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Abstract We present an analytical method for determining incident and reflection coefficients for flank
ULF compressional waveguide modes in Earth’s magnetosphere. In the flank magnetosphere, compressional
waves propagate azimuthally but exhibit a mixed standing/propagating nature radially. Understanding
this radial dependence will yield information on the energy absorption and transport of these waves.
We provide a step by step method that can be applied to observations of flank ULF waves, which separates
these fluctuations into incident and reflected parts. As a means of testing, we apply the method to data
from a numerical waveguide simulation, which shows the effect on the reflection coefficient when energy
is absorbed at a field line resonance.

1. Introduction

Ultralow-frequency (ULF) waves have provided the foundation for a theoretical understanding of the dynam-
ics of the magnetosphere since they were first discussed by Dungey [1954, 1967]. Subsequently, investigations
into the theory of these waves considered the concept of wave coupling between fast and Alfvénic magne-
tohydrodynamic (MHD) waves in a cold, ideal plasma [Southwood, 1974; Chen and Hasegawa, 1974]. These
works highlighted that the set of field lines on each L shell had its own natural Alfvén frequency. Furthermore,
Southwood [1974] examined the singularity occurring at the location where the fast-mode frequency matched
the Alfvén frequency, thus developing the concept of field line resonance (FLR). This process describes the
transfer of energy from the fast to Alfvénic mode. While Southwood [1974] considered a Cartesian box geom-
etry as a model of the dayside magnetopshere, Chen and Hasegawa [1974] discussed the same problem in a
dipolar geometry to similar effect.

These studies were followed by Kivelson and Southwood [1985, 1986], also using the hydromagnetic box
model, where the magnetosphere is treated as a closed cavity. These papers discussed how the large-scale
eigenmodes of this magnetospheric cavity could couple to FLRs, which provided an explanation for the
observation of selected frequencies being excited by a broadband source. Such eigenmodes are termed
global modes and are a standard feature of magnetospheric ULF wave modeling. At the same time, the field
of numerical simulations developed rapidly, with many models addressing the problem of FLRs and cavity
modes [e.g., Allan et al., 1986a, 1986b; Zhu and Kivelson, 1989; Lee and Lysak, 1989]. The present study,
however, is most closely linked to the waveguide model of Rickard and Wright [1994] which expanded on
the ideas presented by Harrold and Samson [1992] and Samson et al. [1992]. These works treat the magne-
tosphere as an open-ended waveguide as opposed to a closed cavity. This allows for a continuum of wave
numbers in azimuth (ky) and hence a continuum of waveguide frequencies. The authors present further
evidence and explanations for the coupling of fast and Alfvénic modes in the terrestrial magnetosphere within
the context of a waveguide. The magnetosphere has also been shown to behave as a waveguide in global
MHD simulations [Claudepierre et al., 2016], giving further support to its use here.

The above concepts and references regarding ULF waves are introduced as they underpin the theory of
this work. We present analytical and numerical models to study ULF waveguide modes in the flank mag-
netosphere. Our aim is to demonstrate a procedure that can subsequently be used in conjunction with
observations. Compressional waveguide modes propagate azimuthally on the flanks but have a mixed stand-
ing/propagating nature in the radial direction. We decompose these fluctuations into radially propagating
inward (incident) and outward (reflected) waves, which can provide information on energy transport and
absorption in the flank magnetosphere. The analysis requires signals whose amplitudes do not vary drastically

TECHNICAL
REPORTS:
METHODS
10.1002/2016JA022351

Key Points:
• Derive a method for estimating

incident and reflection coefficients
for flank ULF waveguide modes

• Test method on simulation data which
provide consistent results

• Method will be applied to satellite
data in the future

Correspondence to:
T. Elsden,
te55@st-andrews.ac.uk

Citation:
Elsden, T., A. N. Wright, and
M. D. Hartinger (2016), Deciphering
satellite observations of compressional
ULF waveguide modes, J. Geophys.
Res. Space Physics, 121, 3381–3394,
doi:10.1002/2016JA022351.

Received 10 JAN 2016

Accepted 15 MAR 2016

Accepted article online 21 MAR 2016

Published online 25 APR 2016

©2016. American Geophysical Union.
All Rights Reserved.

ELSDEN ET AL. FLANK ULF WAVES 3381

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9402
http://dx.doi.org/10.1002/2016JA022351


Journal of Geophysical Research: Space Physics 10.1002/2016JA022351

Figure 1. A schematic of the model magnetospheric waveguide. The magnetopause boundary is driven as indicated,
launching waves propagating in y (azimuthally).

over one or two periods and that have a well defined frequency. Space-based observations of such ULF waves
have been reported by Rae et al. [2005], Eriksson et al. [2006], Clausen et al. [2008], Hartinger et al. [2011], and
Hartinger et al. [2012]. We apply our method of deriving these coefficients to simulated data, as a means of
validating the procedure, with the aim of applications to real data in the future.

