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[1] Field-aligned electrons accelerated upward from the ionosphere to the magnetosphere
are the principal charge carriers in the auroral downward field-aligned current region.
Current densities, typically of the order of a few mAm�2, are sustained by potential drops
of several 100 V up to a few kV. This paper uses a model presented in a separate paper in
this special section (Cran-McGreehin and Wright, 2005) to obtain an analytical nonlinear
current-voltage relationship for the downward current, which is complimentary to the
well-known linear current-voltage relation for the upward current region (Knight, 1973).
Exact and approximate current-voltage relations are given. These relations are compared
with FAST observations and show good agreement.
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1. Introduction

[2] In this paper, we study the current-voltage relation on
auroral field lines carrying a downward current. We find
that the B/n peak plays a crucial role in determining Ohm’s
Law, in particular the values of the current density (jp) and
number density (np) there. Other important quantities are the
magnetospheric electron temperature (T), and the electron
charge (e) and mass (m). We find that when the quantity � =
(jp
2m/2kTnp

2e2)1/3 < 1.2, the total potential drop along the
field line is approximately
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and when � > 1.2
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Exact expressions are also given. Our relations are
compared with FAST observations, and show good
agreement.
[3] Field-aligned currents form an integral part of the

global magnetospheric current system, and are the means by
which momentum is transferred between two different
plasma environments: the hot, tenuous magnetosphere and
the cold, dense ionosphere. Field-aligned currents (FACs)
are known to couple other space environments, including,
for example, Io and Jupiter; however, those flowing along
the Earth’s magnetic field lines are the easiest to observe at
close range, giving vital clues as to the nature of these
currents and the particle acceleration associated with them.

Several satellites and rockets, including FREJA [Marklund
et al., 1994] and Viking, observed occasional upward
accelerated field-aligned electron beams, but it was only
with the advent of the Fast Auroral SnapshoT (FAST)
satellite in 1996 that it was discovered that upward electron
beams occur with much the same frequency as their
downward counterparts [Carlson et al., 1998]. These up-
ward beams are associated with diverging electric field
structures, often located at the edge of the larger inverted
V regions which support upward FACs; the improved time
resolution and continuous observance of all pitch angles on
FAST have been able to detect these small-scale dynamic
downward current regions.
[4] Field-aligned currents are mainly carried by electrons.

Observations of the downward current region by Andersson
et al. [2002] and Ergun et al. [2003] have revealed complex
characteristics: the potential increase occurs along a nar-
rowly confined region of �10 Debye lengths; the resulting
unstable electron beam is seen along another similarly small
region; and finally, the beam is stabilized by strong wave
turbulence and electron phase space holes. Ion conics are
also observed earthward of the potential structure, trapped
between this and their mirror point. However, recent anal-
ysis has also shown examples of correlated increases in
electron energy and potential, the latter of which is calcu-
lated from

R
E � ds [e.g., Ergun et al., 1998]. These

observations suggest that the potential structures are stable
at least on the electron acceleration timescale, thus lending
credence to the existence of quasi-static parallel potential
structures. Our model gives a simple overview of this region
based on this observational evidence. Detailed studies of the
downward current region have shown that upward beams
occur with greatest frequency in the winter hemisphere
[Elphic et al., 2000], suggesting that the ion scale height
and number density play a key role in determining the
altitude and magnitude of the potential increase required
[Cattell et al., 2004].
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[5] Several approaches have been employed to model the
upward current region. Knight [1973] derived a linear
current-voltage relation for the upward current region,
where parallel potential drops are necessary to enable
downflowing electrons to overcome magnetic mirror forces
to carry the current. More recent models include Rönnmark
[2002], Vedin and Rönnmark [2004] and Wright and Hood
[2003]. Relatively little attention, however, has focused on
the electron dynamics of the downward current region. It
was thought that no significant potential would be required
here, as the ionosphere is a plentiful source of electrons;
however, the falling ion number density restricts the elec-
tron beam’s number density as it flows upward in such a
way that it must be accelerated at a particular critical
altitude in order to carry the required current. Temerin and
Carlson [1998] use an electron fluid model with fixed ion
density, invoking quasi-neutrality to calculate the required
parallel potential drop. They obtain parallel potential drops
of several kV for current densities of a few mAm�2.
Jasperse [1998] presents a Vlasov model including ion
heating and wave effects, which explains the production
of upward field-aligned electron beams and ion conics.
[6] In this paper, we analyze the downward current model

presented in a separate paper in this special section [Cran-
McGreehin and Wright, 2005, hereinafter referred to as
paper 1], which builds on the Temerin and Carlson
[1998] model by using electron distribution functions and
modeling the entire F region. Mathematical analysis of this
downward current model leads to a single current-voltage
relation which can be simplified to give two nonlinear
approximations valid under different regimes of the down-
ward current region.

