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Abstract We present results from a 3-D numerical simulation which investigates the coupling of fast
and Alfvén magnetohydrodynamic (MHD) waves in a nonuniform dipole equilibrium. This represents the
time-dependent extension of the normal mode (∝ exp(−i𝜔t)) analysis of Wright and Elsden (2016) and
provides a theoretical basis for understanding 3-D Alfvén resonances. Wright and Elsden (2016) show that
these are fundamentally different to resonances in 1-D and 2-D. We demonstrate the temporal behavior
of the Alfvén resonance, which is formed within the “Resonant Zone”; a channel of the domain where a
family of solutions exists such that the natural Alfvén frequency matches the fast-mode frequency. At early
times, phase mixing leads to the production of prominent ridges in the energy density, whose shape is
determined by the Alfvén speed profile and the chosen background magnetic field geometry. These off
resonant ridges decay in time, leaving only a main 3-D resonant sheet in the steady state. We show that
the width of the 3-D resonance in time and in space can be accurately estimated by adapting previous
analytical estimates from 1-D theory. We further provide an analytical estimate for the resonance amplitude
in 3-D, based upon extending 2-D theory.

1. Introduction

This work is concerned with the coupling of fast and Alfvén magnetohydrodynamic (MHD) waves. Resonant
coupling will occur at the location where the Alfvén frequency matches the fast-mode frequency in a process
known as resonant absorption or field line resonance (FLR). This process has applications in both solar and
magnetospheric settings but is treated here in a theoretical sense.

There have been many theoretical and computational studies on Alfvén resonances with varying degrees of
complexity. They may broadly be classified according to the number of independent spatial coordinates the
mathematical formulation of the problem depends upon. For example, Southwood [1974] assumed Fourier
modes in both the field-aligned and azimuthal directions and time, reducing the problem to an ordinary differ-
ential equation in the radial coordinate. This approach (along with that of Chen and Hasegawa [1974]) provides
much insight and reveals the Alfvén resonance as a singularity in a 1-D model. These waves represent Alfvén
waves standing on geomagnetic field lines, a concept first theorized by Dungey [1954, 1967].

Subsequently, the theory has been refined in many aspects: Computational 1-D models including time depen-
dence were studied by Allan et al. [1985, 1986a, 1986b] and Mann et al. [1995] and were extended to 2-D by
Lee and Lysak [1989, 1990]. The latter clearly showed the persistence of FLRs in 2-D axisymmetric equilibria.
Subsequent normal mode (i.e., solutions ∝ exp(−i𝜔t)) studies put this on a firm theoretical basis [Southwood
and Kivelson, 1986; Thompson and Wright, 1993; Wright and Thompson, 1994]. Further details of these and
other studies can be found in the review by Wright and Mann [2006].

More recently, time-dependent 3-D simulations have provided evidence for the persistence of Alfvén reso-
nances in 3-D [Claudepierre et al., 2009, 2010; Degeling et al., 2010; Terradas et al., 2016]. A theoretical framework
for understanding 3-D Alfvén resonances has been described recently by Wright and Elsden [2016] and shows
that Alfvén resonances in 3-D are fundamentally different to those in 1-D and 2-D. In particular, identifying
the location of resonant coupling and the polarization is not straightforward as there is no longer a unique
solution, in fact there are an infinite number.

1.1. 3-D Field Line Resonances
To appreciate why 3-D FLRs are different to those in 1-D and 2-D, consider the cases depicted in Figure 1 which
shows the intersection of both the magnetopause boundary and the resonant field lines with the equatorial
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Figure 1. Intersection with the equatorial plane of a model magne-
tosphere in (a) an axisymmetric case and (b) a flared nonaxisymmetric
case, with the Sun to the right. The outer black lines represent a
notional magnetopause, the red lines (solid and dashed) possible
resonant locations. Points p, q, p′ and q′ represent resonant field lines
which are further explained in the main text.

plane. Figure 1a shows an idealized equi-
librium (e.g., based upon a dipole mag-
netic field) that is invariant in azimuth for
which the 2-D normal mode theory iden-
tifies the site of resonant coupling unam-
biguously: it must lie on a circle where the
frequency of the toroidal Alfvén wave (i.e.,
that with azimuthal velocity and mag-
netic field perturbations) matches the
driving frequency (𝜔d). Thus, we know the
permitted location of the resonance and
the polarization given only 𝜔d . The sites
on the dawn and dusk flanks where FLRs
are most frequently observed are shown
in red.

How does this differ in 3-D? Figure 1b
shows that a magnetosphere with flared
flanks is clearly not axisymmetric and so

represents a fully 3-D medium. The red lines again indicate the typical location of the FLRs as found in simu-
lations by Claudepierre et al. [2009, 2010] and Degeling et al. [2010]. The Alfvén frequencies of the toroidal and
poloidal Alfvén waves have been studied extensively, and it is well known that they are different (particularly
for the lower harmonics). Since the velocity and magnetic field of the Alfvén wave will lie along the resonant
ridge [Wright and Elsden, 2016], the waves in Figure 1b cannot be simply toroidal or poloidal—so what will
their frequency be for an intermediate polarization?

Degeling et al. [2010] show how progress can be made by considering the counterparts of both the poloidal
and toroidal modes in more general coordinate systems. An alternative way to find the frequencies is to adopt
the formalism of Singer et al. [1981] and adapt it for waves with polarization directed along the resonant ridge.
In this fashion Wright and Elsden [2016] show how the Alfvén frequency varies smoothly with polarization
angle on a given field line. They also show how this provides an explanation for Figure 1b by considering
the field line labeled p: if the driving frequency is known, and p is on the resonance, then there will be a
unique polarization for which the Alfvén wave is resonant. This polarization direction (which coincides with
the orientation of the ridge) can be followed to field line q. Once at q the medium is slightly different, and
so the polarization angle (and orientation of the ridge) at q changes slightly from that at p. Repeating this
mapping process allows the resonant ridge to be traced out as shown.