While methods exist for the routine identification and characterization of cavity modes in satellite obser-
vations [e.g., Waters et al., 2002], there are no comparable techniques for waveguide modes. This adds
uncertainty to waveguide/global mode observational studies. For example, in a statistical study estimating
global mode occurrence rates outside the plasmasphere, Hartinger et al. [2013] identified potential global
modes using cavity mode selection criteria: globally coherent, monochromatic fast-mode waves with elec-
tric/magnetic perturbations consistent with radially standing waves. As discussed by Hartinger et al. [2013],
these criteria excluded tailward propagating waveguide modes, likely biasing noon occurrence rates higher
than flank rates and leading to an unrealistically low overall global mode occurrence rate.

The paper is organized as follows: section 2 outlines the model geometry and the equations for the problem
then discusses the steps to follow to perform the analytic method used for deriving the incident and reflection
coefficients. Section 3 discusses the application of our analytical model to simulated data. Here the numerical
method and signal processing techniques employed are mentioned in detail. Concluding remarks are given
in section 4, and a full derivation of the procedure and reference equations are provided in Appendix A.

2. Theory and Model
2.1. Waveguide Geometry
The Cartesian hydromagnetic box model has been extensively used to study the behavior of ULF wave modes
in the flank magnetosphere [e.g., Southwood, 1974; Kivelson and Southwood, 1985, 1986]. x̂ is taken as the
radial direction, positive outward. ŷ represents the azimuthal direction, with the antisunward direction being
aligned with positive/negative ŷ on the dusk/dawn flank, respectively. ẑ is in the direction of the background
magnetic field taken as B = B0ẑ. Figure 1 gives a representation of this waveguide.

The plasma is assumed to be cold (low 𝛽) and ideal. The waveguide has a perfectly reflecting inner boundary
in x modeling some natural boundary in space such as the plasmapause or a turning point while the outer
boundary (magnetopause) is driven. We consider only fundamental standing modes in the z direction, where
field lines are fixed at their ionospheric footpoints by assuming nodes of velocity there. This reduces the com-
putational model to a two-dimensional waveguide allowing for faster computation and better resolution. The
magnetic equator is placed at z = 0, and the single Fourier mode in z is expressed for each of the components
as ux , uy , bz ∼ cos(kzz) and bx , by ∼ sin(kzz). This assumption is used in the component definitions given in
section 2.2. The inhomogeneity of the plasma is characterized by allowing the density to vary with radius (x).
In the numerical simulations we normalize the equations to deal with dimensionless quantities, but for the
analytical method we use the dimensional linearized MHD equations which can be expressed as

𝜕bx

𝜕t
= B0

𝜕ux

𝜕z
, (1)

𝜕by

𝜕t
= B0

𝜕uy

𝜕z
, (2)
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𝜕bz

𝜕t
= −B0

(
𝜕ux

𝜕x
+

𝜕uy

𝜕y

)
, (3)

𝜕ux

𝜕t
=

V2
A

B0

(
𝜕bx

𝜕z
−

𝜕bz

𝜕x

)
, (4)

𝜕uy

𝜕t
=

V2
A

B0

(
𝜕by

𝜕z
−

𝜕bz

𝜕y

)
, (5)

where VA is the Alfvén speed and B0 the background magnetic field strength. For the analytic work in this
paper, we assume the lowest-order WKB approximation to the above equations (1)–(5). Analysis of this type is
discussed in detail in, for example, Inhester [1987] and Wright [1994]. This gives the radial wave number kx as

k2
x (x) =

𝜔2

V2
A(x)

− k2
y − k2

z , (6)

with the phase in x defined as

Φx(x) = ∫
x

kx(x′)dx′. (7)

2.2. Tailward Traveling Wave Model
As mentioned previously, the goal of this study is to understand the dynamics of tailward traveling waves that
exhibit a mixed propagating and standing nature radially. In this regard consider a wave of the form

bx = Ai cos
(

kyy − Φx − 𝜔t
)

sin(kzz) + Ar cos
(

kyy + Φx − 𝜔t
)

sin(kzz). (8)

Ai denotes the incident coefficient and Ar the reflected, both with units of tesla. This stems from inward prop-
agation being in the negative x̂ direction. kx , ky , and kz are the wave numbers; x, y, and z are the positions
in the x̂, ŷ, and ẑ directions, respectively. We choose to define the bx component purely as a start point from
which to derive the other component forms. Using equations (1)–(5) yields

by = −Ai

ky

kx
cos

(
kyy − Φx − 𝜔t

)
sin(kzz) + Ar

ky

kx
cos

(
kyy + Φx − 𝜔t

)
sin(kzz). (9)

bz = −
Aikz

kx

{
1 − 𝜔2

V2
A k2

z

}
sin

(
kyy − Φx − 𝜔t

)
cos(kzz)

+
Arkz

kx

{
1 − 𝜔2

V2
A k2

z

}
sin

(
kyy + Φx − 𝜔t

)
cos(kzz).

