-voltage relation or Ohm’s Law for the down-
ward auroral current for an assumed fixed ion density
profile. The solution for D~F is multivalued in the mag-
netosphere, but only the continuous, monotonically in-
creasing solution satisfies our boundary conditions [see
Temerin and Carlson, 1998]. We tested our model against
the example given in Temerin and Carlson [1998]. We
chose our boundary conditions (at ‘m) and our equilibrium
such that their boundary conditions imposed at ‘c were
satisfied, and successfully reproduced their result. For
details, see Appendix A.
[33] Figure 3 shows a typical example for a current

density at ‘m of 5 mAm�2, and ionospheric and magne-
tospheric electron temperatures of 1 eV and 1 keV
respectively. Firstly, a small ambipolar electric field traps
most of the ionospheric electrons below s = ‘m � ‘ =
0.083 RE, and is shown in the enlarged plot of Figure 3b.
In the magnetosphere, there is a monotonic increase in
D~F with a localized acceleration region, which in this
case extends from 0.2 to 0.6 RE. This increase in
potential in the magnetosphere performs two tasks in this
model.
[34] At altitudes immediately above ‘c, the electrons are

predominantly ionospheric upward beam electrons. In this
region, which is below the B/n peak, the ion number density
profile decays exponentially with altitude, whereas the
current density j / B / 1/r3 decays more slowly. Since
n* is approximately equal to the ion number density here,
the beam speed needs to increase by equation (31) to carry
the required current, and the potential increase is required to
accelerate the electrons, increasing v*. At higher altitudes,
the potential increase not only accelerates the beam, but also
has an effect on the mirroring magnetospheric electron
population. The increasing magnetic field strength experi-
enced by magnetospheric electrons as they travel earthward
does mirror some, but the existence of a large potential
barrier has the effect of excluding almost all of them from
the ionospheric ambipolar region. This is advantageous, as

obviously any electrons which do enter that region will
precipitate and form a counterstreaming beam, neglected in
this calculation. The effect is negligible in the vast majority
of cases, decreasing with increasing a (or current density)
or h (see Appendix B).

4.1. Ionospheric Trapping Point, ‘‘‘‘‘‘‘‘c
[35] One property that emerges naturally from this model

is the ionospheric trapping point, ‘c, the point earthward of
which all ionospheric electrons except those forming the
beam are trapped, and where the beam emerges from
the ionosphere into the magnetosphere. At ‘c, electrons with
vkm = �am at ‘m are slowed to vk = 0. Substituting these
values into equation (19), and using equation (33), we find
that D~F = �1 at ‘c, so we can substitute this into the
ionospheric equation (35) to obtain the relation

nc

Bc

�
n0

B0

� �
¼ nm

n0

� �
B0

Bm

� � ffiffiffiffiffiffiffiffiffiffiffiffi
a

1þ a

r
ð39Þ

Figure 3. The variation of normalized potential, D~F, with
s = ‘m � ‘ over (a) 4 Earth radii, showing the acceleration
region between 0.2 and 0.6 RE, and (b) 0.17 Earth radii,
showing the small ambipolar electric field which traps the
majority of the ionospheric electrons to within 0.083 RE, or
530 km, of ‘m. In this example, a = 5 
 10�5,
corresponding to a current density at ‘m of 5 mAm�2, and
h = 10�3, corresponding, say, to an ionospheric electron
temperature of 1 eV, and a magnetospheric electron
temperature of 1 keV. In this case, the total potential drop
along the field line is found to be 2.28 kV.
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[36] For a � 1, this reduces to

nc

Bc

�
n0

B0

� �
¼ nm

n0

� �
B0

Bm

� � ffiffiffiffi
a

p
ð40Þ

[37] Thus, for a given a, we can find nc/Bc, and then use
the form of B/n shown in Figure 1 to find the height to
which this corresponds. There will always be two possible
heights, one before and one after the B/n peak, but ‘c always
lies earthward of this. Figure 4 shows that typical iono-
spheric trapping points obtained from our model range from
500–650 km. It is interesting to note that the location of ‘c
is unaffected by h, i.e., by the magnetospheric electron
temperature for a given value of am.
[38] Substituting equation (28) into equation (40), we can

