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[1] A two-dimensional hybrid MHD-kinetic model incorporating kinetic electrons is used
to simulate a shear Alfvén wave pulse propagating in a constant density plasma and
magnetic field. The pulse is rectangular in shape so that the perpendicular and parallel
current regions are distinct. Two regimes are considered: the large-scale limit where the
perpendicular-scale length L? � le and the ‘‘inertial limit’’ (L? � 10le). In addition, a
potential-current relation is derived from consideration of electron energy in the wave
frame. It is found that the parallel electron current is carried by a uniform acceleration of
the entire distribution function where larger current is carried by a correspondingly larger
displacement. In the inertial limit the original rectangular shape of the pulse is distorted by
a broadening and narrowing in the perpendicular direction at the leading and trailing
edges, respectively, of the pulse, as well as by the propagation away from the corners of
inertial Alfvén waves with perpendicular wavelengths of the order of 10le (Alfvén
resonance cones). In both limits, and in spite of the added structure in the inertial case, the
parallel electric field calculated from a derived ‘‘effective’’ potential reproduces the
simulation parallel electric field accurately.

Citation: Damiano, P. A., and A. N. Wright (2005), Two-dimensional hybrid MHD-kinetic electron simulations of an Alfvén wave

pulse, J. Geophys. Res., 110, A01201, doi:10.1029/2004JA010603.

1. Introduction

[2] The link between Alfvén waves (either as pulses or
standing modes) and auroral arcs has been well established
using both ground-based and satellite observations [Xu et
al., 1993; Lotko et al., 1998; Chaston et al., 2002; Samson
et al., 2003]. Associated with these waves are field-aligned
currents of up to several mA/m2 carried primarily by electron
beams with energies in the keV range. These beams are
accelerated by field-aligned electric fields of the order of
mV/m in the auroral acceleration region (1–3 RE altitude).
[3] In the traditional MHD limit, me ! 0, and there is no

parallel electric field to accelerate electrons. However, for
straight field lines, with the inclusion of electron mass in the
single-fluid picture via the generalized Ohm’s law [Goertz
and Boswell, 1979; Wei et al., 1994; Wright et al., 2002],
inertial effects become important on the order of the scale
length perpendicular to the ambient magnetic field L? �
10le (k?le = (2p/L?)le � 1), where le =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mone2

p
is the

electron inertial length. The MHD approach alone, however,
neglects potentially important effects such as mirror force
contributions [Rankin et al., 1999; Rönnmark, 2002] and
does not provide any information about the structure and
evolution of the electron distribution functions [Wright and
Hood, 2003]. This has led to approaches that use the Vlasov
equation to describe the electron population [Rankin et al.,

1999; Wright and Hood, 2003] or more numerical methods
using kinetic electrons [Hui and Seyler, 1992; Thompson
and Lysak, 1996; Chaston et al., 2000, 2002, 2003;
Damiano et al., 2003; P. A. Damiano et al., Hybrid MHD-
kinetic electron closure methods and shear Alfvén waves
in nonuniform plasmas, submitted to Physics of Plasmas,
2004, hereinafter referred to as Damiano et al., submitted
manuscript, 2004].
[4] The two-dimensional (2-D) model developed by

Damiano et al. [2003, also submitted manuscript, 2004]
incorporates the full set of cold plasma MHD equations and
kinetic electrons using the guiding center equations as the
equations of motion. In this paper we will use the model to
consider the case of an Alfvén wave pulse propagating in a
constant density plasma and magnetic field in both the large
perpendicular-scale length limit (Lx � le) and ‘‘inertial
regimes’’ (Lx � 10le). The parameters chosen will be
representative of those in the auroral acceleration region.
In addition, a potential-parallel current density relation is
derived using conservation of electron energy arguments in
the frame of reference of the pulse, and the parallel electric
field calculated from the potential is compared directly with
that produced from the simulation.
[5] The rest of the paper is broken up into five main

sections. Section 2 highlights the hybrid model. Section 3
will present the large perpendicular-scale simulation results
along with the derivation of the potential-current relation,
while section 4 summarizes the simulation results for the
inertial limit. Section 5 compares the energy densities of the
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different components, and section 6 has the concluding
summary and discussion.