(10)

ux = −
Ai

B0

𝜔

kz
sin

(
kyy − Φx − 𝜔t

)
cos(kzz)

−
Ar

B0

𝜔

kz
sin

(
kyy + Φx − 𝜔t

)
cos(kzz).

(11)

uy =
Ai

B0

𝜔ky

kxkz
sin

(
kyy − Φx − 𝜔t

)
cos(kzz)

−
Ar

B0

𝜔ky

kxkz
sin

(
kyy + Φx − 𝜔t

)
cos(kzz).

(12)

What is the problem we are trying to solve? The question is this: can we take the quantities given in satellite
data and use them to determine the unknowns in the above system (8)–(12)? These unknowns are Ai , Ar , kx ,
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ky , kz , Φx , and kzz. The position in y is not required since the model assumes that the wave is propagating
in the ŷ direction. Hence, changing y merely shifts the phase of the entire solution and is similar to moving
the time origin but does not affect any of the quantities listed above. Not all of the quantities provided from
satellite data are independent, which reduces the number of “knowns.” These independent quantities are the
amplitudes of bx , by , bz and ux , the frequency𝜔, the local Alfvén speed VA, and the phase shift between bx and
by , denoted by 𝜙. Stipulating −𝜋 < 𝜙 ≤ 𝜋, 𝜙 is positive if by leads bx by less than 𝜋 and negative if by trails bx

by less than 𝜋. uy is not an independent quantity as it can be expressed in terms of the amplitudes of ux , bx ,
and by . Equally, any of these quantities could have been removed instead, in favor of uy .

To proceed with determining the unknowns, it is useful to express the components in terms of a single
amplitude and phase for the purpose of comparison to data. For example, we express bx as

bx = b̄x cos(𝜓1 − 𝜔t), (13)

where b̄x is the amplitude and 𝜓1 a phase shift. Considering this for all components, we can then equate the
two expressions for each component, e.g., (8) and (13). This allows the expression of the amplitudes in terms
of the incident and reflection coefficients. After some algebra we derive the following system of equations:

b̄x = ±
√

A2
i + A2

r + 2AiAr cos(2Φx) sin(kzz), (14)

b̄y = ±
ky

kx

√
A2

i + A2
r − 2AiAr cos(2Φx) sin(kzz), (15)

b̄z = ±
kz

kx

{
𝜔2

V2
A k2

z

− 1
}√

A2
i + A2

r − 2AiAr cos(2Φx) cos(kzz), (16)

ūx = ± 𝜔

B0kz

√
A2

i + A2
r + 2AiAr cos(2Φx) cos(kzz), (17)

tan(𝜙) =
2AiAr sin

(
2Φx

)
A2

r − A2
i

, (18)

𝜔2

V2
A

= k2
x (x) + k2

y + k2
z , (19)

where as mentioned above, b̄x , b̄y , b̄z , and ūx are the amplitudes of bx , by , bz , and ux , respectively, and we
restate the WKB fast-mode dispersion relation from (6) as (19). This system contains six equations for the
seven unknowns previously listed. It is therefore necessary to infer one more piece of information from the
satellite data. Multiple satellite missions and ground-based observations have the capability of estimat-
ing one of the wave numbers. For example, phase differences between signals measured at longitudinally
spaced satellites or ground stations can be used to obtain ky [e.g., Mathie and Mann, 2000; Sarris et al., 2013]
and phase differences between signals measured at multiple locations on the same field line can be used to
obtain kz [e.g., Takahashi et al., 1987]. Once a component of the wave vector has been estimated, (14)–(19)
may then be solved.

2.3. Solution Method
In this section we outline the steps to follow to determine the unknown quantities required to construct
signals of the form of (8)–(12). The algebra for the full solution of equations (14)–(19) is given in Appendix A.
The rearranging of the equations for the desired quantities differs depending on which of the wave numbers
is given from satellite measurements. Hence, we detail each case in the following sections 2.3.1, 2.3.2, and 2.3.3
in a step by step manner, referencing equations found in Appendix A. These sections discuss how to obtain
the three wave numbers which are then used in determining Ai and Ar , shown in section 2.3.4. Sections of the
same name can be found in Appendix A detailing the full solution in each case.
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Figure 2. Variation of the Alfvén speed profile with radius (x)
given by equations (20) and (21), adapted from Wright and
Rickard [1995b]. The plotted curves correspond to the values
x0 = 0.95, 1.0, 1.2, 1.4, 1.6, 1.8, with the first and last annotated.
The dashed line represents the value of xc = 0.8.

2.3.1. kz Measured
1. Use (A3) to find ky , choosing the positive root

for an observation in the dusk flank and the
negative root for the dawn flank.