2. Model

[7] In this paper, we present results obtained from the
model in paper 1. This is a one-dimensional Vlasov model
of an upward accelerated electron beam along an auroral
field line, extending from the base of the F region, ‘m, taken
to be at a radial distance of 1 RE, to a distant point in the
magnetosphere, ‘0. We model the magnetic field as being
locally dipolar in the acceleration region, giving a magnetic
field strength of

B ¼ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 sin2 q

p
cos6 q

ð3Þ

where B0 is a constant, q is the latitude and

r ¼ LRE cos
2 q ð4Þ

where we take L = 10 to give a typical auroral field line. The
arc length element along B, d‘, is given by

d‘ ¼ dq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ dr

dq

� �2
s

ð5Þ

[8] Using equations (4) and (5), the length along the field
line, ‘, which increases as you enter the ionosphere, is found
to be

‘ ¼
Z q

0

LRE cos q
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1þ 3 sin2 q
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ð6Þ

which can be solved to give
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[9] The ion number density is considered to be fixed in
time, and has an exponentially decaying profile

n ¼ n0 þ nm � n0ð Þ exp � r � REð Þ
h

� �
ð8Þ

where the ion number densities at ‘m and ‘0 are nm and n0,
respectively, and the scale height h ranges from 50 to a few
hundred km. The scale height could simply represent the
gravitational stratification of the ions, or could be increased
in the case of strong ion conics to represent redistribution of
ions by the mirror force [e.g., Jasperse, 1998]. A top-hat
ionospheric electron distribution is defined at ‘m, and a
Maxwellian magnetospheric electron population at ‘0. Most
of the ionospheric electrons are trapped by a small
ambipolar electric field, but the most energetic ones escape
and are accelerated into the magnetosphere to form the
beam. We define ‘c to be the point earthward of which all
ionospheric electrons except those forming the beam are
trapped. This location is important in the mathematical
analysis and is where different solutions must be matched.
For the purposes of this paper we define the ‘‘ionosphere’’
and ‘‘magnetosphere’’ in terms of this location: the
ionosphere extends from ‘m, the base of the F region, to
‘c, and the magnetosphere is between ‘c and ‘0. The location
of ‘c, along with other significant locations in the model, are
shown schematically in Figure 1. The lower boundary of the
model by Temerin and Carlson [1998] is at ‘c, where they
input appropriate boundary conditions obtained from data.
Our lower boundary is the base of the F region, ‘m, and
the location of ‘c, where the electron beam emerges into the
magnetosphere, is determined self-consistently from the
model parameters (see paper 1). In paper 1, we reproduced
Temerin and Carlson’s [1998] result for a specific example
(see their Figure 1) by mapping their boundary conditions at
‘c to ‘m. This reproduced their solution exactly, and gives
confidence that our extended calculation is correct.
[10] A full derivation of the equations is given in paper 1,

to which the reader is referred for full details. Here, we
outline the main features. The system is solved by using
Liouville’s theorem and the current continuity condition,
r � j = 0, which reduces to

j ‘ð Þ
B ‘ð Þ ¼

jm

Bm

ð9Þ

where jm and Bm are the values of the current density and
magnetic field strength at ‘m. Expressions for the electron
number density in the ionosphere and magnetosphere are
obtained, and quasineutrality is then invoked to yield
dimensionless equations. These contain three dimensionless
parameters: a normalized current density, a, which is
positive for downward currents, given by

a ¼ jm

nmeam
ð10Þ
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where am is the ionospheric electron distribution thermal
velocity width; h, the ratio of the ionospheric and
magnetospheric temperatures, given by

h ¼ ma2m
2kT

ð11Þ

where kT is the thermal energy of the magnetospheric
electron population; and a normalized electric potential
difference, D~F(‘), relative to that at ‘m, given by

D~F ¼ 2e

ma2m
f� fmð Þ ð12Þ

where fm is the potential at ‘m, and f(‘0) = 0. The
ionospheric and magnetospheric equations are shown
below:

n ‘ð Þ
B ‘ð Þ

�
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ð13Þ
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A ¼ nm
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1þ 2að Þ2�~Fm
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�
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[11] In the magnetospheric equation (14), the first term on
the right hand side corresponds to the number density
contribution from the electron beam, while the second term
gives the contribution from the mirroring Maxwellian
magnetospheric electron population. ~Fm = 2efm/(mam

2 ) in
equations (14) and (16) corresponds to the total change in
potential along the field line, since using equation (12),
D~F(‘m) = 0 and D~F(‘0) = �~Fm. For downward currents, ~Fm

is negative, so the total potential increase along the field line
is given by �~Fm. Following Temerin and Carlson [1998]
we have neglected the magnetospheric Maxwellian electron
number density in the ionosphere (equation (13)) compared
to the ionospheric electron number density. Paper 1 con-
firmed that this is a good approximation. If an additional
term representing magnetospheric electrons was added to
the RHS of equation (13), this would typically increase the
relative electron number density by 10�4–10�8, and as
suggested by Temerin and Carlson [1998] would have no
significant effect on our solution. Indeed, we used the
methods of paper 1 to find the exact numerical solution to
(13) and (14) for standard parameters, with and without the
inclusion of magnetospheric electrons in (13). This changed
the altitude of ‘c by 0.003% and ~Fm by 0.06%, confirming
the suitability of equation (13).
[12] In paper 1, we solve equations (13) and (14) numer-