2. Hybrid Model

[6] The 2-D Cartesian hybrid model used is based on the
model summarized by Damiano et al. [2003] with some
modifications as discussed by Damiano et al. (submitted
manuscript, 2004). It solves explicitly in the x and z
directions with the ambient magnetic field Bo directed along
the z axis. The limited consideration of a y dimension is
allowed by specifying a value for the wave number in the y
direction ky (although ky = 0 is used here). The model
incorporates the full set of the linear cold plasma MHD
equations, but for a toroidal shear Alfvén wave mode with
ky = 0, only the equations for the shear velocity uy and
perturbed magnetic field by, are needed, given by

@uy
@t

¼ Bo

moro

@by
@z

� �
ð1Þ

@by
@t

¼ @Ez

@x
	 @Ex

@z
; ð2Þ

respectively.
[7] For the electrons, gyroradius effects are negligible for

magnetospheric scales, and so the guiding center equations

dve

dt
¼ 	 e

me

Ez ð3Þ

drgz

dt
¼ ve ð4Þ

are used as the equations of motion for the electrons
parallel to the ambient magnetic field where rgz is the
parallel component of the guiding center and ve is
the parallel component of the electron guiding center
velocity. The closure between the MHD equations and the
kinetic electrons is obtained via the parallel electric field
given by a modification of the generalized Ohm’s law
(Damiano et al., submitted manuscript, 2004),
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; ð5Þ

where Ex = 	uyBo is the perpendicular electric field from
the ideal MHD approximation, le

2 = me/(mone
2) is the

electron inertial length, je = 	eSiveiS(x, xi) is the parallel
electron current, and S(x, xi) is the particle shape function
[Birdsall and Langdon, 1991]. The second term on the
right-hand side is related to the second moment of the
electron distribution function, and the last term is related to
the quasi-neutrality of the plasma. Without this term the
expression is the same as used by Hui and Seyler [1992]
(where quasi-neutrality was directly assumed) and Damiano
et al. [2003]. Equation (5) arises from this ‘‘traditional’’
version by considering an expansion of the @Ex/@x term
into a quasi-neutral MHD (r � j = 0) component and a
‘‘correction’’ (@Ex/@x = (@Ex/@x)MHD + (@Ex/@x)c). The

contribution of this correction (resulting when the parallel
electron current differs from the divergence-free MHD
solution) can be accounted for using

�o
@

@t

@Ex

@x

� �
c

¼ 	r � j; ð6Þ

which is derived from the divergence of Ampere’s law
(including displacement term) with the assumptions @/@z 
@/@x and @/@y = 0. Using this to substitute in for (@Ex/@x)c
then yields equation (5). The low-frequency nature of
magnetospheric waves means that the displacement term is
generally neglected, but its use works here since the
oscillations needed to maintain quasi-neutrality are much
shorter than the MHD timescales. It is also used by Lysak
and Song [2001, 2002] in their model of magnetosphere-
ionosphere coupling. In addition, equation (6) can also be
derived from the equations of continuity for the electrons
and ions and Poisson’s equations as given by Damiano et
al. [2003]. However, it was introduced in a slightly
different way than noted here and by Damiano et al.
(submitted manuscript, 2004).
[8] Both the MHD and guiding center equations are

solved using a predictor-corrector method [see Damiano
et al., 2003, also submitted manuscript, 2004], and the
MHD equations are solved on a set rectangular grid,
while the electrons are free to move anywhere in the 2-D
space. The grid has constant but different spacing in each
direction. The electron density, current, and pressure are
interpolated to the grid points using biquadratic spline
interpolation [Birdsall and Langdon, 1991] represented
above by the particle shape function S(x, xi), where xi is
the position of the ith electron and x is the grid cell
position. The field values are interpolated to the particle
positions using the same method.
[9] The magnetic field was normalized by the ambient

magnetic field Bo, length was normalized by an Earth radius
LN = RE, density was normalized by the ambient plasma
density rN = nmp (where n is the plasma number density),
and velocity was normalized by the ambient Alfvén speed
VN = Bo/