2. Use (A4) to find kx(x).
2.3.2. ky Measured
1. Use (A5) to find kz , taking the positive root.
2. Use (A4) to find kx(x).
2.3.3. kx Measured
1. (A7) and (A8) together determine four values

for ky . Take the two positive values for a dusk
flank observation and the two negative values
for the dawn flank.

2. Use (A9) to find the corresponding kz value.
2.3.4. Determining Ai and Ar

After completing steps 1 and 2 for one of the
cases above, proceed to the steps below to
determine Ai and Ar .

1. Use (A2) to find kzz. Choose the positive sign for an observation above the magnetic equator (z > 0) and the
negative sign for an observation below (z < 0).

2. Given kzz, determine the coefficients C and D from the first equalities in (A10) and (A11) and P and Q from
(A19) and (A20), respectively.

3. Using P and Q in (A18) defines two values for A2
i and hence four solutions for Ai.

4. (A21) yields two values of Ar for each Ai , giving eight solution pairs of Ai and Ar .
5. (A24) and (A25), with (A23), define four values of Φ(x) for each Ai and Ar combination, which implies a total

of 32 solution combinations.

Following the above systematic approach, all possible solutions can be determined. To eliminate the spurious
solutions, the component time series are formed using equations (8)–(12) and are then compared to the data
to see which ones match. It is this procedure which is followed in the next section.

3. Method Testing—Simulation Case Study

We now demonstrate how to test the above analytical method for determining incident and reflection
coefficients on simulated data. This will establish the reliability of the method on numerical data before
attempting to apply the method to satellite data. The following subsections outline the details of the simula-
tion, how to generate appropriate signals to input to the method through signal analysis, and the final results
demonstrating the use of the method.

3.1. Numerical Model
Equations (1)–(5) are solved numerically using a leapfrog-trapezoidal algorithm [Rickard and Wright, 1994].
We first normalize the magnetic field by the background field strength B0, the density by that at the inner
boundary 𝜌(0), and the length by the width of the waveguide in x. Following Wright and Rickard [1995b], we
adopt a variation in the Alfvén speed of the form

VA(x) = 1 − x
x0
, 0 < x ≤ xc (20)

VA(x) =
x0

(
1 − xc

x0

)3 (
1 − xc

)
(

x0 − 2xc + 1
) (

1 − xc

)
− (1 − x)2

, xc < x < 1 (21)

which is normalized to the Alfvén speed at x = 0. This profile is displayed in Figure 2. x0 is used to adjust the
gradient of the profile, therefore adjusting the width of the Alfvén continuum. xc is the point where the linear
profile smoothly transitions to a region of relatively uniform VA. The linearity for x≤xc produces a phase
mixing length that is independent of radius, such that certain areas are not overresolved or underresolved.
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The waveguide has a radial extent of 1 which corresponds to a physical length of 10 RE . The length in y varies
for the different simulations dependent on the wavelength. We choose an appropriate spatial resolution of
the grid, time step, and total length of simulation to satisfy the Courant-Friedrichs-Lewy condition and resolve
the phase mixing length. Typically, energy is conserved to one part in 105 or better.

To model tailward traveling waves, we drive the system with a running disturbance on the magnetopause,
more details of which are given in the results section 3.3. The magnetopause boundary is driven by pertur-
bations in the z component of the magnetic field, bz . This has been demonstrated as an effective means of
modeling driving by magnetic pressure [Elsden and Wright, 2015]. Furthermore, given a perfectly reflecting
inner boundary, driving in this way allows the fundamental radial mode to be a quarter wavelength mode. This
lowers the natural waveguide eigenfrequencies, bringing them more in line with the observed frequencies
without resorting to an unphysical plasma density [Mann et al., 1999].

To efficiently model an open-ended waveguide in y, we introduce dissipation regions at either end (beyond
the region of interest), which act to absorb any perturbations as if they had run out of the waveguide. This is
implemented by adding a linear drag term to the equation of motion in these regions, the amplitude of which
can be adjusted as per the strength of dissipation required.

3.2. Signal Generation and Analysis
Our procedure is appropriate for signals that are purely propagating in the y direction. The signal has to be
relatively monochromatic and cannot display a great variation in amplitude over one period. To produce such
a signal from our simulations, we drive the outer boundary with a tailward traveling wave packet, an exam-
ple of which will be given in section 3.3. Our control lies with the amplitude, wavelength, phase speed, and
number of cycles in the packet.

To model a satellite observation, we pick a location in the waveguide and consider the time series of the
components. These signals are band pass filtered using an Interactive Data Language filtering routine, in a
similar manner to the filtering of observational data. For our procedure we require the amplitudes of the
components and the phase shift between bx and by , as discussed in section 2.2. To derive these from the
simulation data, we use an analytic signal method over the desired time interval, which has been used in
observations by, for example, Glassmeier [1980] and Hartinger et al. [2011]. The analytic signal sa(t) is a complex
valued function formed from the real signal s(t) and its Hilbert transform ŝ(t) as

sa(t) = s(t) + iŝ. (22)

This removes any negative frequency contributions to the signal. In this form the instantaneous phase of each
signal, 𝜓 , is determined by

𝜓 = tan−1

(
ŝ(t)
s(t)

)
, (23)

and hence, we can calculate the required phase shift between the bx and by components. The amplitude
envelope for the signal is determined from

|sa(t)| = √
s(t)2 + ŝ(t)2, (24)

which is averaged over the cycles considered to determine their amplitude. This then yields all the required
information to determine the incident and reflection coefficients.