ically at each point along the field line to give a potential
curve, in a similar fashion to Temerin and Carlson [1998].
In the ionosphere, we find that D~F decreases from 0 to �1
between ‘m and ‘c; this forms the ambipolar electric field
which traps most of the ionospheric electron population
close to the Earth. The most energetic electrons, although
decelerated by this ambipolar potential, manage to penetrate
into the magnetosphere to form the upgoing current-carrying
beam. Beyond ‘c, the potential increases monotonically, and
the parallel electric field maximizes at ‘e, between ‘c and the
B/n peak (see Figure 1). This kickstarts the electron beam
acceleration, most of which occurs in a small acceleration
region of width �1000 km. Qualitatively, results from paper
1 show that as the current density increases, so does j~Fmj, the
potential increase required to accelerate the beam; j~Fmj also
increases as the difference in electron ionospheric and
magnetospheric temperatures increases, which corresponds
to a decrease in h.

3. Stationary Point Analysis

3.1. Magnetospheric Roots

[13] We know the value of n/B along the field line from
equations (3) and (8), so in the ionosphere, we can solve
equation (13) at each point between ‘m and ‘c to find the
potential, D~F(‘). Solving equation (14) to find the poten-
tial variation in the magnetosphere is not so straightfor-
ward, as the equation contains a free parameter ~Fm, where
D~F(‘0) = �~Fm. Varying this parameter produces a family
of curves of the roots of D~F in equation (14); Temerin and
Carlson [1998] also noted the multivalued nature of their
solution.
[14] In general, the solutions to this equation are de-

scribed by two branches, or curves, for a given ~Fm, as
shown in Figure 2. For one particular critical value of ~Fm,
these branches touch at a stationary point. If we take j~Fmj <
critical j~Fmj, then there are two branches, one to the right of

Figure 1. Diagram showing the three electron populations:
mirroring magnetospheric electrons, trapped ionospheric
electrons, and the beam. This diagram is not to scale: The
magnetospheric electron population is much more energetic
(�1 keV) than that in the ionosphere (�1 eV). Key locations
derived from the model are ‘m, the base of the F region;
‘c, the ionospheric trapping point; ‘e, the point where
Ek maximizes; ‘p, the location of the B/n peak; ‘q, the
stationary point described in section 3; and ‘0, a distant
reference point in the magnetosphere.
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the x point, and another to the left. Clearly, there are points
along the field line between these two curves for which no
root exists, so we exclude these values of ~Fm as being
unphysical. On taking j~Fmj > critical j~Fmj, we again find
two branches, this time above and below the x point. Both
of these curves are continuous: however, we assume in the
derivation of equation (14) that the Maxwellian electron
distribution at ‘0 remains Maxwellian throughout the mag-
netosphere. This is only the case for a monotonically
decreasing potential from the magnetospheric end, since
any increase will lead to a hole in phase space around vk =
0, giving a non-Maxwellian distribution. Thus these curves
are mathematical roots of equation (14), but this equation no
longer describes our system accurately, and so these curves
must be discounted. Thus we choose the monotonically
increasing continuous curve which passes through the
stationary point as the physically relevant solution for this
problem. Numerically, we search for the value of ~Fm for
which the solutions touch at a stationary point we label ‘q,
and choose the lower solution earthward of ‘q, and the
upper solution beyond ‘q. This gives a systematic way of
producing Temerin and Carlson type solutions.

3.2. Stationary Point Equations

[15] In paper 1 we showed numerically that the B/n peak
determined the solution; altering the ion number density on
either side of the peak resulted in no difference to ~Fm. We
now understand why this is. The stationary point outlined

above can be described mathematically. To do this, we make
a small simplification to equation (14) to allow solution of
the resulting equations, by using the approximationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2að Þ2 þ D~F
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D~F

p
� 2a 1þ að Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ D~F
p ð17Þ

valid when 1 + D~F 
 4 a (a + 1). Since a � 1, typically
�10�5–10�3, and our stationary point ‘q lies in the middle
of the acceleration region where D~F is large, this is an
excellent approximation. Indeed, for typical parameters,
4a(a + 1)/(1 + D~F) � 10�7–10�6. From this approxima-
tion, we obtain

n ‘ð Þ
B ‘ð Þ =

n0

B0

¼ nm

n0

� �
B0

Bm

� �
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ D~F
p

þ B0

B ‘ð Þ 1� ACð Þ exp h D~Fþ ~Fm

� �� �
ð18Þ

[16] Evaluating this relation at the stationary point, ‘q,
where n(‘) = nq, B(‘) = Bq and D~F = D~Fq, we obtain our
first stationary point equation

nq

n0
¼ nm

n0

� �
Bq

Bm

� �
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ D~Fq

q
þ 1� ACð Þ exp h D~Fq þ ~Fm

� �� �
ð19Þ

[17] The stationary point at ‘q is a standard two-variable
saddle point. At a stationary point of a general function
g(x, y), @g/@x = @g/@y = 0 [see Salas et al., 2003,
chapter 15]. Equation (18) tells us that G(B, D~F, ~Fm) = 0,
where n is a known function of B and all other parameters
are given, but ~Fm is not (hence it is retained as a variable).
Setting G = 0 implicitly defines ~Fm given B and D~F, which
we can express as ~Fm = g(B, D~F). We see how B and D~F
play the roles of x and y in a textbook two-variable
stationary point analysis. Indeed, the contours of ~Fm in
Figure 2 were calculated from just this expression (except
it uses s rather than B as the field-aligned coordinate).
The requirements @g/@x = @g/@y = 0 become (@g/@B)D~F =
@g/@B + (@g/@n)(dn/dB) = 0 and (@g/@D~F)B = 0 at ‘q,
giving us two more equations for the stationary point:

