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Abstract. In this paper, an absolute and convective instability approach to the
Kelvin-Helmholtz instability of magnetospheric surface and body/waveguide modes
is presented. Rather than considering normal modes individually, the development
of localized wavepackets is considered. It is shown that the time asymptotic
behavior of such a wavepacket is determined by the double roots of the dispersion
relation and that each double root may be identified with a normal mode, for our
particular system. The dominant behavior in any reference frame is given by the
double root with the largest growth rate. We consider the absolute or convective
nature of the instability in the rest frame of the magnetosphere and deduce that in
this reference frame wavepackets may only be absolutely unstable (growing at any
fixed point in space at large time) close to the nose of the magnetosphere and are
convectively unstable (moving away so that at large time there is no disturbance at
any fixed point) elsewhere. The e-folding lengths of fast surface mode wavepackets
are found to be small but increase around the flanks (these will become nonlinear
and lead to the broadening of the low-latitude boundary layer in agreement with
previous studies) [Manuel and Samson, 1993]. Fast body modes will e-fold only
once as they convect around the flanks, so would be expected to remain linear in
this region. Slow-mode wavepackets are also studied and are found to have very
large e-folding lengths, so that their growth on the flanks will be negligible. The
results are compared to a numerical simulation and excellent agreement is obtained.

1. Introduction

1t is well known that the Kelvin-Helmholtz instabil-
ity (KHI) can operate at the magnetopause as suggested
by Dungey [1954]. Numerous studies of this mechanism
have been undertaken, including models of a magne-
tosphere that extends infinitely away from the magne-
topause [e.g., Sen, 1964; Fejer, 1964; Southwood, 1968;
Pu and Kivelson, 1983]. These studies looked at modes
that are exponentially decaying in both the magneto-
sphere and magnetosheath (“surface” modes) and found
that for modes propagating at any particular angle to
the flow there exist both lower and upper cutoff speeds
corresponding to the onset of instability and the point
at which the system restabilizes, respectively. The lower
cutoff is zero when the magnetic field is perpendicular
to both the flow and the propagation of the modes. The
upper cutoff speed becomes very large for modes propa-
gating at large angles to the flow. More recently, studies
of a bounded magnetosphere [Fujita et al., 1996; Mann
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et al., 1999; Mills et al., 1999] have been undertaken.
These have studied the unstable behavior of modes that
are oscillatory in the magnetosphere (“body” modes) as
well as the surface modes. The instability threshold for
the body modes is always nonzero, even when the lower
cutoff for surface modes is zero. The upper cutoff speed
for fast surface modes is removed in this case. Mills and
Wright [1999] showed that these unstable body modes
drive field line resonances (FLRs) in the magnetosphere.

Numerical simulations of the nonlinear behavior of
the KHI for the magnetopause surface mode have also
been undertaken [e.g., Miura, 1984, 1987, 1995a]. These
show that the disturbances initially grow at the rate
predicted by linear theory and then saturate at later
times. The disturbances then form vortices and allow
some diffusion of magnetosheath plasma into the mag-
netosphere, forming a boundary layer just inside the
magnetopause (the low-latitude boundary layer (LLBL)).
These simulations have, in general, dealt with a periodic
domain with a length equal to the wavelength of the ini-
tial disturbance. This condition was relaxed by Miura
[1995a], who found that when two wavelengths of the
initial perturbation were included in the box, two small
vortices initially formed, which later merged to become
one large vortex.
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In this paper, we study the spatial development of
initial disturbances of finite extent (wavepackets rather
than normal modes or periodic disturbances) that are
driven unstable by the change in shear flow at the mag-
netopause. In order to do this we use the theory of
absolute and convective instabilities (detailed reviews
of which may be found in the works of Briggs [1964]
and Bers [1983]). It was first suggested by Twiss [1951,
1952] and Landau and Lifschitz [1953] that a localized
pulse in an unstable system may evolve in two distinct
ways, it may be either “convectively” or “absolutely”
unstable. The two types of instability are illustrated
in Figure 1. An “absolute” instability is one in which
the growing pulse expands to encompass all space, so
that eventually the disturbance at any fixed point in
space grows in time. A “convective” instability is one
in which the pulse not only grows, but also propagates
away from its starting position so that at any fixed point
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the disturbance eventually decays in time. The pulse
still expands in space but is moving away sufficiently
fast that the response of the plasma at large times will
be zero at any fixed point. These concepts are frame
dependent. If an observer were moving with a growing
pulse, he would see a growing disturbance for all time
(an absolute instability). Similarly, an observer moving
faster than the front edge of a pulse (or slower than the
back edge of the pulse) would see a convective instabil-
ity. Therefore, for any instability we may define a range
of reference frames for which the instability is absolute.
We can think of the classification of an instability as
a measure of the speed with which the fastest growing
part of the pulse convects away compared to the rate
of broadening of the pulse and the growth rate of the
wavepacket.