ffiffiffiffiffiffiffiffiffiffimorN
p

. Using these definitions, time, electric field,
and current density were normalized as tN = LN/VA, EN =
VNBo, and jN = Bo/(moLN), respectively. For the simulations
presented here the parameters were chosen to be roughly
consistent with the auroral acceleration region at an altitude
of 1–3 RE with a constant ambient magnetic field of Bo =
5000 nT and a constant number density of n = 1 cm	3. The
simulation electrons were loaded with constant (but differ-
ent) spacing in the x and z directions. Each electron is a
‘‘superparticle’’ representative of many electrons. The scal-
ing is determined by the ratio of the ambient plasma density
and the simulation electron number density [Damiano et al.,
2003]. The velocities were assigned to the electrons using a
1-D Maxwellian as a probability distribution function

f veð Þ / e	mev
2
e=2kT ; ð7Þ

where kT = 100 eV was used. For these parameters the
Alfvén speed is �105 km/s, and the electron thermal speed
(vth =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT=me

p
) is �6000 km/s, and so we are in the cold

plasma limit (VA � vth).
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[10] The system was perturbed by introducing a pulse
perturbation in uy in the center of the simulation grid. To be
consistent with values commonly seen in ULF wave phe-
nomena, an initial value of uy consistent with a perturbed
magnetic field value of by = 100 nT was chosen using the
standard Alfvén-Walén [Alfvén, 1942; Walén, 1944; Cross,
1988] relation

uy ¼
VAby

Bo

: ð8Þ

Figure 1a illustrates a contour plot of the initial pulse
perturbation for uy, while Figure 1b illustrates the envelope
found from a slice in the x direction, where Lx is the width of

the region of variation at either edge of the pulse. This edge
region was done using a half-period cosine function. A slice
in the z direction would illustrate an identical geometry but
with the parameter Lz. The general (x, z) variation is found by
taking the product of the normalized envelopes in x and z
multiplied by the amplitude value of uy determined from the
Walén relation (8). This idealized shape was chosen to create
a current loop around the outside of the pulse region and to
clearly distinguish the perpendicular current regions carried
by ions from the parallel current regions carried by electrons.
[11] The values of Lx were chosen to represent two

distinct limits: the large perpendicular-scale length limit
(Lx � le) where electron mass effects are negligible and
the ‘‘inertial limit’’ where they are important (Lx � 10le).
For the number density n = 1.0 cm	3, le = 5.3 km, and so
the two cases Lx = 100 km (Lx = 18.86le) and Lx = 25 km
(Lx = 4.72le) were chosen. In both cases the value of Lz was
chosen to be an Earth radius to roughly correspond to the
parallel scale in the auroral acceleration region (although
this choice is not of critical importance). Figure 1 illustrates
the initial perturbation for Lx = 100 km. In the z direction the
grid extends from z = 0 to 16 in nondimensional units, and
200 grid points are used. The large range is chosen to give
the pulse sufficient distance to propagate before reaching
the edges (although periodic boundary conditions are used
in this direction). In the x direction the grid range is from x =
0 to 0.1 for Lx = 100 km and from 0 to 0.04 for Lx = 25 km.
In both cases, 150 grid points were used, and the boundary
conditions were open (@/@x = 0), although this was not of
importance because the waves do not reach the boundaries
during the simulation. For both limits the time step was
2.5 � 10-5, and the number of simulation electrons used was
15 � 106 (1000 equally spaced initial particle positions in
the x direction and 15,000 in z [see Damiano et al., 2003]).
With these parameters the percentage change in energy over
the length of the run (see section 5) was 5 � 10	2%,
illustrating that energy was well conserved. A convergence
test was also made by doing a second run for the Lx = 25 km
case with twice the number of grid points, half the time step,
and 24 � 106 simulation electrons. The velocity field uy was
compared with the values from the original run at the end of
the simulation (t = 0.009, see section 4) using the quantity

P
i u0yi 	 uyi




 



P

i u0yi þ uyi




 


=2 ð9Þ

to give an estimate of the change in uy between the two
runs. The primed values are from the simulation with
increased resolution, and the summation is over the
common grid points in the two runs. The error in the fields
by this measure was 5%, indicating good convergence.