see that

nc

Bc

�
n0

B0

� �
¼ B0

Bm

ffiffiffiffiffiffiffiffiffiffiffiffi
jmnm

eamn
2
0

s
ð41Þ

[39] So, as the ionospheric temperature am increases, nc/Bc

decreases, giving a higher ionospheric trapping point, while
as the ionospheric number density nm or current density jm
increase, so does nc/Bc, implying a lower altitude ionospheric
trapping point. This latter point agrees with the observation
made by Temerin and Carlson [1998] that for larger currents
the ambipolar field must go to zero at larger ionospheric
densities (i.e., at lower altitudes) to supply sufficient current-
carrying electrons.
[40] At ‘c, the beam number density n* has a significant

peak, as by equation (31), the ambipolar electric field slows
the ionospheric population so much that v* dips to its lowest
value, and a large increase in n* is necessary to maintain the
current around this point.

4.2. Location of Maximum Ekk, ‘‘‘‘‘‘‘‘e
[41] There is a maximum in the parallel electric field,

Ek(‘e) = Ekmax, which occurs between ‘c and ‘p, near the
start of the acceleration region: it is needed to provide
acceleration over a scale comparable to the density scale
height. Using equations (12) and (34), we know that

Ek ¼ � ma2m
2eRE

@D~F
@ ‘=REð Þ ð42Þ

[42] From this, we can define a normalized parallel
electric field, ~Ek, such that

~Ek ¼
2eRE

ma2m
Ek ¼ � @D~F

@ ‘=REð Þ ð43Þ

[43] This electric field can be found numerically, and
a typical result is shown in Figure 5. Figure 6 shows
the variation of Ekmax with a and h, which extends up
to 10 mV m�1, for an ionospheric electron temperature of
1 eV. As the current density, or a, increases, more
acceleration is needed; therefore Ekmax

increases.
[44] ‘e is located beyond the ionospheric trapping point,

‘c, and within three density scale heights of the B/n peak. As
the current density increases, ‘e is found to move earthward,
as quasi-neutrality dictates that acceleration is needed closer
to ‘c. As the magnetospheric electron temperature increases
(causing a decrease in h), ‘e moves closer to the B/n peak,
indicating the importance of the electric field for reflecting
magnetospheric electrons to make room for the current-
carrying ionospheric beam electrons.

4.3. Width of Acceleration Region, 6

[45] The distance over which the potential increase occurs
depends on the parameters a and h. In order to get an idea
of the trends involved, we define the acceleration region to
start at the point where D~F = 0 beyond ‘c (since the increase
from ‘c, where D~F = �1, to the point where D~F = 0 is
gradual) and to end where D~F = �0.8 ~Fm. We define W to
be the distance between these two points, giving a measure
of the width of the acceleration region. This parameter gives
an idea of how localized the potential increase is.
[46] The results are shown in Figure 7. As the current

density increases, W decreases, despite the fact that the
overall potential increase gets larger: this implies a much
smaller, more concentrated acceleration region surrounding
the B/n peak. As the magnetospheric electron temperature
increases (indicating a decrease in h), W increases too. This
implies that the acceleration region is not so concentrated.

Figure 4. Variation of ionospheric trapping point ‘cwith a.

Figure 5. Variation of ~Ek along the field line for a = 5 

10�5 and h = 10�3, showing the maximum of ~Ek, which
occurs between ‘c and the B/n peak, at s/RE = 0.240, or
1530 km. The form of Ek is shown for an ionospheric
electron temperature of 1 eV, and Ekmax is 2.93 mV m�1.
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Much of the energization will still occur over a small
distance around the B/n peak, but some of it extends further
into the magnetosphere. This performs a useful role: since
the magnetospheric Maxwellian electrons are now more
energetic, the presence of a prohibitive potential difference
in the magnetosphere has the effect of mirroring more of
these electrons so that they do not penetrate too deeply into
the acceleration region. This will enable matching of the
electron and ion number densities along the field line.