Studying the absolute or convective nature of an in-
stability gives important insight into the onset of non-
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Figure 1. A schematic diagram of the space-time development of (a) an absolute instability

and (b) a convective instability.
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linear behavior in a system. For example, if an insta-
bility is convective and a disturbance will only grow
by one factor of e over the length scale of the system
then the nonlinear behavior is unlikely to be important.
Conversely, if the pulse is found to be dominated by a
surface wave that will grow to a significant amplitude
within the system, then in analyzing the nonlinear be-
havior we may choose to simplify the equations and
consider only surface modes.

Wu [1986] states that the KHI at the magnetopause
should be convectively unstable. However, Wu uses the
term convective instability in a rather informal fash-
ion compared to our definition above and the body of
literature that this paper draws on, limiting the defi-
nition to implying that disturbances should propagate
tailward with a finite velocity. Wu took a numerical
box much larger than the initial perturbation with a
symmetric flow profile and found that the disturbance
expanded to fill the box. The symmetry in Wu’s model
meant that his simulation frame was actually moving
with the fastest growing part of the disturbance so that
the pulse remained centered on the simulation domain.
Therefore in this reference frame the instability is abso-
lute. However, showing that an instability is absolute
in one reference frame tells us nothing about its behav-
ior in other frames. Wu’s calculation did not take into
account the effect of changing the reference frame, so
he is unable to state whether the instability is absolute
or convective in the rest frame of the magnetosphere.

Manuel and Samson [1993] investigated the spatial
development of the KHI along the magnetopause using
an MHD simulation in which seed perturbations were
fed in at the upstream end and an outgoing boundary
condition was applied at the downstream end of the
waveguide. Their simulation showed the classic behav-
ior of a convective instability, although they did not
use this term (the disturbances convected downstream
as they grew, only showing nonlinear behavior several
Earth radii (Rg) from their source).

Miura [1995b] summarizes the results from numeri-
cal simulations of the KHI at the magnetopause and
presents a picture of an undulating magnetopause cause
by vortices travelling tailward along the flanks. Thisisa
qualitative description of a convective instability around
the magnetospheric flanks, although Miura does not use
that phrase.

The concepts of absolute and convective instabilities
have been applied to the magnetosphere in the work of
Wright et al. [2000]. Here we present a fuller treatment
of the modes in that model and compare our results to
those from a numerical simulation. Some of the con-
tent of this paper is rather technical, and some readers
may find the distinction between convective and abso-
lute instabilities based on physical behavior (mentioned
earlier) more appealing. This description has been ex-
pounded more fully by Wright et al. [2000] to which we
direct interested readers (particularly section 2 and the
discussion of Figure 1 in that paper).
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In section 2 of this paper we describe the mathemati-
cal method for distinguishing between absolute and con-
vective instabilities (more details of which may be found
in the appendix), and in section 3 we outline our model
and the governing equations. We detail our results in
section 4 and compare these to results from a numerical
simulation in section 5. Finally, in Section 6 we discuss
the implications of our results for the magnetosphere.

2. Absolute and Convective Instabilities

Previous studies of the KHI at the magnetopause
have considered normal modes of the system. How-
ever, in order to determine the absolute or convec-
tive nature of the instability we must instead consider
a wavepacket. In fact, this is more realistic as it is
unlikely that the entire magnetopause will be excited
monochromatically at any time. The wavepacket may
then be expressed as a Fourier integral over the normal
modes of the system. It turns out that determining the
space-time evolution of such a wavepacket is more com-
plicated than simply determining whether any of the
normal modes may be unstable.

The space-time evolution of a wavepacket in an un-
stable system is determined by finding all the dou-
ble roots or the dispersion relation for that system
(D (w, ky) = 0), such that

D (w,ky) = STD (w,ky) =0. (1)
y
The behavior of the disturbance, 9 (y,t) is then given
by the double root that has the largest imaginary part
of w, ws say (corresponding to a complex value of ky,
ks say). Then, as t — oo,

1 —iw 7
Y (y,t) ~ _\ﬁe stethey, (2)

where 9 represents the response of the plasma, as a func-
tion of y and ¢t. (See Wright et al. [2000], Bers [1983],
or Briggs [1964] for more details.) If w, has a positive
imaginary part, (2) indicates that

P(y,t) 00 t— oo, @)
in other words, the instability is absolute. Conversely,
if the imaginary part of ws is negative, we find that

Y (y,t) >0 t— o0, (4)

indicating that the instability is convective. These
asymptotic formulae are valid for any fixed point in the
reference frame in which we have defined D (w, ky). If
we change reference frame we find that both the fre-
quency and wavenumber of any double root are changed,
and so the time asymptotic behavior of the pulse is dif-
ferent in different reference frames. Thus, by tracing
the double roots in different reference frames (moving
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with speeds denoted by vy) we may determine the na-
ture of the instability in all of those reference frames.
For clarity, we will denote by < the value of the growth
rate at a double root in order to distinguish it from w;,
the growth rate of a normal mode.