However, it is also possible to start at a neighboring field line (p′) where the resonant polarization will be
slightly different to that at p. Following the polarization direction at p′ to q′ a new ridge is mapped out
(red dashed line). Wright and Elsden [2016] show how there is a Resonant Zone where an infinite family of
these allowable solutions exist. In this sense 3-D FLRs are fundamentally different to those in 1-D and 2-D.
They also identify factors that will favor one solution over another in a given situation. For the FLRs in a flared
flank waveguide the favored ridge is the one that, when mapped to the subsolar point, will have a toroidal
polarization. These predictions agree with the location and polarization of the Alfvén resonances found in the
simulation results of Claudepierre et al. [2009, 2010], Degeling et al. [2010], and Wright and Elsden [2016]. See
the latter publication for a more extensive discussion of their theoretical framework.

The aim of this paper is to extend the normal mode results of Wright and Elsden [2016] to the time-dependent
regime. Time dependence gives causality to their results and permits the study of the formation of the reso-
nance, along with associated effects such as phase mixing. We also provide (and validate) expressions for the
width and amplitude of 3-D FLRs. The paper is laid out as follows: Section 2 discusses the model employed
and the computational formulation; section 3 presents the key simulation results and analysis; and concluding
remarks are made in section 4.

2. Model

While our modeling is directly relevant to FLRs in the Earth’s magnetosphere, the focus of the present study
is to provide a clear understanding of the processes involved in 3-D FLR formation, not to directly model any
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Figure 2. Schematic of 2-D dipole coordinate system. Lines of constant
𝛼 are drawn in red, which represent magnetic field lines. Lines of
constant 𝛾 are drawn in blue, where 𝛾 acts as a field-aligned
coordinate. The shaded region bounded by the lines labeled 𝛼min,
𝛼max, 𝛾 = 0 and 𝛾max represents a possible simulation domain.

specific observations. A key aspect to
elucidate arises from the toroidal and
poloidal Alfvén eigenfrequencies being
different and the necessity to understand
waves with an intermediate polarization.
To facilitate this aim, we do not choose
an equilibrium that is intended to be an
accurate representation of the magneto-
sphere. Rather we choose one that will
allow the clearest identification of the
physics in operation. To this end, we
employ a 2-D magnetic dipole (rather than
3-D) as the fundamental Alfvén frequen-
cies can differ by a factor of 3 (compared
to 40% for a 3-D dipole).

2.1. Model Coordinates
We begin by briefly describing the field-
aligned dipole coordinate system adopted
in this paper. Full details can be found in

Wright and Elsden [2016]. The system geometry is characterized by scale factors (h𝛼 , h𝛽 , h𝛾 ) which are related
to an element of real space dr by

dr = e𝛼h𝛼d𝛼 + e𝛽h𝛽d𝛽 + e𝛾h𝛾d𝛾. (1)

The problem inherent to the standard dipole coordinates [see for example Kageyama et al., 2006] is that equal
increments in a coordinate direction produce vastly different increments in path length, which creates com-
putational difficulties. We therefore adopt a set of coordinates (𝛼, 𝛽, 𝛾) based on the 2-D dipole geometry.
These, and the corresponding scale factors, are

𝛼 = R
cos𝜙

, (2)

𝛽 = z, (3)

𝛾 = Rg tan−1

(Rg

R
sin𝜙

)
, (4)

h𝛼 = cos2 𝜙 = 1
1 + Λ2

, (5)

h𝛽 = 1, (6)

h𝛾 =
(

R
Rg

)2

+ sin2 𝜙 = 1
1 + Λ2

(
𝛼2

R2
g

+ Λ2

)
, (7)

where Λ is defined by

Λ(𝛼, 𝛾) = 𝛼

Rg
tan

(
𝛾

Rg

)
. (8)

(R, 𝜙, z) are the standard cylindrical coordinates, and Rg is the radial equatorial crossing point of a field line,
normally chosen in the center of the domain. The scale factors in (5)–(7) have also been defined in terms of
the coordinates (𝛼, 𝛽, 𝛾), for use in defining the equations in the next section. A schematic of the coordinates
is shown in Figure 2, with the striped region indicating a possible simulation domain.

2.2. MHD Equations
Now that the coordinates have been determined, we consider the formulation of the MHD equations in this
system. Wright [1992] (equations (7) and (8) therein) states the linearized ideal MHD equations in a cold
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plasma in general field-aligned orthogonal curvilinear coordinates. For the geometry described in the previ-
ous section, these equations become

𝜕U𝛼

𝜕t
= V2

A

(
1 + Λ2

)2

𝛼2∕R2
g + Λ2

[
𝜕B𝛼

𝜕𝛾
−

𝜕B𝛾

𝜕𝛼

]
− 𝜈U𝛼, (9)

𝜕U𝛽

𝜕t
= V2

A
1

𝛼2∕R2
g + Λ2

[
𝜕B𝛽

𝜕𝛾
−

𝜕B𝛾

𝜕𝛽

]
− 𝜈U𝛽 , (10)

𝜕B𝛼

𝜕t
= 1

𝛼2∕R2
g + Λ2

𝜕U𝛼

𝜕𝛾
, (11)

𝜕B𝛽

𝜕t
=

(
1 + Λ2

)2

𝛼2∕R2
g + Λ2

𝜕U𝛽

𝜕𝛾
, (12)

𝜕B𝛾

𝜕t
= −

(
𝛼2

R2
g

+ Λ2

)[
𝜕U𝛼

𝜕𝛼
+

𝜕U𝛽

𝜕𝛽

]
. (13)

We have introduced the variables U𝛼 =u𝛼h𝛽B, U𝛽 =u𝛽h𝛼B, B𝛼 =b𝛼h𝛼 , B𝛽 =b𝛽h𝛽 , and B𝛾 =b𝛾h𝛾 , in terms of the
velocity (u) and magnetic field (b) perturbations, respectively, for computational efficiency. B is the back-
ground magnetic field strength, VA the background Alfvén speed (B∕

√
𝜇0𝜌), and 𝜈 represents the strength of a

linear drag term that has been added to the equation of motion to preclude a singularity developing. Alternate
forms of dissipation could be added, such as viscosity, resistivity, or dissipative boundaries. The singularity
can also be removed by driving the system with a frequency that has a small imaginary part. The structure of
the resonance is surprisingly insensitive to the exact form of dissipation [Wright and Allan, 1996], and we con-
sider the limit of small dissipation, so the drag is only significant at the resonance. We have normalized the
equations by characteristic values: lengths by R0; magnetic field by the background field B0 =B(R=R0, 𝜙=0),
densities by 𝜌0 =𝜌(R0, 0), velocities by V0 =B0∕

√
𝜇0𝜌0, and times by t0 =R0∕V0.