0 ¼ � 1

2

nm

n0

� �
Bq

Bm

� �
a

1þ D~Fq

� �3
2

þ h 1� ACð Þ exp h D~Fq þ ~Fm

� �� �
ð20Þ

B0

d

dB

n Bð Þ
n0

� �
q

� nm

n0

� �
B0

Bm

� �
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ D~Fq

q ¼ 0 ð21Þ

[18] Thus we have three equations at the stationary point
((19), (20), and (21)), and four unknowns (nq, Bq, D~Fq,
and ~Fm). In principle, we could solve this system of
equations by introducing a fourth equation relating nq
and Bq. However, this proves to be unnecessary, as we
shall show in section 4 that it is possible to get good
estimates of nq and Bq by another route. We do not use
equation (21) in our derivation of an analytical expression
for ~Fm, but we have included it for completeness, since it
would be necessary to use it if nq and Bq were unknown.

Figure 2. Plot showing the form of the two roots of
magnetospheric equation (14) for different values of the
parameter ~Fm, where a = 5 � 10�5, h = 10�3 and s = ‘ �
‘m. If j~Fmj is larger than the critical value, then upper and
lower branches of D~F exist all the way along the field line
(above and below the x point), but do not meet at any point,
and neither curve satisfies our boundary conditions. If j~Fmj
is smaller than the critical value, then there are again two
branches of D~F, one to the right and the other to the left of
the x point. Thus there are points along the field line
between these two curves for which no root of D~F exists.
All of these curves are unphysical, but there is a unique
critical value of ~Fm for which the two curves of D~F meet at
a stationary x point. The solution which satisfies our
boundary conditions is the monotonically increasing one,
which switches from the lower to the upper branch as it
passes through the x point.

A10S10 CRAN-MCGREEHIN AND WRIGHT: DOWNWARD CURRENT-VOLTAGE RELATION

4 of 11

A10S10



Substituting for the exponential in equation (19) using
equation (20) we obtain

nq

n0
¼ nm

n0

Bq

Bm

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D~Fq

q þ a
2h

nm

n0

Bq

Bm

1þ D~Fq

� ��3=2 ð22Þ

[19] This can be rearranged to give the cubic

X 3 � acqX 2 � acq
2h

¼ 0 ð23Þ

where X =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D~Fq

q
and cq = (nm/nq)(Bq/Bm).

3.3. Solving the Cubic

[20] The cubic equation (23) can be solved by first
transforming it:

X 3 � acqX 2 � acq
2h

¼ X � acq
3


 �3
�
a2c2q

3
X � acq

3


 �

� acq
2h

þ
2a3c3q

27

 !
ð24Þ

[21] Now we can use the fact that a cubic of the form Y3 +
pY + q = 0 has a real solution Y = s � t, where p = 3st and
q = t3 � s3. In the case of equation (24), Y = X � (acq/3),
and this gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D~Fq

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acq
4h

þ
a3c3q

27
� acq

4h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

8ha2c2q

27

s
3

vuut

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acq
4h

þ
a3c3q

27
þ acq

4h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

8ha2c2q

27

s
3

vuut
þ acq

3
ð25Þ

[22] We are now in a position to derive an expression for
~Fm(a, h, nq, Bq) by rearranging equation (20) to give

~Fm ¼ 1

h
ln

a
2h

nm

n0

Bq

Bm

1� ACð Þ�1
1þ D~Fq

� ��3=2
� �

� D~Fq ð26Þ

[23] We can now substitute equation (25) into equation (26)
to obtain

~Fm ¼ 1

h
ln

2nq

n0 1� ACð Þ

� �
� 3

h
ln y �ð Þ½ �

� acq
4h

� �2=3

y �ð Þ½ �2 þ 1 ð27Þ

where

y �ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�3

27
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�3

27

r
3

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�3

27
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�3

27

r
3

s
þ 41=3

3
� ð28Þ

and

� ¼ a2=3c2=3q h1=3 ð29Þ

[24] The constant C, contained in our expression for ~Fm

in equation (27) and defined in equation (16), depends on
~Fm. However, we can split up the first term on the RHS of
equation (27) as follows:

1

h
ln

2nq

n0 1� ACð Þ

� �
¼ 1

h
ln 2

nq

n0

� �
� 1

h
ln 1� ACð Þ ð30Þ

where typically, h�1 ln(1 � AC)/~Fm � 10�4. Thus we can
safely neglect this term to obtain a more useful expression
for ~Fm:

~Fm ¼ 1

h
ln 2

nq

n0

� �
� 3

h
ln y �ð Þ½ �

� acq
4h

� �2=3

y �ð Þ½ �2 þ 1 ð31Þ

[25] When ~Fm is evaluated using equation (31) and the
exact value of ‘q, taken from a numerical solution, we find
exact agreement with the numerically derived value of ~Fm,
as expected. The results of such exact calculations for a
range of values of a and h are displayed in Figure 3. The
expression in equation (31) is helpful because although ~Fm

is a function of two variables, a and h, the expression
contains y(�), a function of one variable which is easier to
expand in a Taylor series to simplify the expression.