3. Simulation in the Large-Scale Limit
(Lx == 100 km)

3.1. Wave Fields, Current, and Distribution Function
Evolution

[12] The pulse perturbation introduced at t = 0 splits up
into two identical pulses propagating away from each other
toward the upper and lower z boundaries with speeds VA and
	VA, respectively. For the simulations presented in this

Figure 1. (a) Contours of the initial shear velocity
perturbation uy at t = 0 for Lx = 100 km. (b) Slice in x
along the center of the velocity perturbation.
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section we concentrate on the pulse propagating toward the
lower end of the grid, specifically for a snapshot at t =
0.009. Figure 2 illustrates contours of uy and by. Both have
similar magnitudes, which is to be expected from the Walén
relation, and they propagate maintaining the same shape as
the initial perturbation with only some minor modifications
at the corners. The fact that two identical pulses have split
away from the initial pulse is evident in that the magnitude
in this case is half of the initial value.
[13] Figure 3 illustrates contour plots of the perpendicular

current jx and parallel current je. As expected, they form a
current ring around the pulse with perpendicular currents
along the top and bottom edges ( jx = 	@by/@z) closed by

parallel electron current along the left and right edges ( je =
jz = @by/@x). Figure 4 illustrates a slice along the middle of
the right-hand negative current region at x = 0.072 in
combination with a series of plots of the distribution
function. The plot is the instantaneous slice at t = 0.009.
However, it can also be pictured as a series of time slices for
an observer sitting at z = 1 where the ambient background
distribution function is accelerated just as the leading edge
of the pulse begins to pass (Figure 4, plot for z = 2). This
acceleration is manifested by a slight displacement of the
entire distribution function to the right. This is consistent
with the negative current, as is evident from the definition
je = 	neehvei. As the constant current region passes, the
distribution function maintains a constant displacement

Figure 2. Contours of (a) uy and (b) by at t = 0.009 for the
Lx = 100 km simulation.

Figure 3. Contours of (a) perpendicular current density jx
and (b) parallel current density je at t = 0.009 for the Lx =
100 km simulation.
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(Figure 4, plots for z = 3 and 4), and then as the trailing edge
of the pulse passes, the distribution function is decelerated
back to the background Maxwellian (Figure 4, plots for z =
5 and 6). This implies that there must be regions of nonzero
parallel electric field centered around z = 2 and 5 to
accelerate and decelerate, respectively, the electron popula-
tion. Exactly such a profile is shown in Figure 5a which
illustrates the parallel electric field directly from the
simulation at t = 0.009. We will return to a discussion of
Figure 5b shortly.

3.2. Potential-Current Relation

[14] For consideration of the energy with respect to the
electrons it is convenient to move to the frame of reference
moving with the pulse (wave frame) where @/@ t = 0 and so
the system is to first order quasistatic. Considering again the
pulse propagating toward z = 0 with speed 	VA, the velocity
of an electron measured in the frame of reference of the
pulse is given by

vew ¼ ve þ VA; ð10Þ

where ve is the velocity of the electron in the plasma frame.
The conservation of energy for the electron in the wave
frame (in the absence of converging magnetic field) is then
given by

1

2
mev

2
ew 	 efeff ¼ Ue; ð11Þ

where feff is the ‘‘effective’’ electrostatic potential (as the
system is not exactly electrostatic since the curl of E is not
identically zero) and Ue is the electron’s total energy in the
wave frame. For a population of cold electrons with number
density ne this can be expressed as

1

2
hnemev

2
ewi 	 neefeff ¼ W ; ð12Þ

where the brackets are indicative of average and W is the
total energy density. Using equation (10), this becomes

1

2
neme V 2

A þ 2hveiVA

� �
	 neefeff ¼ W ; ð13Þ

where hvei = 	je/nee and the term ve
2 was neglected since

ve  VA. Far from the pulse, je = 0 and f = 0, which gives

W ¼ 1

2
nemeV

2
A : ð14Þ

Since pressure effects are negligible in a cold plasma, the
energy density is conserved, and