2.3. Numerical Model and Domain Setup
To solve the system given by equations (9)–(13) numerically, we employ the leapfrog-trapezoidal finite differ-
ence scheme which is second-order accurate in time and space. For more details on this method, see Zalesak
[1979]. We implement a staggered grid, where different variables are defined on different grids, which aids
with the definition of derivatives.

The solution domain is indicated by the striped region in Figure 2. As shown, only the Northern Hemisphere
is solved for to save on computational resources, with a symmetry condition imposed in the equatorial plane,
such that the full solution corresponds to a fundamental mode over−𝛾max <𝛾 <𝛾max. This is realized by setting
nodes of velocity at the ionospheric end of the field lines (𝛾 = 𝛾max), with antinodes at the equator (𝛾 = 0).
The inner boundary in 𝛼 (𝛼min) is assumed to be perfectly reflecting (node of u𝛼), while the outer boundary
(𝛼max) is driven with perturbations of b𝛾 to model driving by magnetic pressure. Driving in such a way has
been demonstrated to simulate a node of b𝛾 at the outer boundary [Elsden and Wright, 2015], which lowers
the fundamental radial mode to a quarter wavelength. The form of the driver is simply a running sinusoidal
wave packet which is tailored to smoothly enter and exit the domain. The frequency of the driven signal is
controlled by the phase speed of the packet and the wavelength in the 𝛽 direction. We choose to have a
relatively long wavelength driver to reduce the evanescence of the fast-mode incident on the domain. This
will allow the most effective driving of resonances far from the driven boundary. Either side of the section of
the domain where we study 3-D FLRs, we introduce additional dissipative buffer zones in the 𝛽 coordinate.
These act to dissipate any perturbations such that they do not return to the domain of interest.

The Alfvén speed profile is critical in providing a variation of the natural Alfvén frequency within the domain.
Since there is no variation in 𝛽 of the equilibrium magnetic field, the dependence on 𝛽 in the system, and
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Figure 3. Variation of the Alfvén speed with 𝛽 .

hence its 3-D inhomogeneous nature, is borne by the Alfvén speed profile. We impose a variation of the Alfvén
speed, VA, with 𝛽 given by

VA(𝛽) =

⎧⎪⎪⎨⎪⎪⎩
1 0 ≤ 𝛽 ≤ 𝛽VA1

,

1 − 𝛿VA
sin2

[
𝜋

2

(
𝛽−𝛽VA1

𝛽VA2
−𝛽VA1

)]
𝛽VA1

< 𝛽 < 𝛽VA2
,

1 − 𝛿VA
𝛽 ≥ 𝛽VA2

,

(14)

where 𝛽VA1
and 𝛽VA2

define the different sections of the profile, and 𝛿VA
controls the change in VA with 𝛽 .

Figure 3 displays the variation of VA with 𝛽 for the run discussed in this paper, with the specific values dis-
cussed in the next subsection. This shape has been specifically chosen to have uniform VA regions at either
end of the waveguide in 𝛽 . This will allow purely 2-D toroidal resonance structures to develop in these regions.
A decrease in VA with 𝛽 in the middle section will imply the point where the Alfvén frequency matches the
driving frequency will move inward toward shorter field lines. The question is what will the polarization of
the Alfvén wave be between these two uniform regions, which is to say, what path will the resonance take?
To help identify this, we have set up the simulation so the resonant path is approximately equally inclined to
both the 𝛼 and 𝛽 directions in the equatorial plane.

In order to test the method, multiple runs of varying complexity have been performed, for example, setting all
of the scale factors to 1 to reproduce Cartesian results, including and removing dissipation, beginning with an
initial displacement in the domain without driving, and using a small weakly nonuniform domain. From these
test runs we have established the validity of the code, with energy typically conserved to one part in 104.

2.4. Run Specifications
For clarity and ease of reference, in this subsection we list the specific properties of the simulation performed.
The domain covers 𝛼 ∶ 0.6 → 1.0, 𝛽 ∶ 0.0 → 0.8, 𝛾 ∶ 0.0 → 0.56, with 160, 240, and 60 points taken in each of
the three directions, respectively. These were chosen appropriately to resolve the smallest scales appearing
in the simulation. Rg =0.8 corresponding to the middle of the domain in 𝛼. On the field line with 𝛼=Rg in the
equatorial plane, 𝛾 = Rg𝜙 = 0.56 is the path length along the field line from the equator to the ionospheric
end at 𝛾max (latitude of 𝜙=0.7 radians or 40∘).