An interesting way to test the method is to absorb some of the energy at a field line resonance at a specific
location in x. If we place a satellite on the magnetopause side of the resonance, we should see an overall
inward flow of energy as energy is converted from the compressional fast mode to Alfvénic oscillations. This
should mean that the incident coefficient is considerably larger than the reflection coefficient if the wave
coupling is efficient. The position of the resonance can be controlled by the driving frequency and the Alfvén
speed profile. The resonance will be excited at the location where the fast-mode frequency matches the local
Alfvén frequency. Rather than driving the resonance with a natural waveguide eigenfrequency, we choose
to drive the resonance with the boundary-driving frequency, tuning the equilibrium such that a waveguide
resonance is not excited, allowing for a clearer signal for the first testing of this method.
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Figure 3. (top) Temporal variation of the perturbation bz on the driven magnetopause boundary (x = 1), in the center of
the driven section. (bottom) Spatial variation in azimuth of bz on the driven magnetopause boundary, at time t = 45.
The vertical dashed lines represent the start of the dissipation regions (y < −5, y > 5), where the boundary is not driven.

Figure 4. Component time series from satellite locations x = 0.9, y = 0, and z = 0.5. (first to third panels) Magnetic field
components, (fourth and fifth panels) velocity components, and (sixth to eighth panels) Poynting vector components.
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Figure 5. FFT power spectrum of the unfiltered bz signal at
locations x = 0.9, y = 0, and z = 0.5, showing a
dimensionless cyclic frequency of 0.23 corresponding to the
driving frequency.

kz is taken to be 𝜋∕2 in dimensionless units
(corresponding to a dimensional field line length
of 20 RE), and the parameter controlling the gra-
dient of the Alfvén speed profile, x0, is set to 2.7,
such that the FLR continuum does not overlap any
of the ky = 0 waveguide eigenfrequencies as men-
tioned above. The other parameter in the Alfvén
speed definition ((20) and (21)), xc, is chosen as 0.8.
We choose to excite an Alfvén resonance in the
guide at xr = 0.2, by setting the driving frequency
equal to the Alfvén frequency at this location. This
yields a dimensionless angular driving frequency of
𝜔r = 1.4544. ky varies between each simulation and
will control the efficiency of the coupling between
the fast and Alfvénic modes. The modes are decou-
pled in the ky → 0 and ky → ∞ limits, and hence,
we expect the strongest coupling for moderate ky

values [Kivelson and Southwood, 1986]. The maximum ky is determined such that the mode is oscillatory
(not evanescent) in x at the satellite location. The driving frequency is held constant between the different
simulations by varying the phase speed of the driver accordingly.

Before stating the results, we list a step by step view of the method for clarity.

1. Specify a wavelength and phase speed for the magnetopause driver then run the simulation.
2. Choose the satellite location on the magnetopause side of the resonance, retrieve component time series.
3. Band pass filter the data around the driving frequency.
4. Use the analytic signal method to determine instantaneous phase and amplitude.
5. Derive all possible solution combinations for Ai , Ar values, as per section 2.3.
6. Select correct solutions by reconstructing the signal using Ai and Ar and comparing to the simulation signal.

3.3. Results
One of the simulation runs for a specific value of ky will be discussed to demonstrate the method. For the
equilibrium parameters described above the value of ky can vary over 0 ≤ ky ≤ 1.503, the upper bound being
determined by maintaining an oscillatory nature in x at the magnetopause. An example of the temporal and
spatial dependence of the magnetopause driver is given in Figure 3, for the case ky = 1.4. Note that the spatial
form of the driving condition is a sine wave that travels in the y direction at a speed 𝜔∕ky and is nonzero over
the window −5 < y < 5 in this example. The frequency 𝜔 is chosen to match the Alfvén frequency at xr = 0.2;
hence, these parameters determine the azimuthal phase speed of the magnetopause driver we impose.

We select a location in the waveguide for the model satellite of x = 0.9, y = 0, and z=0.5. The position
is chosen close to the magnetopause boundary such that the mode is oscillatory and not evanescent in x.

Figure 6. Time series of by (black) and uy (red) at the Alfvén
resonance location x = 0.2, with y = 0.