1

2
neme V 2

A þ 2hveiVA

� �
	 neefeff ¼

1

2
nemeV

2
A : ð15Þ

Substituting in for hvei in terms of je, this simplifies to

feff ¼ 	mejeVA

nee2
: ð16Þ

Figure 4. (top) Slice of parallel current density as a function of z at x = 0.725 and t = 0.009. (bottom)
Corresponding electron distribution functions at the points indicated. The distribution functions were
calculated using electrons in the z grid interval closest to the indicated points and within 0.072 � x �
0.074.
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[15] Using the parallel current from Figure 3 and the
corresponding profile for ne from the simulation, the
profile of the effective potential calculated using expres-
sion (16) is illustrated in Figure 6. Not surprisingly, it
exhibits the same basic profile as the field-aligned current
density. Now, calculating the parallel electric field from the
potential using

Ez ¼ 	 @feff

@z
; ð17Þ

the results are displayed in Figure 5b. As is evident, this
result agrees very well with the parallel electric field taken

directly from the simulation (plotted in Figure 5a),
illustrating that the effective potential offers a good
instantaneous picture of the parallel electric field. Since
Ez is the same in the plasma and wave frames and we have
made a linear approximation with regards to ve, equation
(16) reduces to the current-voltage relation for the linear
fluid electron inertia term in the electron momentum
equation je = ie2neEz/mew [i.e., see Rankin et al., 1999].
This is accomplished with the assumption that Ez =
	ikzfeff and with the use of the shear Alfvén wave
dispersion relation w = 	kzVA. The exclusion of the
nonlinear term in the momentum equation is justified since
@ve/@t � (verk) ve for a uniform equilibrium [Wright et
al., 2002].

4. Simulation in the Inertial Limit (Lx = 25 km)

[16] For the following simulation, Lx = 25 km was used,
and the radial dimensions of the grid were reset to 0 � x �
0.04 in nondimensional units. All other parameters
remained the same. Figure 7 illustrates the parallel current
at t = 0.009. As is evident, the contours are much more
complicated than illustrated in Figure 3. Two main features
are manifested. The first is a broadening of the pulse width
at the leading edge and a narrowing at the trailing edge with
the entire pulse length being greater than that exhibited for
large Lx. The second feature is the appearance of small-
amplitude waves propagating away from the pulse edges in
the perpendicular direction. The small contour value of 50
(compared with the peak value of 1200) has been chosen to
bring out these wave features, which are much more
prominent in the contours of the parallel electric field to
be discussed below. The smaller value of Lx implies that the
parallel current should be larger, and this is evident in
Figure 8, which is a slice along the center of the right-hand

Figure 5. Contours of parallel electric field (a) calculated
from the simulation and (b) calculated from the effective
potential feff at t = 0.009 for the Lx = 100 km case.

Figure 6. Contours of the effective potential feff calcu-
lated from expression (16) using the parallel current
illustrated in Figure 3b.
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parallel current region at x = 0.026 along with the distribu-
tion functions at the points indicated. As is evident, the
larger parallel current is carried by a larger displacement of
the electron distribution function.

[17] Figure 9 illustrates the parallel electric field at t =
0.009 from both the simulation (Figure 9a) and the electro-
static potential (Figure 9b) calculated in the same way as
discussed in section 3.2. As with the current, the parallel
electric field exhibits a broadening at the leading edges and
a narrowing at the trailing edges along with the wave
structure propagating away from the corners of the pulse
in the perpendicular direction. Since we are in the limit Lx �
10le, the inertial Alfvén wave dispersion relation applies,
and these are inertial Alfvén waves with perpendicular
wavelengths of the order of 10le (k?le � 1). Such wave
structures associated with Alfvén pulses are also evident in
cold plasma theory (where they have been termed Alfvén
resonance cones [Bellan, 1996; Stasiewicz et al., 1997;
Lysak and Song, 2001] and have also been noted in satellite
observations [Stasiewicz et al., 1997]). A better picture is
illustrated in the plots at the bottom of Figure 9, which are
slices of Ez as a function of x at z = 2.96 for both cases. The
wavelength of the waves is �50 km, which is of the
expected order of 10le (where le = 5.3 km). In addition,
comparison of Figures 5 and 9 illustrates the corresponding
larger electric field needed to accelerate the electrons in the
latter case.
[18] The fact that the quasi-static approximation still

works in this regime is not surprising when one examines
the electron and Alfvén timescales in the wave frame. For
an electron the relevant timescale is simply the timescale
needed to cross the region Lz, and as the electrons are
moving with approximately the Alfvén speed in the wave

Figure 7. Contours of parallel electron current je at t =
0.009 for the Lx = 25 km simulation.