The dissipation regions in𝛽 span from𝛽=0.0 → 0.15 and𝛽=0.65 → 0.8. The dissipation ramps up gently over
these regions so as not to act like a reflecting boundary and has a peak value of 𝜈=1.0. The interior dissipation
(from 𝛽=0.15 → 0.65) is set to 𝜈=0.1. The driving frequency is chosen, in dimensionless units, as 𝜔d = 2.596
(period 𝜏=2.420), which is enforced by having a wavelength on the driven boundary of 𝜆𝛽 = 10 and a phase
speed of vph =4.1317. This frequency is tailored to excite resonances in the 2-D sections at desired locations
in 𝛼, namely 𝛼 = 0.65 and 𝛼 = 0.9, for the Alfvén speed profile given in Figure 3. This is achieved by setting
𝛽VA1

=0.175, 𝛽VA2
=0.625, and 𝛿VA

=0.40234 in equation (14). The simulation is run for many decay times (1∕𝜈,
for 𝜈 = 0.1), in order to ensure a steady state is reached. A time step is chosen such that the CFL condition is
comfortably satisfied everywhere.
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Figure 4. (a) Shaded surface plot of the flux tube energy density (FTED) at time t = 46.89, plotted in (𝛼, 𝛽) coordinates.
(b) Same as Figure 4a but from a rotated view. (c) Aerial view of the FTED at the same time. (d) A skeleton of the solution
domain in physical space (black and grey lines), together with the resonant field lines mapped into physical space,
which form a resonant sheet in 3-D.

3. Results

To most clearly display the structure of the resonance formed, we consider the total energy integrated along
a field line in 𝛾 . This represents the energy density of a flux tube of unit cross section in the equatorial plane,
and thus we refer to it as the flux tube energy density or FTED. This quantity captures the total energy in
the Alfvén wave on a given flux tube, even though it travels back and forth along the tube throughout the
wave cycle. It will also contain some fast-mode contributions, but these should not be too important at the
resonance. We consider the FTED as an indicator of the location of the Alfvén resonance, since the resonance
should manifest itself as a localized accumulation of energy.

Figure 4a displays a shaded surface plot of the FTED at time t=46.89, while Figure 4b shows the same surface
but from a reverse angle. There is a clear “resonant surface” formed, together with ridges which are more
prominent on the inner (low 𝛼) side of the surface peak. The evanescent structure of the fast mode is clearly
demonstrated by the decaying structure at the right-hand edge of Figure 4a, which is the driven side of the
domain (at 𝛼 = 1.0). Figure 4c gives an aerial view of the FTED at the same time as Figures 4a and 4b. This
highlights the structure of the resonant path in the (𝛼, 𝛽) plane, as well as the presence of the ridges, which
converge from the lower end of the resonance (𝛽 ∼ 0.15) to the upper end (𝛽 ∼ 0.6). Another feature high-
lighted here is the locally 2-D resonant regions, at 𝛼 ∼ 0.65, 𝛽 ≳ 0.6, and 𝛼 ∼ 0.9, 𝛽 ≲ 0.2, which were tailored
through the choice of the Alfvén speed profile. Figure 4d displays a skeleton of the solution domain in real
space. Within this skeleton lies the physical surface formed of resonant field lines, colored red.

Figure 5a shows a shaded surface plot of the FTED at a time of t = 117.24, near to the end of the simulation.
By this time, the domain has been steadily driven for many cycles. The ridges present at the earlier time have
almost entirely decayed, as is made clear by the aerial view of the FTED at this time shown in Figure 5b. The
location of the resonant ridge is unchanged from the previous time. It is also worth noting here that the reso-
nance position does not vary along the field line in the 𝛾 direction, which is demonstrated for the steady state
case by Wright and Elsden [2016]. They also demonstrated that the velocity and magnetic field perturbations
are directed along the resonant ridge in real space, i.e., the wave fields are polarized along the resonance.
Hence, it is possible to infer the path of the resonance from the FTED.
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Figure 5. (a) Shaded surface of the FTED at a later time, t = 117.24. (b) Aerial view of Figure 5a.

Figures 4 and 5 raise many interesting questions about the structure of 3-D FLRs, which we address in this
section. Such questions are as follows: What is the cause of the ridges in energy density (Figure 4c) and why
do they decay in time? What determines the path taken by the resonance? How important is the difference
between the poloidal and toroidal Alfvén eigenfrequencies? What theories can be applied from previous
analytic approaches to describe properties of the resonance, for example, the amplitude and width?

3.1. Solutions to the Alfvén Wave Equation
We begin our analysis by explaining the path of the resonance. From the shaded surface plots of the previous
section, we hypothesize that the accumulation of energy along a particular line in (𝛼, 𝛽) space is due to the
fast-driving frequency matching the Alfvén frequency. To show that this is indeed the case, we can solve the
Alfvén wave equation along a field line at a location in (𝛼, 𝛽). A thorough description of this process is given
in the analysis of Wright and Elsden [2016] sections 4.1 and 4.2, which will be summarized here. We adapt
the formulation for the Alfvén frequency in a curvilinear system given by Singer et al. [1981] by introducing a
local coordinate system (𝛼′, 𝛽′) aligned with the resonant contour. The Alfvén frequency depends upon the
location and the polarization of the Alfvén wave, and we denote the latter by the angle 𝜃 that the Alfvén
perturbations make to the 𝛽 axis. Thus, we can express the Alfvén frequency as a function of its location and
angle as 𝜔A = 𝜔A(𝛼, 𝛽, 𝜃). Taking 𝛽′ to be along the resonant contour, Wright and Elsden [2016] have shown
that the appropriate scale factors on a given field line (along 𝛾) are

h𝛼′ =
h𝛼(𝛾)h𝛽(𝛾)

h𝛽′ (𝛾0)

√√√√h2
𝛼
(𝛾0) sin2 𝜃 + h2

𝛽
(𝛾0) cos2 𝜃

h2
𝛼
(𝛾) sin2 𝜃 + h2

𝛽
(𝛾) cos2 𝜃

, (15)

h𝛽′ = h𝛽′ (𝛾0)

√√√√ h2
𝛼
(𝛾) sin2 𝜃 + h2

𝛽
(𝛾) cos2 𝜃

h2
𝛼
(𝛾0) sin2 𝜃 + h2

𝛽
(𝛾0) cos2 𝜃

, (16)

where h𝛼 and h𝛽 are as previously defined by equations (5) and (6), and 𝛾0 is the minimum in 𝛾 , which in our
case is 𝛾0 = 0 (note that h𝛼(𝛾) is a shorthand notation for h𝛼(𝛼, 𝛽, 𝛾) on the chosen field line (𝛼, 𝛽)). Given
these scale factors, we can state the Alfvén wave equation for an arbitrary polarization angle as [Wright and
Elsden, 2016]