The location y=0 corresponds to the center
of the driven magnetopause section, not to
the subsolar point as is typical in GSE/GSM
coordinates. A time series plot over the
course of the simulation at this location for
each of the components of the magnetic
field, velocity, and Poynting vector, is dis-
played in Figure 4. The driving has produced
the intended signals, of relatively constant
amplitude and monochromatic nature. The
seventh panel of the azimuthal Poynting
vector Sy shows that the wave is purely tail-
ward traveling as required for our analysis.
The sixth panel displays a predominantly
inward radial Poynting vector Sx , suggest-
ing that energy is being deposited in the
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Figure 7. Time series interval from t = 28.5 to t = 36.0 of bx (black) and by (red) showing (top) the unfiltered data
(solid) with the band-pass filtered data (dashed); (middle) filtered data (solid) with phase and amplitude averaged signal
(dashed), vertical dashed lines indicate the phase shift 𝜙; and (bottom) phase and amplitude averaged data (solid),
reconstructed signal from Ai and Ar values (dashed, which overlies the solid line exactly in this example). The dotted
lines represent a spurious solution that does not reproduce the desired (solid line) signals, so is discarded.

waveguide interior. The monochromatic nature of the signal is confirmed by considering the fast Fourier trans-
form (FFT) power spectra, displayed in Figure 5 for bz at the satellite location. The angular driving frequency
of 1.4544 is reproduced as a cyclic frequency of 0.23.

To check that a resonance is being excited at the appropriate location, we check the behavior of the transverse
magnetic field and velocity components. Figure 6 shows the secular growth in time of these components,
which is expected for a steadily driven resonance in the absence of dissipation.

The next step is to band-pass filter the data for the desired frequency. Considering the idealized case that we
present here, the effect of filtering is not drastic but still is a worthwhile procedure to demonstrate how our
method would be applied to a real data signal. A small time interval covering one to two periods is recon-
structed from the signal filtered over cyclic frequencies from 0.17 to 0.29. Figure 7 (top) displays the unfiltered
and filtered signals.

Now that the time interval has been selected, the method of the analytic signal is employed to determine the
instantaneous phase and average amplitude for each component time series. These quantities are required
for determining the incident and reflection coefficients. We apply the method to the whole signal then select
the desired time interval. Subtracting the instantaneous phase of the by signal from the bx signal yields
their relative phase difference, which is referred to as 𝜙 in the method outlined in sections 2.2 and 2.3.
The average amplitudes are determined by averaging the signal envelope over the cycles selected. To test the
analytic signal method, we fit sinusoids with the derived amplitudes and phases and plot against the band
pass-filtered simulation signals. This is displayed in Figure 7 (middle). The vertical dashed lines indicate the
value of 𝜙 = 109.15∘, taken as the phase by which by leads bx as this is less than 180∘ (see section 2.2 for
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Figure 8. The ratio Ar∕Ai plotted against ky for 21 different
ky values.

discussion on choosing 𝜙). Since the filtered
signal is already of near-constant amplitude and
frequency, the dashed line representing the signal
constructed from the instantaneous phase and
average amplitude lies almost directly on top.

All of the knowns are now determined, and the
system can be solved as described in section 2.3.
This yields the incident and reflection coefficients
Ai and Ar . For the simulation in question, the abso-
lute value of these coefficients was determined as|Ai|=1.202 and |Ar|=1.112. These correct solutions
are found by matching the signal components
reconstructed from the derived quantities as per
(8)–(12), with the phase and amplitude averaged
signal. Figure 7 (bottom) displays these signals for

the bx (black) and by (red) components. The dotted lines represent a reconstructed solution that does not
match the solid lines so represents a spurious solution that we shall discard. The dashed lines are barely vis-
ible as they lie directly on top of the original signal, which confirms the values of Ai and Ar used to produce
them corresponding to the correct roots.

Furthermore, the correct values are in line with our original prediction that the reflection coefficient will be
smaller than the incident due to energy lost from the fast mode at the resonance. The amount of energy
deposited and hence the ratio of the reflected to incident coefficients are dependent on the efficiency of the
wave coupling, which is controlled by ky . If ky is small, the gradients of bz in the ŷ direction which drive the
resonance become small and hence the coupling is weak. For large ky , the turning point of the mode retreats
from the resonance toward the magnetopause boundary, and the amplitude decays evanescently, meaning
that the fast mode does not penetrate to the resonance location. This behavior produces a classic curve of
absorption against ky [see Kivelson and Southwood, 1986, Figure 2 ]. As a test of the values produced for Ai and
Ar , we ran several simulations for different values of ky , performed the same analysis as above, and plotted the
resulting ratio of Ar to Ai . This is displayed in Figure 8. A clear trend appears showing the ratio tending to one
where little energy is transferred to the resonance (as in the ky = 1.4 case above), while in regions where the
coupling is more efficient, the ratio drops considerably. This is further confirmation that the method employed
to determine the incident and reflection coefficients is behaving consistently.