Figure 8. (top) Slice of parallel current density as a function of z at x = 0.026 and t = 0.009 for the Lx =
25 km case. (bottom) Corresponding electron distribution functions at the points indicated. The
distribution functions were calculated using electrons in the z grid interval closest to the indicated points
and within 0.025 � x � 0.027.
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frame, the timescale te = Lz/VA = 0.002 in nondimensional
units. On the other hand, the Alfvén frequency in the wave
frame is

wAw ¼ wAp þ kzVA ¼ 	 kzVAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2xl

2
e

q þ kzVA; ð18Þ

where wAp is the inertial Alfvén wave frequency in the
plasma frame (note that kz is less than zero, corresponding
to propagation in the negative z direction with speed VA). As
is evident, in the MHD limit (me ! 0), wAw = 0 in this
frame of reference, which is approximately the case in the
large-scale limit. This implies that tAw = 2p/jwAwj = 1, and
so @/@t is exactly 0. Therefore an observer moving with
speed 	VA would see no changes in the field values. In the
inertial limit, though, wAw has a nonzero value, and tAw is
finite, and an observer would see changes in this field on
this timescale. Considering the dominant mode kx = 2p/Lx,
Figure 10 plots the ratio of the electron transit time to the
Alfvén wave period as a function of Lx in units of le. As Lx
gets smaller, the Alfvén period approaches the electron
transit time, and the quasi-static approximation breaks
down. However, for the minimum parameters used here
(Lx � 5le), tAw is �3 times larger than te, and so it is not
surprising that the quasi-static approximation was still very
good; that is, the wave fields do not change much during the
electron transit. That the approximation breaks down for
much smaller Lx was confirmed by a test run with Lx � 2le,
where the structure of parallel electric field determined from

the potential diverged fairly significantly from the simula-
tion field.
[19] It should be noted that the true wave frame for the

pulse is not moving with 	VA but with the phase speed of
the inertial Alfvén wave. For the large-scale limit this is a
very good approximation which progressively gets worse as
Lx gets smaller. It is not possible to transform to an inertial
Alfvén wave frame, since the different kx modes present will

Figure 9. Contours of parallel electric field (a) calculated from the simulation and (b) calculated from
the potential feff at t = 0.009 for Lx = 25 km case. At the bottom are slices of Ez as a function of x at z =
2.96 (indicated by dotted line in the corresponding contour plot).

Figure 10. Ratio of Alfvén timescale (tAw) to the electron
transit timescale (te) as a function of Lx where tAw was
calculated from expression (18) using kx = 2p/Lx.
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propagate in z at slightly different speeds, as evidenced by
the evolved structure in Figure 7. However, the expression
derived in the frame moving with the Alfvén speed recon-
structed Ez very accurately for the perpendicular scales of
interest, and the expression suggests that the error is small.

5. Energy

[20] The 2-D energy density (energy density per unit y) of
the hybrid MHD-kinetic system in the plasma frame and for
periodic boundary conditions is given in nondimensional
units by (Damiano et al., submitted manuscript, 2004)

1

2
rou

2
y þ

b2y

2
þWe; ð19Þ

where We is the kinetic energy density of the electrons
(where the kinetic energy of an electron is 1/2meve

2).