4.4. Significance of B//n Peak

[47] The ion number density profile chosen in this model
is obviously vital to the solution of equations (35) and (36)
since the total electron density must match this profile to
satisfy quasi-neutrality. Hence it would be reasonable to
think that altering the ion number density profile must have
an effect upon ~Fm, the total potential difference along the
field line. However, it turns out that only the number density

in the vicinity of the B/n peak is vital to the overall solution
of the equations, and hence, to ~Fm.
[48] To illustrate this, we altered the number density

profile given in equation (6) on either side of the B/n peak,
defining a new density profile, n1. The alteration is shown in
Figure 8, where dn = jn1 � nj, the difference between the
two number density profiles. The only constraint when
changing the ion density profile is that it is necessary to
preserve the single peak in the B/n curve and the boundary
values at ‘m and ‘0. If the B/n curve has multiple peaks, the
potential profile obtained from the model is no longer
monotonic in the magnetosphere, giving an unphysical
result. This constraint allows for large changes in number
density earthward of the B/n peak, but is more limiting
beyond it. Hence dn/n � 10�3 is the largest change possible
beyond the B/n peak since n/n0 only decreases from 1.04 to
1.00 between the B/n peak and ‘0. It is somewhat surprising
that the total potential drop, ~Fm, calculated for the original
density profile and the modified one are identical to the
accuracy of our numerical solution (at least 5 significant
figures).
[49] The change to the number density profile beyond the

B/n peak may seem very small, suggesting that no signif-
icant change in ~Fm will result. However, when we alter the
number density at, rather than either side of, the B/n peak
such that dn/n � 10�3 in this region, we do obtain a
significant relative change in ~Fm � 10�3–10�2. These
results demonstrate that the properties of the small region
surrounding the B/n peak (�a few density scale heights) are
solely responsible for determining ~Fm.

5. Total Potential Difference, ~F~F~F~F~Fm

5.1. Properties of ~F~F~F~F~Fm

[50] Figure 9 shows the variation of ~Fm with a and h for
scale heights of 50 and 200 km and nm/n0 values of 5 
 104

and 106. These range over typical values, and reveal various
properties of ~Fm. In general, as a increases, implying a
higher current density, so does the potential difference, ~Fm.

Figure 6. Variation of the maximum ~Ek with a and three
different values of h. Ekmax is shown in mV m�1 for an
ionospheric electron temperature of 1 eV. In this case, the
magnetospheric electron temperatures are 3 keV (solid
curve), 1 keV (dashed curve), and 100 eV (dot-dashed
curve).

Figure 7. Variation of the width of the acceleration region
with a and three different values of h. Assuming an
ionospheric electron temperature of 1 eV, these h values
correspond to magnetospheric electron temperatures of
3 keV (solid curve), 1 keV (dashed curve), and 100 eV
(dot-dashed curve).

Figure 8. Alteration to ion number density. This alteration
can be much larger on the earthward side of the B/n peak
while still retaining a single B/n peak, while the alteration
beyond the B/n peak is more restricted by this condition.
This change in density profile results in no change to ~Fm,
illustrating the importance of the region surrounding the B/n
peak to finding this total potential difference.
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~Fm also increases as the difference in electron ionospheric
and magnetospheric temperatures increases, corresponding
to a decrease in h. Comparisons between the contour plots
also show that increasing the ion scale height, h, decreases
~Fm, while increasing the ion number density, nm/n0, results
in an increase in ~Fm. The contour plots can be used to
determine the total potential increase for a given downward
current event as follows.
5.1.1. Step 1
[51] Choose the equilibrium parameters of the event: the

magnetospheric thermal electron energy (kT), the iono-
spheric electron thermal energy (meam