4. Conclusions

In this work we have introduced a method for determining incident and reflection coefficients for flank ULF
waveguide modes. This method is valid for tailward traveling waves of roughly constant amplitude with a
clearly defined frequency. Despite seeming like an idealized case, observations of such signals have been
recently published [Rae et al., 2005; Eriksson et al., 2006; Clausen et al., 2008; Hartinger et al., 2011, 2012]. The
coefficients derived are correlated with the energy absorption of the magnetospheric interior, as demon-
strated by the lowering of the reflection coefficient when energy is absorbed at a FLR. The method produces
consistent results, reproducing a similar resonant absorption curve to that of Kivelson and Southwood [1986],
showing the change in the efficiency of wave coupling with azimuthal wave number. Since the only require-
ments of the method are a set of time series together with certain amplitudes and phase shifts, this technique
could also be applied to results from a global MHD simulation. Evidently, the Cartesian geometry used in our
modeling is a simplification. Future studies could employ spatial eigenmodes based upon a realistic magne-
tospheric equilibrium and so improve the accuracy of our technique when applied to satellite data or results
from global magnetospheric simulations. The overall purpose of this work has been to test the method on
simulation data in preparation for using it with satellite observations of flank ULF compressional modes in the
future.

Appendix A: Solution Method

We outline the solution method for solving the system of equations (14)–(19). From satellite data it is assumed
that the amplitudes of bx , by , bz , and ux (denoted by b̄x , b̄y , b̄z , and ūx) are known. Further to this, we require
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the frequency 𝜔, the Alfvén speed VA, and the phase difference between by and bx , denoted by 𝜙 (refer to
section 2.3 for full details on 𝜙). As discussed at the end of section 2.2, one of the wave numbers is also
required to solve the system. In each of the sections below, we discuss the different approaches depending
on which wave number is estimated most accurately. First, however, we must resolve the choices of signs in
equations (14)–(19). Since it is the amplitudes of the components (denoted by an overscore) that are being
used, the expressions for these amplitudes must be positive. Hence, the choice of sign is dependent on the
signs of sin(kzz) and cos(kzz). For a fundamental mode in the ẑ direction, −𝜋∕2 < kzz < 𝜋∕2. cos(kzz) is
positive over the range of kzz, and hence, the signs in equations (16) and (17) are taken to be positive. If the
observation is taken below the magnetic equator, z is less than zero, which implies sin(kzz) < 0 and hence
we choose negative signs for equations (14) and (15) such that the amplitudes remain positive. Equally, if the
satellite is above the magnetic equator, positive signs are taken in these equations.

There is one exception to this which occurs when ky is negative, since ky appears as a coefficient in (15). If the
observation is in the dusk flank, take ky to be positive, and if the observation is in the dawn flank, take ky to
be negative. This stems from the positive ŷ direction being tailward in the dusk flank. Therefore, in the situa-
tion where ky is negative, the above sign choices must be reversed for equation (15) such that the amplitude
remains positive.

A1. kz Measured
To begin with, consider the case where kz , the field-aligned wave number, is known from observations. To find
the position z, we divide (14) by (17) to give

tan(kzz) = ±
𝜔b̄x

kzūx

1
B0

(A1)

⇒ kzz = tan−1

(
±
𝜔b̄x

kzūx

1
B0

)
, (A2)

where the sign choice is determined from the position in z above or below the magnetic equator (positive if
z > 0). ky can be determined from the ratio of (16) to (15), substituting for tan(kzz) using (A1) to give

b̄z

b̄y

= ±
B0

𝜔ky

(
𝜔2

V2
A

− k2
z

)
ūx

b̄x

,

⇒ ky = ±
ūxb̄y

b̄xb̄z

B0

𝜔

(
𝜔2

V2
A

− k2
z

)
,

(A3)

where the plus/minus root is taken for observations on the dusk/dawn flank. kx(x) can now be determined
from the fast-mode dispersion relation (6) as

kx(x) =
√

𝜔2

V2
A

− k2
y − k2

z , (A4)

where kx(x) is taken to be positive (inward and outward propagation in x is accommodated in the definition
of bx in equation (8)). At this point, kzz, ky , and kx(x) are known and we can proceed to section A4 to calculate
Ai and Ar .

A2. ky Measured
If instead ky , the azimuthal wave number, is provided by satellite data, we proceed in a similar manner to the
above for kz . Rearranging (A3) gives

kz =

√√√√𝜔2

V2
A

− |ky| 𝜔B0

b̄xb̄z

ūxb̄y

. (A5)

The absolute value sign here covers the cases for ky > 0 and ky < 0, which both result in the same expression
for kz . The positive root is taken for kz since the sign of kzz is determined by the choice of z either above
or below the magnetic equator. The value of kzz is then determined from A2. Now given ky and kz , kx(x) is
determined from (A4) as previously, and we can again proceed to section A4 to find Ai and Ar .
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A3. kx Measured
The case where kx , the radial wave number, is provided from observations is not so straightforward as we
lack an expression for one of the other wave numbers in terms of kx alone. We proceed by rewriting (A3)
using (A4) as

ky = ±
ūxb̄y

b̄x b̄z

B0

𝜔

(
k2

x (x) + k2
y

)
. (A6)