Figure 11 illustrates a slice at z = 2.96 of the individual
energy density terms as a function of x for Lx = 100 km
(Figure 11a) and Lx = 25 km (Figure 11b). Both plots are
for t = 0.009, and the slice at z = 2.96 was chosen because
the current at this point is approximately average for the
variation across the length of the pulse in z (see Figure 8)
and therefore is more valid for comparison of average
electron energy densities than the peak value. The densities
are normalized so that the maximum energy density in uy is
1. As is evident, there is relatively little energy residing in
the electrons in the large perpendicular-scale limit, but for
the inertial case they account for a more significant
portion. Wright et al. [2003] show that the ratio of the
electron energy density to the magnetic energy in the two-
fluid picture can be expressed in terms of le and Lx as

1=2nmehvei2

b2y=2
� l2

e

L2x
: ð20Þ

Using le = 5.3 km and Lx = 25 km, the ratio is �0.045.
This is consistent with the maximum values illustrated in
Figure 11a. The two-fluid approximation works well here
because of the large displacement of the entire distribution
function. The shifting of the peak electrons with original
velocity close to zero adds the largest contribution to the
energy in the displaced picture, and consequently, the
thermal energy residing in the width of the distribution
(which is not incorporated in equation (20)) is of secondary
importance. This is emphasized by the plot in Figure 11c
of the electron energy density for the original simulation
and a simulation with kT = 10 eV. In the kT = 100 eV case,
there is a larger background energy density which would
correspond to the thermal energy of the ambient distribu-
tion function, but it is still significantly less than the energy
density associated with the shift in the distribution
function. Also, the magnitude of the rise in energy density
relative to the background is approximately the same in
both cases, as expected.
[21] In Figure 12 the total energy is plotted as a function

of time in the inertial case, illustrating that total energy is

Figure 11. (a) Slices of the components of energy density
at z = 2.96 for the Lx = 100 km case and (b) for the Lx =
25 km case. The densities in Figures 11a and 11b are
normalized so that the maximum energy density in uy is 1.
(c) Electron energy density for the Lx = 25 km case and
initial Maxwellian distribution function with kT = 100 eV
(solid line) and kT = 10 eV (dotted line).

Figure 12. Energy as a function of time for the Lx = 25 km
case.
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nicely conserved for the MHD-kinetic system as well. The
gradual drop in the energy in uy and the corresponding
increase in the energy in by for t � 0.003 are due to the
splitting of the initial perturbation which only had energy in
uy. In the large-scale limit, almost all the energy is split
equally between the uy and by modes, satisfying the Alfvén-
Walén relation discussed in section 2, with a slight increase
in the electron energy as the pulses separate and the currents
emerge.

6. Summary and Discussion

[22] We have used the 2-D hybrid MHD-kinetic model of
Damiano et al. [2003, also submitted manuscript, 2004] to
consider the case of a rectangularly shaped Alfvén wave
pulse propagating in a constant density plasma and mag-
netic field in both the large perpendicular-scale and inertial
limits. In addition, we have derived a relation between the
electrostatic potential and the parallel current density based
on conservation of energy arguments in the frame of
reference of the pulse, and a comparison was made between
the parallel electric field determined from this potential and
that produced directly from the model.
[23] In the limit of large perpendicular-scale length (Lx =

100 km) the pulse propagates with speed VA and maintains
its original geometry with slight modifications at the
corners. The geometry of the pulse results in a clear
separation of the perpendicular and parallel current regions
around the edges of the pulse. Nonzero parallel electric
field values appear at leading and trailing corners to
accelerate the electrons to carry the parallel current along
the edge and then decelerate them when the current edge
region has passed. For the parameters considered here the
entire distribution function is accelerated to carry the
current. In this limit, as would be expected, the largest
portion of the energy is by far concentrated in the uy and
by components with a small amount residing in the
electrons.
[24] In the ‘‘inertial limit’’ (Lx = 25 km) the above simple

picture becomes somewhat more complicated. The parallel
current regions become more elongated in the parallel
direction than in the large-scale limit and are broadened at
the leading edge and narrowed at the trailing edge. In
addition, small-amplitude inertial Alfvén waves with per-
pendicular wavelengths of the order of 10le (Alfvén reso-
nance cones) are seen to be propagating away from the
leading and trailing corners of the pulse. These features are
more clearly visible in the profile of the parallel electric
field where, in addition to the inertial-scale structure, the
oval profiles seen at the corners of the pulse in the large-
scale limit broaden at their respective leading edges. Inter-
estingly, though, the parallel electric field determined from
the derived quasi-static potential-current relation still does a
very good job of reproducing the simulation parallel electric
field (as was the case in the large-scale limit). The smaller
value of Lx also results in a stronger parallel current which is
carried by a larger displacement of the electron distribution
function. This large displacement means that the energy
stored in the electrons becomes significant, and the almost
exact equipartition of energy between the uy and by compo-
nents evident in the MHD limit breaks down. The propor-
tion of energy residing in the electrons is in agreement with