2 /2), the ion number
density at the base of the F region (nm) and at ‘0 in the
magnetosphere (n0), the ion scale height (h), and the current
density at the base of the F region (jm). If you know the
current density at a particular altitude, use the current
continuity equation (16) to map this down to jm.
5.1.2. Step 2
[52] Calculate the dimensionless parameters a and h from

equations (28) and (32) respectively.
5.1.3. Step 3
[53] Use your a and h values to read off the required

potential increase from the contour plot which has param-
eters closest to yours. Alternatively, if your value for h or
nm/n0 lies between the ones we have shown, then read off

two values of ~Fm and extrapolate between them. For
example, if h = 100 km and nm/n0 = 106, then read off
the required ~Fm values from both of the plots with nm/n0 =
106, giving ~Fm(50) and ~Fm(200) for scale heights of 50 and
200 km respectively. Then interpolate, so that

~Fm 100ð Þ ¼ 2

3
~Fm 50ð Þ þ 1

3
~Fm 200ð Þ ð44Þ

[54] This gives an estimate of ~Fm(100), the total potential
increase for a scale height of 100 km.

5.2. Comparison With Data

[55] In order to test the validity of this model, we
compare the results that it gives with FAST data presented
in the work of Elphic et al. [2000, Plate 1]. At the end of the
first downward current phase (indicated by vertical dotted
red lines starting at UT = 09:18), an inferred current density,
jFAST, of 1.6 mAm�2 is observed at the altitude of FAST
(second panel), and the associated electron energy is�2 keV
(fourth panel).
[56] Firstly, we need to calculate jm using equation (16),

noting that the altitude of FAST is �4000 km. This gives us
jm = 6.94 mAm�2. The electron energy spectra suggest that
we have typical ionospheric and magnetospheric electron

Figure 9. Four contour plots of �~Fm, the total potential increase along the field line, against a and h,
for different ion number densities and scale heights; (a and b) nm/n0 = 5 
 104 and (c and d) 106.
Figures 9a and 9c are for a scale height, h, of 50 km, while Figures 9b and 9d are for 200 km.
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temperatures of 1 eV and 1 keV respectively. Assuming
nm/n0 = 106, we find that a = 7.30 
 10�5 from equation
(28) and h = 10�3 from equation (32).
[57] The ion scale height h can vary due to several

factors, including the ion temperature, and the presence of
additional features in the downward current region such as
ion conics. We can use the information above to infer the
value of h in this case. In Figure 10, we compute ~Fm for ion
scale heights varying from 50 to 300 km. For ~Fm � 2 kV,
this corresponds to h � 160–210 km, which is a very
reasonable range.

6. Discussion and Conclusions

[58] We have presented a distribution function solution
for ionospheric electrons accelerated into the magneto-
sphere to form an upflowing beam which carries the
downward FAC coupling both regions. This formulation
is advantageous as it is possible to isolate the different
electron populations involved: the trapped ionospheric pop-
ulation, the mirroring Maxwellian magnetospheric popula-
tion, and the current-carrying beam. The ionospheric
population (except the beam) is found to be trapped below
‘c, which lies earthward of the B/n peak at altitudes of 300–
700 km. Above this, the beam emerges into the magneto-
sphere. Ek maximizes beyond ‘c, within three density scale
heights of the B/n peak; this is near the beginning of the
acceleration region, which extends for between 500 and
3000 km around the B/n peak.
[59] We have demonstrated that, for given boundary

conditions, the exact form of the ion number density profile
is unimportant except within a few density scale heights
around the B/n peak. It is the properties of this region which
define the overall solution, including ~Fm. This highlights
that the properties of this model are general, and not just
confined to the specific density profiles used in this paper.
Different density profiles could include those produced by
the presence of ion conics trapped earthward of the accel-
eration region, as discussed by Temerin and Carlson [1998],
which have the effect of increasing the ion number density
along the field line, thus increasing the ion scale height.