𝜕

𝜕𝛾

(
1

h𝛾

𝜕U𝛽′

𝜕𝛾

)
+ 1

h𝛾

𝜕

𝜕𝛾

(
ln

(h𝛽′

h𝛼′

))
𝜕U𝛽′

𝜕𝛾
+

𝜔2
A

V2
A

h𝛾U𝛽′ = 0. (17)

This formulation is based upon the Alfvén wave operators derived by Wright and Thompson [1994] for the sep-
arate Alfvén wave polarizations (poloidal and toroidal). Setting 𝜃 = 0 (toroidal) or 𝜃 = 𝜋∕2 (poloidal) recovers
these equations. Equation (17) can be solved at a given position and polarization angle to yield the natural
Alfvén frequency. We can therefore use a shooting code to search for, at each location (𝛼, 𝛽), the angle 𝜃 such
that the Alfvén frequency matches the imposed driving frequency. Such an angle will not necessarily exist,
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Figure 6. The Resonance Map for the
numerical simulation, which represents
permissible solutions to equations (17) and
(18). Selected contours have been drawn.

which is discussed in detail by Wright and Elsden [2016], and
there will be a Resonant Zone where solutions do exist. Since the
orientation of the resonant contour in the (𝛼, 𝛽)plane has a slope
of 𝜃, it follows that

d𝛼
d𝛽

= tan 𝜃. (18)

Hence, for a starting position say (𝛼0, 𝛽0), we can solve
equation (17) to find the correct 𝜃 such that the Alfvén fre-
quency equals the fast-mode frequency. Then equation (18) can
be solved using a simple Euler method to step along the con-
tour. In this way, resonant contours can be traced throughout the
Resonant Zone in the (𝛼, 𝛽) plane, which will form what we call
a Resonance Map [Wright and Elsden, 2016], shown for the sim-
ulation in question in Figure 6. The Resonant Zone is bounded
on the left by poloidal polarizations (𝜃 = 𝜋∕2) and the right by
toroidal (𝜃 = 0), as can be seen by the angle at which contours
approach these lines. Various contours cross each other because
both 𝜃 and −𝜃 are valid solutions to equation (17).

What is immediately clear is the reproduction of the main reso-
nant contour from the simulation (Figure 5b) as one of the family
of permitted solutions in the Resonance Map. This confirms the
original hypothesis that this contour is indeed resonant and rep-

resents a matching of the Alfvén and fast-mode frequencies. To be clear, along all of the contours plotted in
Figure 6, the Alfvén frequency matches the driving frequency. So why do we only see one as dominant in the
simulation? Wright and Elsden [2016] have shown that there are a few mechanisms by which different contours
can be favored over others, such as boundary conditions which favor a particular polarization of the Alfvén
wave, or locally 2-D resonant regions which have a similar effect. Their theory identifies the contour originat-
ing from the 2-D region at 𝛽 > 0.6 as being favored and is shown in red in Figure 6. Indeed, this particular
solution matches very well with the ridge in Figure 5b.

The shape of the resonant ridges is governed predominantly by the Alfvén speed profile. Lee et al. [2000]
found similar behavior, where they observed dominant oscillations tangential to surfaces of constant Alfvén
speed. The authors considered a Cartesian geometry with an asymmetric Alfvén speed profile. This means
they lacked the differing toroidal and poloidal frequencies which further influence the possible Alfvén wave
polarization. However, they still captured the way in which the asymmetry of VA affected the resonance
location throughout the domain. Similar features were also discussed by Russell and Wright [2010].

It is worth highlighting further the importance of differing poloidal and toroidal Alfvén eigenfrequencies. If
these frequencies were the same, as is the case in a Cartesian geometry with h𝛼=h𝛽 =1, the idea of a Resonant
Zone of solutions no longer exists, and the bounds of the toroidal and poloidal frequencies in Figure 6 collapse
onto one another. This highlights the difference between this work and that of Russell and Wright [2010] and
Lee et al. [2000]. If it were computationally feasible to extend the domain in 𝛾 to higher latitudes, the disparity
would grow between the two modes, which would result in a broader Resonant Zone in the Resonance Map.

3.2. Resonant Ridges—Natural Frequencies
We now consider the ridges in energy density apparent at early times in the simulation (e.g., Figure 4c). The
fact that these features decay in time leads to the thought that they represent a natural response of the system
to the imposed driving, which decays due to the dissipation 𝜈. At early times, before the system has been
driven for many cycles, regions where the natural Alfvén frequency is close to the driven frequency may also
be excited. To investigate this, we performed an ideal (𝜈 = 0) simulation with all other parameters unchanged.
Being ideal, the natural responses will not decay and hence are easier to detect.

Figure 7a plots the time series for U𝛽 (from this 𝜈 = 0 simulation) at a point close to the center of the main
resonant ridge, with the corresponding fast Fourier transform (FFT) power plotted in Figure 7b. This reveals
the driving frequency of 𝜔d = 2.596 (fd = 0.41) to be dominant, with no other frequencies present, which is
as expected since the Alfvén and fast frequencies coincide here. Figure 7c again displays the time series for U𝛽
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Figure 7. (a) Time series for U𝛽 from a point on the main resonant line. (b) FFT for time series in Figure 7a. (c) Time series
for U𝛽 at a location off the main resonant line. (d) FFT for time series in Figure 7c.

except now from a point just off the main resonant contour, with its FFT plotted in Figure 7d. As the beating
profile suggests, there are two frequencies present. One is clearly the driving frequency. To investigate the
second frequency, similar plots to those in Figure 7 (not shown here) were produced for different locations.
When the field lines lie on the same ridge, the same two frequencies are observed. Moreover, as the ridges are
crossed, the second frequency varies systematically, as shown in Figure 8a. Similar results have been observed
in the nonlinear simulations of Alfvén resonances detailed in Figure 12 of Terradas et al. [2016].