4. Taylor Series Approximations

4.1. Approximation of ‘‘‘‘‘q
[26] It is very hard to pinpoint the exact location of ‘q

analytically by solving the stationary point equations.
However, the numerical solutions of paper 1 can be used
to show that ‘q always lies very close to the B/n peak. The
results of these numerical solutions are shown in Figure 4
for varying ion scale heights (h), current densities and
electron temperatures. The ion scale height varies with ion
temperature, which can range from 103 K to a few
thousand K: this gives ion scale heights from 50 to a
few hundred km. The values of the two small parameters,
a and h, do have a small effect on the location of ‘q: as a
(the normalized current density) increases, ‘q moves closer
to the B/n peak; and as the ratio of ionospheric and
magnetospheric electron temperatures, h, increases (imply-
ing a lower magnetospheric temperature), ‘q again moves
closer to the B/n peak. However, in all applicable cases,
the difference in height is no more than 10%. As a result
of this, we can make the approximations nq � np and Bq �
Bp in the analytical solution, and obtain a very accurate
approximation to ~Fm. Thus we can approximate the exact
solution by replacing cq in equation (29) with

cp ¼
nm

np

� �
Bp

Bm

� �
ð32Þ

[27] Figure 4 shows a linear relationship between the B/n
location and ion scale height, h. This work illustrates that,
not surprisingly, the ion scale height plays the major role in
determining the position of the B/n peak, and hence of ‘q.
This agrees with work on the prevalence of beams in the
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winter auroral region [Carlson et al., 1998; Cattell et al.,
2004], which indicate the important role played by the scale
height and number density.

4.2. Taylor Series

[28] Equation (31) constitutes an analytical solution of
~Fm, the total normalized potential increase along the field
line, in terms of a, h, cq and nq. However, it is a
cumbersome expression, and it would be very helpful to

obtain more user-friendly approximations for use in future
analytical work. This can be achieved by performing a
Taylor series expansion on y(�), given in equation (28),
and then substituting this expansion into equation (31) to
obtain an approximate relation.
4.2.1. � ������ 1
[29] First, we assume that � = a2/3cp

2/3h1/3 is small. This
corresponds to cases where a and h are both small,
implying small current densities and moderate to high

Figure 4. Location of ‘q (the stationary point, dashed and dot-dashed lines) and ‘p (the B/n peak, solid
line) plotted against ion scale height for different values of (left) a and (right) h. In Figure 4 (left), h is
taken to be 10�3, which corresponds, for example, to ionospheric and magnetospheric electron
temperatures of 1 eVand 1 keV, respectively. In Figure 4 (right), a is fixed at 1 � 10�5, corresponding to
a downward current density at ‘m of 1 mAm�2. The fact that ‘q is always close to the B/n peak is shown,
so we can make the assumption that nq � np and Bq � Bp in our analytical solution.

Figure 3. Contour plot of analytical solution of ~Fm, the total potential increase along the field line given
by equation (31). Parameters used are nm/n0 = 106, h = 100 km and an ionospheric temperature of 1 eV.
This shows that the potential increases with increasing current density and magnetospheric temperature.
Generally, potentials are of the order of �100 V to �1 kV.
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magnetospheric temperatures. Performing a Taylor expan-
sion of equation (28) around � = 0 gives us

y �ð Þ ¼ 21=3 þ 41=3

3
�þ 2

9
�2 þ 4

81
21=3�3 þ O �4

� �
ð33Þ

[30] Substituting this back into equation (31) and using
equation (29) with cq � cp, we obtain the following
expression for ~Fm

~Fm a; hð Þ � 1

h
ln

np

n0

� �
� 3

acp
2h

� �2
3

� 1

21=3

a4=3c4=3p

h1=3

 !

�
a2c2p

3
þ O a8=3c8=3p h1=3


 �
ð34Þ

[31] It is possible to neglect the first term on the right
hand side, since np � n0. Thus, noting that a is positive for
downward currents, the expansion can be simplified to

�~Fm � 3
acp
2h

� �2
3

þ 1

21=3

a4=3c4=3p

h1=3

 !
þ
a2c2p

3
ð35Þ

4.2.2. � 





 1
[32] The other possibility is that � = a2/3cp

2/3h1/3 is large.
This implies large values of a and h, i.e., large current
densities and low magnetospheric temperatures. Performing
a Taylor expansion of equation (28) about � = 1 is
equivalent to expanding y(1/�) about 1/� = 0. So, letting
a = 1/�, we can manipulate equation (28) to obtain