These ion conics will modify the ion distribution. The ion
scale height, h, and ion number density, nm/n0, are the main
factors which affect the location of the B/n peak. Studies of
FAST data by Cattell et al. [2004] and Carlson et al. [1998]
show that upward accelerated electron beams are much
more prevalent in the winter or midnight sectors than they
are in regions where the ionosphere is sunlit. This implies a
strong dependence on scale height.
[60] From observations [e.g., Ergun et al., 2003], it is

apparent that the acceleration in the downward current
region can occur over a very small distance (a double layer).
In this case, it is obvious that the change in potential occurs
over a very small region, which could be thought of as an
extreme version of our model with a compacted acceleration
width. This can be achieved via a sharp fall (or sudden
change) in ion number density at the required altitude.
Temerin and Carlson [1998] used such a profile, and
obtained a sharp increase in potential. This type of feature
in the ion density could evolve from the motion of ions
along the field line in a time-dependent model. This is not
dissimilar to our model, where the result is also determined
by the properties of a very small region around the B/n peak,
which in the compacted case would occur within the double
layer. Thus the results should not be radically different,
except that more of the potential increase would occur over
a shorter distance: a feature seen very clearly in our
reproduction of f(B) for Temerin and Carlson’s [1998]
density profile (see Appendix A).
[61] Although observations of double layers show that

they may move upward with the ion acoustic speed (a few
10s of km s�1 [Andersson et al., 2002]), this is small
compared to the electron speeds, suggesting that the
quasi-steady potential viewpoint presented in our calcula-
tion is still appropriate. Besides neglecting the evolution
of ions, we also do not address the stability of the beam
and subsequent thermalization, including any necessary
additional energization that is required. Simulations by
Ergun et al. [2003] show that there is a rich variety of
physics operating here. Their results also show that about
80% of the potential drop is associated with stable
acceleration as described in our paper, with the remainder
occurring in a turbulent thermalizing region downstream.
[62] Typical values for ~Fm obtained from this model are

consistent with those obtained by Temerin and Carlson
[1998], and range from several 100 V to a few kV. This
agrees very well with typically observed values, and we
have shown good agreement with a specific data set from
Elphic et al. [2000]. It will be worthwhile to compare results
from our model more closely with observational data over a
wider range of conditions to check validity.

Appendix A: Comparison With Temerin and
Carlson [1998]

[63] Since our model is an extension of that by Temerin
and Carlson [1998], we tested our model using the example
they cite, the results of which are given in their Figure 1. We
used all of the same parameters, and an identical number
density distribution. Our model starts at ‘m, the base of the F
region, while the Temerin and Carlson model begins at ‘c.
To compare with their model, we chose our boundary
conditions and equilibrium between ‘m and ‘c such that

Figure 10. Variation of ~Fm with h for jm = 6.94 mAm�2

and jFAST = 1.6 mAm�2 at an altitude of 4000 km. The
data show ~Fm � 2 kV, implying an ion scale height of
160–210 km.
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our solution at ‘c coincides exactly with the boundary
conditions that Temerin and Carlson imposed there.
[64] The field aligned coordinate used is b = B/Bc, where

Bc represents the magnetic field strength at ‘c, and b extends
from 0 (an idealized point in the magnetosphere) to 1 at ‘c.
The number density is taken to be constant (1 cm�3)
between b = 0 and 0.5, and increases linearly thereafter
up to b = 1, at an altitude of 3000 km. We extend this linear
increase to give nm = 2.23 
 108 m�3. The current density is
taken to be 2.0 mAm�2 at ‘c, and using the current
continuity equation (16), we obtain jm = 6.39 mAm�2.
[65] Using our exact relation at ‘c in equation (39), a =