Figure 8. (a) A plot of the observed natural Alfvén frequency versus 𝛼′ (symbols) and the value estimated from
equation (17) (line). (b) Shaded surface plot of the FTED as in Figure 4c, with the red ridges representing the
location of the main resonant contour from steady state simulations with driving frequencies from left to right of
𝜔d =[2.010, 2.303, 2.889, 3.182]. The green line is for the case matching the driving frequency of 𝜔d =2.596.
The blue line represents a slice in the 𝛼′ direction, along which the frequencies are measured in Figure 8a.
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The coordinate 𝛼′ corresponds to the distance (in the equatorial plane) from the resonant ridge, along the
cut shown in Figure 8b as the blue line. The green line denotes the center of the resonant ridge. Figure 8a
shows the nondriven frequency from the FFT as red symbols. Also plotted (as the solid line) is the field line
Alfvén frequency predicted from equation (17). The agreement clearly indicates that the second frequency
we observe is a free oscillation of the field line at its natural Alfvén frequency.

It is instructive to think of the whole solution as a Fourier summation over frequency. The normal modes
calculated in Wright and Elsden [2016] correspond exactly to these, so we could think of the time-dependent
results of our simulations as corresponding to a suitable sum of their normal modes. Evidently, those modes
with frequencies close to the driven frequency will make a significant contribution. For example, calculating
the normal mode for 𝜔 = 2.303 provides an accumulation of energy along the ridge shown by the red line
just to the right of the green line in Figure 8b. This, not surprisingly, corresponds exactly with the ridge in our
time-dependent simulation where the natural Alfvén frequency matches that of the normal mode. Similar
agreement is found for other normal modes with frequencies around 𝜔d (indicated by the other red lines in
Figure 8b). The fact that these features represent a free Alfvén oscillation accounts for their absence at later
times when dissipation is included. These features are clearly the 3-D manifestation of phase mixing, and we
expect the phase mixing length to follow a similar form to that given in Mann et al. [1995], which in 3-D is

Lph = 2𝜋|∇𝜔A(𝛼′, 𝛽′, 𝜃)|t =
2𝜋h𝛼′|𝜕𝜔A(𝛼′, 𝛽′, 𝜃)∕𝜕𝛼′|t . (19)

This accounts for the narrowing of scales with time (which is seen if Figure 8b is viewed as a movie in time)
until the free oscillations decay. The phase motion of the ridges will be from high to low Alfvén frequency
[Wright et al., 1999].

Similar beating effects resulting from Alfvén wave phase mixing are seen in the simulations of Poedts and
Kerner [1992], where a straight axisymmetric cylindrical equilibrium using resistive MHD was considered. At
early times, energy accumulates in the region surrounding the location of the singularity [see e.g. Figure 5
Poedts and Kerner, 1992], which would become “ridges” in a 3-D system.

In a more realistic scenario, where the source is broadband not monochromatic, we would expect there to be
multiple resonances in the domain. These resonances could overlap, significantly enough to preclude appear-
ance of the natural frequency (off resonant) responses that we have termed ridges. This is something that
we will consider in future work and certainly will have to be considered for any application to observations.
However, it is important at this stage to understand the most basic behavior first.

3.3. Resonance Widths—Temporal Dependence
Having generated a FLR in 3-D, one of the basic properties to consider is the resonance width, which is
physically important to understand how localized the energy accumulation is in space. Initially, the width is
governed by the phase mixing length (as mentioned above), which determines the smallest scales appear-
ing in the domain. Phase mixing is the process by which neighboring field lines drift out of phase over time,
due to the inhomogeneous background Alfvén frequency [Burghes et al., 1969; Heyvaerts and Priest, 1983],
which creates steep gradients in space. Dissipation limits the phase mixing length, such that the scales do
not decrease indefinitely. It is of interest to see how the widths measured from the 3-D simulation compare
to theoretical estimates from 1-D theory. First, we consider the evolution of the resonance width in time at a
particular location along the main resonant contour.

The formula in equation (19) can be used to estimate the early width of the resonance before it is limited
by dissipation. A more general calculation, valid for any stage in the resonance development, also exists. We
follow the temporal width procedure of Mann et al. [1995], which involves considering the spectral power
of the fast-mode driver. The spectral power at a time 𝜏0 can be expressed as (compare to Mann et al. [1995]
equation (14)])

P(𝜔) =
1 + e−2𝜔i𝜏0 − 2e−𝜔i𝜏0 cos

[
(𝜔r − 𝜔)𝜏0

][
𝜔2

i + (𝜔r − 𝜔)2
] , (20)

where 𝜔r and 𝜔i are the real and imaginary components of the fast-mode driving frequency. The resonance
width will depend upon the frequency bandwidth of P(𝜔), and we denote the full width at half maximum
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Figure 9. Temporal dependence of the resonance width at
(𝛼 = 0.831, 𝛽 = 0.294) on the main resonant contour. The solid
line is the measured simulation width, and the dashed line is
the estimate.

(FWHM) of this profile at time 𝜏0 by Δ𝜔(𝜏0).
Mann et al. [1995] show that an estimate of
the spatial width of the resonance at time 𝜏0,
ΔX(𝜏0), can be found by the relation

ΔX(𝜏0) =
Δ𝜔(𝜏0)
𝜔′

A

, (21)

where 𝜔′
A is the Alfvén frequency gradient at

the location in question.