Y að Þ ¼ 1

a

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

27
þ a3 �

ffiffiffiffiffi
8

27

r
a3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 27

8
a3

r
3

s0
@

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

27
þ a3 þ

ffiffiffiffiffi
8

27

r
a3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 27

8
a3

r
3

s
þ 4

1
3

3

1
A ð36Þ

[33] Expanding the bracket around a = 0 yields

aY að Þ ¼ 41=3 þ a3

21=3
þ O a4

� �
ð37Þ

which can be translated to

y �ð Þ ¼ 41=3�þ 1

21=3�2
þ O ��3

� �
ð38Þ

[34] As above, we can substitute this into equation (31) to
obtain

~Fm a; hð Þ � 1

h
ln

2np

n0

� �
� 1

h
ln 4a2c2ph

 �

� a2c2p

� 1

h
þ 1þ O a�2=3c�2=3

p h�4=3

 �

ð39Þ

[35] For the same reasons as in the first case, we can
simplify the first term to h�1 ln(2) to obtain the following
approximation

�~Fm � 1

h
ln 2a2c2ph

 �

þ a2c2p þ
1

h
ð40Þ

4.3. Accuracy of Approximations

[36] Equations (31), (28) and (29) give the analytical form
of ~Fm if cq is known. However, finding this parameter is
awkward and involves numerical work, since the location of
‘q changes with a and h for a given equilibrium model. If
we let cq � cp, which is easier to calculate (a range of values
are given in Table 1), we obtain approximate relations for
~Fm which are easy to use.
[37] The relative accuracy of the two approximations is

shown in Figure 5 for two different values of h. In each
case, � < 1 for small current densities and the first
approximation in equation (35) is accurate. Many relevant
scenarios in the downward current region with low to
moderate current densities and average ionospheric and
magnetospheric electron temperatures satisfy � � 1, so
this approximation is valid. Even as a increases and �
approaches 1 and exceeds it, this approximation remains
very accurate. Then, at some value of � � 1, the first
approximation loses accuracy as we enter a different regime
where the second approximation in equation (40) should be
adopted. In all cases for the standard parameters we have
chosen, the appropriate approximation is valid to within
6.4% of the exact potential increase.

4.4. An Example

[38] In order to estimate the potential increase for a given
event in the downward current region, the following steps
should be carried out.
[39] Step 1 is to choose the parameters for the equilibrium

model: the magnetospheric thermal electron energy (kT), the
ionospheric electron thermal energy (meam

2 /2), the ion num-
ber density at the base of the F region (nm) and at ‘0 in the
magnetosphere (n0), the ion scale height (h), and the current
density at the base of the F region (jm). From these, calculate

Table 1. Values of the Constant cp for Different Ion Number Densities (nm/n0) and Scale Heights (h)a

5 � 104 7.5 � 104 1.0 � 105 2.5 � 105 5.0 � 105 7.5 � 105 1.0 � 106

50 km 3.514 � 104 5.225 � 104 6.924 � 104 1.697 � 105 3.346 � 105 4.976 � 105 6.595 � 105

100 km 2.621 � 104 3.870 � 104 5.103 � 104 1.231 � 105 2.398 � 105 3.542 � 105 4.671 � 105

150 km 2.019 � 104 2.963 � 104 3.890 � 104 9.261 � 104 1.786 � 105 2.623 � 105 3.446 � 105

200 km 1.593 � 104 2.325 � 104 3.041 � 104 7.158 � 104 1.369 � 105 2.000 � 105 2.619 � 105

250 km 1.281 � 104 1.861 � 104 2.426 � 104 5.653 � 104 1.073 � 105 1.562 � 105 2.039 � 105

300 km 1.046 � 104 1.513 � 104 1.967 � 104 4.544 � 104 8.571 � 104 1.243 � 105 1.619 � 105

aThe first row shows values of nm/n0, and the first column gives different values of h.
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the dimensionless parameters a and h, from equations (10)
and (11), respectively.
[40] Step 2 is to determine the parameter cp given in

equation (32). This can be done by using Table 1. Also
determine the value of C in equation (29), replacing cq with
cp.
[41] Step 3 contains two options. The first is to use

equation (28) to determine y(�) and substitute into equation
(31), using nq � n0 and cq � cp to obtain ~Fm. The second is
to use the approximation in equation (35) if � < 1, or the
one in equation (40) if � > 1. Note that ~Fm is negative for
downward currents, and �~Fm gives the total potential
increase along the field line.
[42] We now use this approach to approximate the poten-

tial in the FAST data given byCarlson et al. [1998, Figure 2].