Again, the sign for ky is determined as being positive on the dusk flank and negative on the dawn flank.
Rearranging (A6) as a quadratic for ky and solving yields

ky = ±X
2
±
√

X2

4
− kx(x)2, (A7)

where

X =
b̄x b̄z

ūx b̄y

𝜔

B0
. (A8)

For ky > 0 choose the first sign to be positive, while for ky < 0 choose the first sign to be negative. The second
sign choice represents two distinct solutions which have to be carried through the procedure until they can
be tested for their validity. This doubles the total number of possible solutions, and indeed, each of the above
ky values can lead to a correct solution. For this reason, it is preferable for the azimuthal or field-aligned wave
numbers to be provided instead of the radial wave number, as for these cases a single solution can always be
determined. Once the values of ky have been calculated, the corresponding kz values are determined from
the fast-mode dispersion relation as

kz =
√

𝜔2

V2
A

− k2
y − k2

x (x), (A9)

and then the values of kzz are found from (A2). Now that the wave numbers are known, proceed to section A4.

A4. Determining Ai and Ar

The above steps outline how to determine the wave numbers depending on which is provided by the obser-
vation. The following working shows how then to calculate the incident and reflection coefficients Ai and Ar

given the wave numbers. We begin by squaring (14) and (15) then adding and subtracting to give

C = b̄x
2 +

k2
x

k2
y

b̄y
2 = 2

(
A2

i + A2
r

)
sin2(kzz), (A10)

D = b̄x
2 −

k2
x

k2
y

b̄y
2 = 4AiAr cos(2Φx) sin2(kzz). (A11)

We attempt to form the terms on the right-hand side of (18). The denominator can be written using (A10), as

A2
r − A2

i = A2
r + A2

i − 2A2
i = C

2 sin2(kzz)
− 2A2

i . (A12)

The numerator can be formed using (A11) as

2AiAr sin(2Φx) = ±1
2

√
16A2

i A2
r −

D2

sin4(kzz)
. (A13)

Using (A12) and (A13) in (18) gives

tan(𝜙) =
± 1

2

√
16A2

i A2
r −

D2

sin4(kz z)
C

2 sin2(kz z)
− 2A2

i

, (A14)

⇒ tan2(𝜙)
(

C

2 sin2(kzz)
− 2A2

i

)2

= 1
4

(
16A2

i A2
r −

D2

sin4(kzz)

)
. (A15)
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The goal is to eliminate Ar in terms of Ai. Expanding brackets and replacing A2
r using a rearrangement of (A12),

we arrive at a fourth-order equation for Ai as

A4
i −

C

2 sin2(kzz)
A2

i +
C2 sin2 𝜙 + D2 cos2 𝜙

16 sin4(kzz)
= 0. (A16)

The above equation can be written as
A4

i − PA2
i + Q = 0, (A17)

⇒ A2
i = P

2
± 1

2

√
P2 − 4Q, (A18)

where

P = C

2 sin2(kzz)
, (A19)

Q = C2 sin2 𝜙 + D2 cos2 𝜙

16 sin4(kzz)
. (A20)

(A18) defines four solutions for Ai given C, D, P, and Q. Through squaring, spurious roots will have been
introduced that will be discarded at the end. Ar is found from rearranging (A12) as

Ar = ±
√

P − A2
i . (A21)

This implies that there are eight possible combinations of Ai and Ar values. Each of these combinations can
then be used to calculate the WKB phase Φx . Rearranging (14) gives

2AiAr cos(2Φx) =
b̄x

2

sin2(kzz)
− A2

i − A2
r , (A22)

Φx = 1
2

cos−1

{
1

2AiAr

(
b̄x

2

sin2(kzz)
− A2

i − A2
r

)}
. (A23)

Taking the inverse cosine results in four solutions for Φx , which can be expressed as

Φx = 1
2

cos−1 (𝛼) + n𝜋, n = 0, 1, (A24)

Φx = 1
2

(
2𝜋 − cos−1 (𝛼)

)
+ n𝜋, n = 0, 1, (A25)

where 𝛼 is the curly bracketed term in (A23) and cos−1 lies between 0 and 𝜋. Thus, with four solutions forΦx(x)
and eight combinations of Ai and Ar , there are 32 possible solutions. The correct solutions are determined by
constructing the components given in (8)–(12) using the derived values of Ai, Ar , etc., then checking these
signals against the data. The solutions associated with the spurious roots acquired during the calculation may
be identified and disregarded as the reconstructed signals will not match the original ones. This procedure
will leave four valid combinations, one for each of the arbitrary phase choices in (A24) and (A25). Any one
of these solutions may be used unless additional information is available to identify a particular solution as
being more appropriate.
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