To investigate the change of the resonance
width in time, we performed a new simulation,
where the boundary not only was driven with a
real frequency but also had an amplitude that
grew in time exponentially. This is in exactly
the same fashion one would find by taking the
real part of exp(−i𝜔dt)with a suitable complex

𝜔d . The results from this were essentially the same, regarding the resonance widths, as simulations where 𝜔d

is real but dissipation is included. Equation (21) for the resonance width requires the Alfvén frequency gradi-
ent. We find this by considering the change of the Alfvén frequency perpendicular to the resonant contour,
which in our coordinates aligned with the resonant ridge discussed in section 3.1, is the 𝛼′ direction. To com-
pare the estimate to the simulation, we choose a point along the main resonance and measure the FWHM
of u2

𝛽′
in 𝛼′ over time. This quantity represents the square of the physical velocity perturbation parallel to the

resonant contour, which will be dominated by the Alfvén wave contribution. There is a periodic variation in
the width coinciding with the period of the driver, and hence the time averaged width (over one period) is
used. Figure 9 plots the time averaged estimate of the width using the above formulation as the dashed line,
together with the width measured from the simulation as the solid line, for a point on the resonance. The
agreement is excellent, which shows that the Alfvén frequency gradient and the bandwidth of the driver are
still the governing factors of the resonance width in 3-D. Furthermore, considering the frequency bandwidth
of the driver clearly captures the narrowing of the width in time, as found by Mann et al. [1995]. It is also evi-
dent that the simulation has indeed reached the steady state, with the widths leveling out to a constant value
at late times.

3.4. Resonance Widths—Steady State
Having considered the development of the resonance width in time, we now look at the change of the reso-
nance width in space once the system has reached a steady state. Since the Alfvén frequency gradient changes
over the domain, we expect the widths to do so as well by equation (21). Indeed, considering the convergence
of the phase mixing ridges (contours of constant Alfvén frequency) in Figure 4c, one would expect a consid-
erable change in the widths. For the original simulation presented in this paper (up to and including Figure 5),

Figure 10. Variation of resonance width in the 𝛾=0 plane along
the resonant ridge, parameterized in terms of 𝛽 . Simulation width
measurement is the dashed line, with the estimate in equation (22)
as the solid line.

the interior dissipation was set at 𝜈=0.1, which
represented a case close to what could be
computationally achieved when running to
the steady state time. For the detailed analysis
of the steady state width, however, we choose
to simply solve for the steady state solution
directly, as described in Wright and Elsden
[2016]. The assumed temporal dependence is
exp(i𝜔t), where 𝜔 has an imaginary part of
𝜔i = 0.03 and 𝜈 = 0. As before, we mea-
sure the width from the simulation using the
FWHM of u2

𝛽′
. We trace the location of the res-

onant contour in 𝛼, 𝛽 space using peaks in the
energy density, and at several locations along
the resonant ridge, we calculate the width of
the resonance. This is plotted as a function of 𝛽
as the dashed line in Figure 10, where the x axis
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represents position on the resonant ridge, starting from the lower end in 𝛽 , and is parameterized in terms of 𝛽 .
The entire contour is not plotted because at the innermost end (lower 𝛼 region), the amplitude is not large
enough to accurately measure the FWHM, and at the outermost end the fast mode contaminates the results.

The width estimate is formed using the late time limit of equation (21) (𝜏0 ≫1∕𝜔i). In this limit, P(𝜔) (from
equation (20)) has a Lorentzian profile, with a FWHM of Δ𝜔=2𝜔i. This then allows the resonance width in the
steady state to be written as [Southwood and Allan, 1987]

ΔX(𝜏0) = 2𝜔i(𝜔′
A)

−1. (22)

This estimate is plotted as the solid line in Figure 10. The estimate agrees well with the simulation values
over the majority of the resonant contour (within 10%) but diverges toward the lower amplitude region. We
believe this to be caused by a few factors: First, the width predictions are accurate only in the limit as 𝜔i → 0
(𝜈 → 0), and thus, there will be a difference between the simulation and the estimate from using a value
of 𝜔i = 0.03. As previously mentioned, the accuracy of the FWHM measurement declines with decreasing
amplitude. This is not helped by there being some fast-mode contributions to the resonance, which further
skews the FWHM measurement. However, this result is still a very good comparison of theory with simulation
and again demonstrates how the ideas of 1-D resonances cross over to the 3-D case presented here.

3.5. Resonance Amplitudes
A key area to investigate is the amplitude of the resonance. This is physically significant in determining how
much energy can be accumulated locally in the resonant sheet. For example, in a magnetospheric setting,
it is of paramount interest to understand how efficiently FLRs may be excited in 3-D, given that they repre-
sent regions where energy is propagated along the magnetic field and deposited into the ionosphere. Our
simulation results have clearly demonstrated the formation of a resonance of significant amplitude in an inho-
mogeneous 3-D geometry. The amplitude in the outermost extended 2-D (toroidal only) resonant region at
𝛼 ∼ 0.9 has a similar amplitude to parts of the 3-D resonant region. This shows that the efficiency of excita-
tion of 2-D and 3-D resonances is similar. It had been postulated by Inhester [1986] that increasing asymmetry
could reduce the strength of the mode coupling, but we do not find evidence for this based on our results.

In this section, as with the previous sections on resonance widths, we try to find analytical estimates for the res-
onance amplitude borrowed from previous 2-D theory and then compare these to the measured simulation
amplitudes. The following analysis draws on results from Russell and Wright [2010] and Wright and Thompson
[1994] and generalizes these to our situation in a plausible fashion. The former of these works considers a
Cartesian system with an assumed steady state time dependence of exp(−i𝜔t), where the density varies
in both directions across the straight background field. The resulting equations are solved by a Frobenius
method, which to leading order shows that the displacement along the resonance scales as the gradient of
the field-aligned magnetic field perturbation, i.e., the magnetic pressure gradient. The work of Wright and
Thompson [1994] considers a field-aligned curvilinear system, (𝛼, 𝛽, 𝛾), which can be compared to the system
used in this paper. A harmonic dependence of exp

(
i
(

k𝛽𝛽 − 𝜔t
))

(𝛽 being the azimuthal direction) is fac-
tored out of the equations, while the background density varies along and across the magnetic field. Again,
a Frobenius solution was derived, which to leading order yielded relations for the b𝛾 (field-aligned mag-
netic field) and 𝜉𝛽 (azimuthal displacement) perturbations (see equations (43) and (45a)–(45c) of Wright and
Thompson [1994], for reference). We propose reinstating a general 𝛽 dependence to extend this analysis to
the 3-D scenario.