This is taken at an altitude of around 3965 km, which we
denote by ‘FAST. The current density at this altitude, jFAST,
varies from 1 to 2.5 mAm�2, so we consider both of these
cases. We use the current continuity condition in equation (9)
to obtain corresponding values for jm, which are 4.29 (case 1)
and 10.7 (case 2) mAm�2. These are high current densities,
so this is a strong downward current event. We take typical
ionospheric and magnetospheric electron temperatures
of 1 eV and 1 keV, giving h = 10�3; nm is taken to be
1011 m�3, slightly lower than used previously to account for
the fact that this event occurred at night, giving nm/n0 = 105;
finally, the ion scale height is taken to be 150 km, slightly
larger than before to account for transverse ion heating
effects which modify the distribution of ions. The results are
shown in Figure 6; the total potential increase is 1730 V for

Figure 5. Graphs showing the regions of validity of the two Taylor expansions. The current densities
run from 1 to 10 mAm�2; for an ionospheric electron temperature of 1 eV, h values of 10�3 and 2.5 �
10�3 correspond to magnetospheric electron temperatures of 1 keV and 400 eV, respectively. (top) The
solid line represents the actual values of ~Fm found by solving equation (14) numerically, or using the
numerically determined values of nq and Bq in equation (31). The dashed line shows the approximation
given in equation (35), which is most accurate for small a and h, while the dot-dashed line shows the
approximation given in equation (40), most accurate for larger values of a and h. (bottom) The
corresponding values of C are plotted, defined in equation (29), which is the variable in which we derive
the Taylor series. The vertical solid line indicates the point at which � = 1 in each case. The first
approximation is more accurate for � � 1.2. When � � 1.2, the second approximation should be
adopted.
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case 1, and 4510 V for case 2. Most of the acceleration has
taken place by ‘FAST, giving DfFAST = 1400 V for case 1, and
3970 V for case 2. These values show excellent agreement
with the bottom panel of Carlson et al. [1998, Figure 2],
where fFAST was inferred from

R
E � ds along the satellite

trajectory. The potential in Figure 2 of Carlson et al. [1998]
varies from �1 to �4 kV.
[43] The Taylor series expansions can be used for this

example, where the B/n peak lies at 2200 km, and cp =
3.89 � 104.
[44] In case 1, jFAST = 1 mAm�2, giving a = 4.51 � 10�4

and � = 0.675 < 1. Thus we use the expansion in equation
(35) to give ~Fm � �1730, which is accurate to 0.8%.
[45] In case 2, jFAST = 2.5 mAm�2, giving a = 1.13 �

10�3 and � = 1.25. Since this value is around 1, either
expansion should give a good approximation. From equa-
tion (35), we obtain ~Fm = �4220 eV, accurate to 6.4%;
equation (40) yields ~Fm = �4270 eV, accurate to 5.2%. This
illustrates that both approximations still work well in the
region � � 1.

5. Dimensional Expressions

[46] While it is useful to work in terms of dimensionless
quantities (a, h and D~F) to obtain expressions for ~Fm, the
total normalized potential increase along the field line, it
can be informative to return to dimensional quantities in
order to gain further physical insight. Substituting equa-
tions (10) and (11) into the small-� expression for ~Fm in
equation (35), noting that ~Fm = 2efm/mam

2 and f(‘0) = 0,
we obtain:

�fm ¼ 3

2

m1=2jmBpkT

e5=2npBm

� �2
3

þ 1

2

m2j4mB
4
pkT

e7n4pB
4
m

 !1
3

þ m

6e3

j2mB
2
p

n2pB
2
m

ð41Þ

[47] We can obtain a similar expression for ~Fm for large
� using equation (40):

�fm ¼ kT

e
ln

j2mB
2
p

n2pe
2B2

m

m

kT

 !
þ m

2e3

j2mB
2
p

n2pB
2
m

þ kT

e
ð42Þ

[48] It is interesting to note that both of these expres-
sions for fm are independent of the ionospheric tempera-
ture, am, and ionospheric electron number density, nm.
This highlights the fact that the precise properties of
the ionosphere are unimportant to the acceleration of the
field-aligned electrons: the ionosphere is simply the reser-
voir from which the necessary electrons are extracted.

5.1. Potential Drop in Terms of Speeds

[49] We can derive expressions for fm, the actual poten-
tial increase along the field line, in terms of two character-
istic speeds: the mean electron drift speed at the B/n peak,
up, defined as

up ¼
jp

npe
ð43Þ

where jp = jmBp/Bm, and the magnetospheric thermal
velocity, vth, given by

v2th ¼
2kT

m
ð44Þ

[50] If we substitute equations (43) and (44) into equation
(29), we find that

�3 ¼ up

vth

� �2

ð45Þ

[51] Thus the small-� expression for ~Fm in equation
(35) corresponds to cases where up � vth, i.e., for
relatively small current densities and moderate to high
magnetospheric electron temperatures. We substitute equa-
tions (43) and (44) into (41) to obtain an expression for
fm in this regime:

�fm ¼ m

2e
3

up

2


 �2=3
v
4=3
th þ

u4=3p v
2=3
th

21=3
þ
u2p

3

 !
ð46Þ

[52] In the alternative regime, where � > 1 or up 
 vth,
implying higher current densities and lower magnetospheric
electron temperatures, we substitute equations (43) and (44)
into (42) to obtain:

�fm ¼ m

2e
v2th ln 2

u2p

v2th

 !
þ u2p þ v2th

 !
ð47Þ

5.2. Potential Drop in Terms of Current Densities

[53] Alternatively, we can derive ~Fm in terms of two
characteristic current densities: the beam current density at
the B/n peak, written using equation (9) as

jp ¼ jm
Bp

Bm

ð48Þ

Figure 6. Comparison with data given by Carlson et al.
[1998, Figure 2]. Taking jm = 4.29 and 10.7 mAm�2 gives
current densities at FAST of 1 and 2.5 mAm�2, respec-
tively. Taking h = 10�3, an ionospheric temperature of 1 eV,
nm/n0 = 10

5 and h = 150 km, we obtainD~FFAST values of 1400
and 3970 V for each case, which correspond well with the
bottom panel of their figure.
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and the field-aligned thermal current density, jth, due to the
downgoing component of the Maxwellian electron distribu-
tion (i.e., 0 < vk < 1, 0 < v? < 1) at ‘0:

jth ¼ �e

Z 1

0

vkfMdvk

Z 1

0

2pv?ð Þdv?