0.572. This is an unusually large value, and is due to the
linear rather than exponential ion density profile. From this
we can find that am = 3.13 
 105 ms�1 from equation (28).
This gives an ionospheric electron temperature of 0.278 eV,
which, along with Temerin and Carlson’s [1998] choice of a
magnetospheric electron temperature of 1 keV, gives h =
2.78 
 10�4 from equation (32). Using our model, we
obtain a normalized potential difference ~Fm = �4073. From
equation (34), this corresponds to an actual potential differ-
ence of 1.13 kV, identical to the value found by Temerin and
Carlson. Our results are shown in Figure A1. We could have
chosen a different extrapolated density for ‘c < ‘ < ‘m which
would have given more typical values of nm, a and h. What
is important for the present comparison is that our values at
‘c match those of Temerin and Carlson.

Appendix B: Validity of Assumptions

[66] In this model, we assume that the magnetospheric
number density is negligible at altitudes below ‘c, i.e., that
no magnetospheric electrons penetrate into the ionosphere.
In reality, since the distribution is Maxwellian, a few of the
most energetic field-aligned magnetospheric electrons will
be able to overcome the large potential barrier and penetrate

into the ionosphere, thus producing a downward magneto-
spheric electron population and reducing the net upward
flux. It is possible to calculate the neglected current density
and number density at ‘c and compare these with the beam
current and number densities to check the validity of this
assumption.
[67] The neglected current density, jk

u, can be found by
integrating the Maxwellian electron distribution given in
equation (13) over vk and v? space as follows:

juk ¼ �e

Z 1

0

Z 1

0

vkfM dvk 2pv?dv? ðB1Þ

[68] Using the following integrals

Z 1

0

v? exp � m

2kT
v2?

� 	
dv? ¼

Z 1

0

vk exp � m

2kT
v2k

� 	
dvk ¼

kT

m

ðB2Þ

and the fact that D~F = �1 at ‘c, we obtain

juk ¼ �en0

ffiffiffiffiffiffiffiffiffi
kT

2pm

r
exp h ~Fm � 1

� � 
ðB3Þ

[69] Using the current continuity condition in equation
(16), we know that jc = Bcjm/Bm, giving

juk

jc

����
���� ¼ 1

2a
Bm

Bc

� �
n0

nm

� � ffiffiffiffiffiffi
1

ph

s
exp h ~Fm � 1

� � 
ðB4Þ

[70] Similarly, we can work out the ratio of number
densities at ‘c. Here, the electron beam accounts for the
total ionospheric electron number density. Thus rearranging
equation (39)

nc*

n0
¼ nm

n0

� �
Bc

Bm

� �
1þ 1

a

� ��1
2

ðB5Þ

[71] The magnetospheric number density at ‘c is deter-
mined by substituting D~F = �1 into the second (Maxwel-
lian) term on the RHS of equation (36) to yield

nmagc

n0
¼ 1� ACð Þ exp h ~Fm � 1

� � 
ðB6Þ

where A and C are determined by equations (37) and (38)
respectively. Thus we obtain the ratio

nmagc

nc*
¼ 1� ACð Þ n0

nm

� �
Bm

Bc

� � ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a

r
exp h ~Fm � 1

� � 
ðB7Þ

[72] Contour plots of the ratios in equations (B4) and
(B7) are given in Figure B1. These reveal that the neglected
number density at ‘c is always negligible compared to the
beam number density for relevant values of a and h. The
neglected current density, however, is sometimes signifi-
cant: when a and h are both very small, the neglected
current density is comparable to the beam number density,

Figure A1. Our reproduction of the result in the work of
Temerin and Carlson [1998, Figure 1]. Using all of their
parameters and number density profile, we obtain ~Fm =
�4073, which gives a potential difference of 1.13 kV. The
dashed plot is a scaled version of the B/n curve, (B/n)/
(250 B0/n0), which clearly shows that the B/n peak occurs at
b = 0.5. Note the large Ek (rapid change in Df) which occurs
where the density scale length is small (near the B/n peak).
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but as either of these parameters increases (implying a larger
beam current density or smaller difference between iono-
spheric and magnetospheric electron temperatures) the ratio
becomes smaller, implying that the assumption becomes
more accurate. These results make sense, as when jm is
small, jc will also be small, so the magnetospheric compo-
nent is more likely to yield a comparable upward current
density. Also, a decrease in h implies an increase in
magnetospheric electron temperature, so more energetic
electrons will be able to overcome the potential barrier
and contribute to an upward current at ‘c.