the proportion predicted by the relation derived by Wright et
al. [2003] using two-fluid theory. It should be noted that a
Maxwellian background distribution function was chosen
for simplicity, even though many examples in the magne-
tosphere are non-Maxwellian (i.e., Kappa distributions).
However, the difference is probably not important since
for these parameters the current is being carried by the
shifting of the entire distribution function, and the shape is
of secondary importance.
[25] Although this pulse simulation is not meant to be

representative of ULF waves in the auroral acceleration
region, the choice of parameters was designed to produce
relatively realistic parallel current densities and spatial
scales. In the Lx = 100 km case the maximum value of je
is �0.6 mA/m2, and for Lx = 25 km the result was je �
2 mA/m2. The energies of the electrons in the central shifted
peaks of the distributions carrying this current were of the
order of 50 and 500 eV for Lx = 100 and 25 km, and the
corresponding peak parallel electric fields were �0.6 and
�1 mV/m, respectively. These values for Ez are also of the
order of magnitude that is expected for the acceleration of
electrons by ULF waves. The electron energies are a little
below the typical keV values associated with auroral arc
formation. This is due to the fact that the initial by
perturbation of 100 nT was divided equally between the
two separating pulses. Thus the initial amplitude of each
individual pulse is about half of typical values. If we were
to double the by perturbation, that would double the parallel
current density and quadruple the average electron energy,
putting them comfortably in the keV range. Although it is
beyond the scope of this model, such large drifts relative to
the thermal velocity (vd � vth) minimize thermal effects
and can give rise to a two-stream (Buneman) instability
[Buneman, 1959; Gary, 1993]. However, we have chosen
the somewhat small value of vth not so much to reflect reality
in the auroral acceleration region (where electron thermal
energies can be of the order of a keV) but to emphasize the
drift of the electron distribution function needed to carry the
current. As well, in the case where the electron drift velocity
becomes large enough to excite the Buneman instability, the
net result is to thermalize the distribution function until it is
warm enough that vth is again in the range of stability [i.e.,
Reitzel and Morales, 1998], but this is a secondary effect
which has no bearing on the initial displacement needed to
carry the current. In terms of the general auroral electron
acceleration problem the two-stream instability is not
usually associated with downwelling beams in the auroral
acceleration region (to which this work most applies) but
most commonly with the case of cold upwelling beams
accelerated by double layers close to the auroral iono-
sphere [Newman et al., 2001]. There parameters are more
favorable for the onset of the instability, and observations
of intense electrostatic waves and nonlinear electron phase
space hole structures are evidence of the presence of an
instability [Ergun et al., 2001].
[26] In summary, the work presents a clear and complete

examination of what is happening in the hybrid picture
during the propagation of a free Alfvén pulse in a uniform
medium. It illustrates the usefulness of an effective potential
to provide an accurate instantaneous picture of the parallel
electric field in a wave frame for which the fields are
approximately steady. The constant density assumption
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neglects the effects of strong density gradients (and iono-
spheric reflection) evident in the Earth’s acceleration region,
and this will be more completely investigated in the future.
However, since the use of the effective potential is depen-
dent mostly on the timescales, it is possible that such a
description is justified in the more complicated system, and
it may be possible to construct a potential-current relation
using a more complicated expression for electron energy.
Also, although the geometry was idealized to clearly sep-
arate perpendicular and parallel current regions, such ge-
ometries can occur naturally in the shearing of magnetic
field lines in plasma flow past a conducting body, such as in
the wake of flow past Io [Wright and Southwood, 1987] or
flow in the Earth’s magnetosheath relative to the conducting
ionosphere of the Earth [Wright, 1996].
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