¼ �en0

ffiffiffiffiffiffiffiffiffi
kT

2pm

r
ð49Þ

where

fM ¼ n0
m

2pkT


 �3
2

exp � 1

kT

m

2
v2k þ v2?


 �
� ef


 �� �
ð50Þ

[54] Of course, we assume that these electrons mirror, so
this population does not carry a net current. The parameter
� in equation (29) can now be written as

�3 ¼ 1

4p

j2p

j2th

n20
n2p

; ð51Þ

[55] So, the small-� expression (41), valid when jp �
jjthj, can be written in terms of (48) and (49) to give

�fm ¼ m

2e3
3

2p
n20np

� �2=3

j2=3p jjthj4=3
 

þ 2p
n20n

4
p

 !1=3

j4=3p jjthj2=3 þ
j2p

3n2p

1
A ð52Þ

[56] Similarly, the large-� expression in equation (42),
valid when jjthj � jp, can be written as

�fm ¼ m

e3
2p
n20

j2th ln
j2p

j2th

n20
2pn2p

 !
þ

j2p

2n2p
þ 2pj2th

n20

 !
ð53Þ

[57] Further simplifications can be made to equations (52)
and (53) by noting that np � n0.

6. Discussion and Conclusions

[58] The analysis presented here reveals that the B/n peak
is central to the solution of the downward current region.
Mathematically, the equations contain a stationary point
which lies slightly beyond the B/n peak. Examination of
this stationary point yields a near-exact solution for ~Fm, the
total potential increase along the field line (given the model
parameters, and nq and Bq). Taylor series expansions of the
exact solution can be carried out to give two simplified
nonlinear current-voltage relations. Since the stationary
point is so close to the B/n peak, approximations can be
derived for which we use the number density and magnetic
field strength at the B/n peak. One approximation is valid
for lower current densities and moderate to high magneto-
spheric temperatures (�1 keV), while the other takes over
for higher current densities and lower magnetospheric
temperatures. Typically, the first expansion will be more
useful for most downward current regions in the Earth’s
magnetosphere, except for stronger events with particularly
high current densities. Both of these expansions, when

written in dimensional form, are independent of ionospheric
equilibrium parameters, illustrating that the exact properties
of the ionosphere are unimportant in this model.
[59] Observations suggest that acceleration in the down-

ward current region can occur over a very small distance
[Ergun et al., 2003] (i.e., a double layer). In this case, the
change in potential along the field line is compacted, which
can be achieved via a sharp decrease or change in ion
number density at a certain altitude [Temerin and Carlson,
1998]. Just as Knight’s [1973] model of the upward current
provides a good overview of the region as a whole,
neglecting double layers, we describe the downward current
region on a similarly large scale. Thus we find a smooth
transition in potential, but it is quite possible that this overall
change is confined to sharp increases in potential contained
within several double layers [Andersson et al., 2002]. In any
case, the overall change in potential is likely to be similar in
both cases. In paper 1, we find that it is the properties of the
small region surrounding the B/n peak (containing the
stationary point ‘q) which solely determine the total poten-
tial change ~Fm. This has been corroborated by the analytical
work presented here, which shows that we can determine
~Fm simply by solving the stationary point equations at ‘q. If
we were to include ion motion in this model, it is possible
that the ion distribution would steepen into a double layer,
which would preserve the single B/n peak and effectively
move ‘q even closer to it: thus our analysis should still be
appropriate.
[60] The location of the B/n peak is principally dependent

upon the ion scale height and number density, nm/n0. In
Cattell et al.’s [2004] statistical survey of the occurrence of
upward accelerated electron beams, many more beams were
observed on field lines where the ionospheric foot point is
in darkness than when it is illuminated. This makes sense in
terms of the model, since at night time, the number density
and scale height will be smaller because of lack of photo-
ionization and cooler temperatures. These two factors cause
the B/n peak, and hence the stationary point, to move
earthward. With a smaller number density, the ionosphere
will provide fewer charge carriers which, on encountering
lower ion number densities due to the decreased scale
height, will need to be accelerated at lower altitudes to
meet the demands of quasineutrality and carry the required
current.
[61] The current-voltage relations derived here show

good agreement with observational data. Qualitatively, our
model predicts potential increases of �100 V to �1 kV,
which tally well with observations of downward current
regions. Quantitatively, our model agrees very well with the
FAST data from Carlson et al. [1998]. It will be desirable to
make further comparisons with data to check consistency
over a range of current densities.
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