Using the coordinates (𝛼′, 𝛽′) as discussed in section 3.1, such that 𝛼′ = 0 represents the location of the
resonance, for a time dependence of exp(−i𝜔t) we propose a solution to leading order of the following form
that reduces to the 2-D results of Wright and Thompson [1994] and Russell and Wright [2010] when simplified
appropriately.

b𝛾 (𝛼′, 𝛽′, 𝛾) ≃ b𝛾0
(0, 𝛽′, 𝛾), (23)

𝜉𝛽′ (𝛼′, 𝛽′, 𝛾) ≃
𝛽0

𝛼′ 𝜉𝛽′A
(0, 𝛽′, 𝛾), (24)

𝛽0 = 1
2𝜇0𝜔d

⟨
Bh𝛼′𝜉𝛽′A

𝜕
(

h𝛾b𝛾0

)
∕𝜕𝛽′

⟩
(0,𝛽′)⟨

𝜌𝜉2
𝛽′A

h𝛼′h𝛽′h𝛾

⟩
(0,𝛽′)

(
d𝜔A

d𝛼′

)−1

(0,𝛽′)
. (25)
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Figure 11. Amplitude of u𝛽′ plotted against 𝛽 along the
resonant contour. Amplitude from the simulation is the
dashed line, and estimate is the solid line.

The terms appearing in the above equations are:
b𝛾0

is the leading order term of the Frobenius series
solution for b𝛾 ; 𝜔d is the fast-mode driving fre-
quency; B is the background magnetic field; 𝜌 is the
background density; and 𝜉𝛽′A

is the resonant Alfvén
eigenfunction in the 𝛽′ direction (i.e., a solution for
the displacement to the Alfvén wave equation (17)).
The angled brackets in equation (25) represent inte-
gration along the field line in 𝛾 at a location on the
resonance denoted by (0, 𝛽′). Our goal here is to
evaluate the expression for 𝛽0 in equation (25) and
to then calculate the amplitude of the displacement
𝜉𝛽′ in (24). The singularity occurs where 𝜔A = 𝜔d ,
and if 𝜔d is complex, this is not satisfied for a real
location 𝛼 but formally at a complex position

𝛼′ = 𝛼′
r + i𝛼′

i , (26)

with the Alfvén frequency at 𝛼′ = 0 matching the real part of 𝜔d . In this formulation, 𝛼i corresponds to
the resonance half-width, which can be found from adapting equation (22) to give 2𝛼i = 2𝜔i∕(d𝜔A∕d𝛼′).
We take the value for b𝛾0

as the complex valued b𝛾 from the steady state simulation previously mentioned. The
resonant eigenfunction 𝜉𝛽′A

can be calculated at each point along the resonance by solving the Alfvén wave
equation (17) using the shooting method discussed in section 3.1. The other quantities are all known, and we
can thus evaluate the derivatives and integrals appearing in equation (25). From this follows the amplitude
of 𝜉𝛽′ which can be calculated from equation (24). For ease of comparison with our simulation we consider
the amplitude of u𝛽′ , which can be found from 𝜉𝛽′ as

|u𝛽′ | = √
𝜔2

d + 𝜔2
i |𝜉𝛽′ |. (27)

Figure 11 plots this amplitude measured from the simulation along a portion of the resonant contour as the
dashed line. A steady decrease of amplitude as the resonant ridge is followed radially inward (to lower 𝛼) is
also seen in the shaded surface plots of Figures 4 and 5. Using the above method, we form an estimate for |u𝛽′ |
which is plotted in Figure 11 as the solid line. To form this estimate, the measured simulation resonance width
is used. The analytical estimate and the simulation show good agreement along the contour. This is remark-
able given that the estimate has been extended from 2-D theory in an ad hoc fashion and is not itself a full
3-D solution to the system. However, it shows that the dominant characteristics of the resonance amplitude
remain similar in 3-D. In this manner, we have provided a useful estimate for the amplitude of a 3-D resonance
in a field-aligned coordinate system.

4. Concluding Remarks

This paper has analyzed the time-dependent behavior of 3-D Alfvén resonances in a dipole geometry using
the MHD equations under a low 𝛽 assumption. This is an extension of the steady state system studied by
Wright and Elsden [2016]. Through numerical simulations, we have shown the development of 3-D resonances
and have discussed their characteristics. The main findings of this paper are as follows:

1. Resonances in 3-D can form over a Resonant Zone, in which the natural Alfvén frequency matches the driv-
ing frequency for some polarization of the Alfvén wave. There are a family of solutions, and the selection of
the dominant resonant contour depends mainly upon the boundary conditions and the presence of locally
2-D toroidal resonant regions. This is a confirmation of the results of the steady state case [Wright and Elsden,
2016], extended to the time-dependent regime. The results presented here have found no contradictions
to those from the steady state case.

2. Phase mixing is associated with beating at locations where the Alfvén frequency is close to the fast-driving
frequency. This manifests in the time-dependent case as phase mixing ridges. The spacing of the ridges
depends on the Alfvén frequency gradient and time early in the resonance evolution and is limited by
dissipation for large times.
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3. The resonance width decays in time in the 3-D case in exact accord with the 1-D theory of Mann et al. [1995].
This can be accurately analyzed using the frequency bandwidth of the driver, together with the Alfvén
frequency gradient.

4. The steady state resonance width also shows good agreement with previous 1-D theory [e.g., Southwood
and Allan, 1987; Mann et al., 1995].

5. The resonance amplitude in 3-D can be modeled to a good approximation by an extension of the 2-D
field-aligned curvilinear coordinate formulation of Wright and Thompson [1994]. Formulas for the resonance
amplitude have been presented. We have shown that the amplitude of 3-D resonances is comparable to the
standard 2-D toroidal resonance and thus have demonstrated that 3-D resonances can result in a significant
local accumulation of energy.
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