[73] Acknowledgments. Alexandra Cran-McGreehin’s Ph.D. studies
are being funded by the Carnegie Trust for the Universities of Scotland.
[74] Lou-Chuang Lee thanks one reviewer for the assistance in evalu-

ating this paper.

References
Andersson, L., R. E. Ergun, D. L. Newman, J. P. McFadden, C. W. Carlson,
and Y.-J. Su (2002), Characteristics of parallel electric fields in the down-
ward current region of the aurora, Phys. Plasmas, 9, 3600.

Carlson, C. W., et al. (1998), FAST observations in the downward auroral
current region: Energetic up-going electron beams, parallel electric fields,
and ion heating, Geophys. Res. Lett., 25, 2017.

Cattell, C., J. Dombeck, W. Yusof, C. Carlson, and J. McFadden (2004),
FAST observations of the solar illumination dependence of upflowing
electron beams in the auroral zone, J. Geophys. Res., 109, A02209,
doi:10.1029/2003JA010075.

Chiu, Y. T., and M. Schultz (1978), Self-consistent particle and parallel
electrostatic field distributions in the magnetospheric-ionospheric auroral
region, J. Geophys. Res., 83, 629.

Elphic, R., J. Bonnell, R. J. Strangeway, C. W. Carlson, M. Temerin, J. P.
McFadden, R. E. Ergun, and W. Peria (2000), FAST observations of

upward accelerated electron beams and the downward field-aligned
current region, in Magnetospheric Current Systems, Geophys. Monogr.
Ser., vol. 118, edited by S. Ohtani et al., p. 173, AGU, Washington, D. C.

Ergun, R. E., et al. (1998), FAST satellite observations of electric field
structures in the auroral zone, Geophys. Res. Lett., 25, 2025.

Ergun, R. E., C. W. Carlson, J. P. McFadden, F. S. Mozer, and R. J.
Strangeway (2000), Parallel electric fields in discrete arcs, Geophys.
Res. Lett., 27, 4053.

Ergun, R. E., L. Andersson, C. W. Carlson, D. L. Newman, and M. V.
Goldman (2003), Double layers in the downward current region of the
aurora, Nonlinear Proc. Geophys., 10, 45.

Jasperse, J. (1998), Ion heating, electron acceleration, and the self-consis-
tent parallel electric field in downward current regions, Geophys. Res.
Lett., 25, 3485.

Marklund, G., L. Blomberg, C.-G. Falthammar, and P. A. Lindqvist (1994),
On intense diverging electric fields associated with black aurora, Geo-
phys. Res. Lett., 21, 1859.
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Vedin, J., and K. Rönnmark (2004), A linear auroral current-voltage rela-
tion in fluid theory, Ann. Geophys., 22, 1719.

Wright, A. N., and A. W. Hood (2003), Field-aligned electron acceleration
in Alfven waves, J. Geophys. Res., 107(A3), 1135, doi:10.1029/
2002JA009551.

�����������������������
A. P. Cran-McGreehin and A. N. Wright, Mathematical Institute,

University of St. Andrews, St. Andrews, Fife KY16 9SS, UK.
(alex@mcs.st-and.ac.uk; andy@mcs.st-and.ac.uk)

Figure B1. Contour plots showing (left) the ratio of neglected magnetospheric and beam current
densities and (right) number densities at ‘c for nm/n0 = 106 and h = 100 km. These plots reveal that the
beam number density is always much greater than the magnetospheric contribution. The current densities,
however, can be comparable for very small values of a and h. As either of these parameters increases, so
does the accuracy of our assumption.
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