For convective instabilities an important quantity in
determining the effects of a wavepacket on the magneto-
sphere is its spatial growth rate. It may be shown that
the maximum spatial growth rate of the wavepacket
(when viewed from the magnetospheric rest frame) is
v (vs1) Jvgr, where vy satisfies [see Brevdo, 1994]

dy (vs) _ v(vy) (5)
d’l)f vf

Graphically, this corresponds to the line from the origin
to a point on the curve 7 (vy) being a tangent to the
curve at that point [see Wright et al., 2000]. A more
thorough discussion of the results quoted in this section
may be found in Appendix A. Detailed reviews of the
theory of absolute and convective instabilities may be
found in the works of Briggs [1964] and Bers [1983].

3. Model and Governing Equations

In order to model the space-time evolution of both
body and surface modes in the magnetosphere, we have
modeled a uniform, bounded static magnetosphere sep-
arated from a uniform, semi-infinite flowing magne-
tosheath by a boundary layer of finite width over which
the equilibrium flow speed changes continuously (this
boundary layer serves to limit the growth rate of modes,
see Walker [1981]). A sketch of this model is shown in
Figure 2. Throughout this paper we use variables nor-
malized to the equilibrium sound speed c;2 and density
Po2 in the magnetosheath and the width of the magne-
tospheric cavity (from the inner boundary to the mid-
dle of the boundary layer), d. (Time is normalized by
the quantity d/c;, pressure by I'P», and magnetic fields
by /TP p,, where Ps is the equilibrium pressure in the

y L
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magnetosheath and I is the ratio of specific heats which
we take to be 5/3.) The boundary layer is thus centered
at z = 1 and has width 26. We are modeling the equi-
librium on the equatorial flanks of the magnetosphere
so the equilibrium magnetic field in the magnetosphere,
B; is perpendicular to the equilibrium flow in the mag-
netosheath, v,. In order to consider both fast and slow
modes we have taken a finite plasma beta 3 in the mag-
netosphere, so that we have an equilibrium plasma pres-
sure P; with an equilibrium density p,1. In both the
magnetosphere and the magnetosheath the plasma pa-
rameters are taken to be constant and variation only
occurs within the boundary layer, 1 — 6 <z < 1+44. In
this region the flow speed profile is taken to be

U_D+v_o{3(x—1)_(x-1)3}_ ©)

vie) =5+ 5 5

This cubic form of the velocity profile was suggested
by Walker [1981] and allows both the flow velocity and
its first derivative to be continuous at the edges of the
boundary layer, x = 1+ 4. The other equilibrium pa-
rameters of the plasma (magnetic field, plasma, pressure,
etc.) are assumed to change discontinuously from the
magnetospheric values to those in the magnetosheath at
the inner edge of the boundary layer (z = 1 — §). Thus,
in the boundary layer, there is no magnetic field and
only a plasma pressure P,. This eliminates the possi-
bility of having Alfvén resonances within the boundary
layer which simplifies the physics that we are consid-
ering. The jump in flow speed across the boundary is
denoted by Av = v (1 +§) — v (1 — §), which is a frame-
independent variable.

Our principal motivation for introducing a boundary
layer is that it removes the unbounded growth rates
that occur for a discontinuity in equilibrium flow, which
would make our initial value/wavepacket formulation
ill posed. The existence of a boundary layer is also
supported by observations, although these show that

r=
® B, 2z
magnetosphere
B#0 p,, P,#0 gretosp
r=1-06 boundary layer
r=1+§
Vor Y
magnetosheath
B,=0 Pozr P2720 J

Figure 2. A schematic diagram of our bounded magnetosphere model containing a finite width

boundary layer.
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there can be a significant magnetic field in the bound-
ary layer and the magnetosheath. The presence of such
a field adds a degree of complexity that we do not wish
to consider in this preliminary study: It is well known
that the sheath field can have a stabilizing effect. It is
less well known that a field in the boundary layer can
give rise to slow and Alfven resonances that (through
the action of negative energy waves) can make the sys-
tem more unstable [e.g., Ruderman and Wright, 1998].
The influence of both these effects on the evolution of
wavepackets deserves further attention but is beyond
the scope of the present paper.

We may derive analytic solutions of the linearized
MHD equations in the magnetosphere and magneto-
sheath since these regions are uniform. In doing this we
consider perturbations proportional to ei(kvytkzz—wt)
where w is the frequency of the oscillations in the mag-
netospheric rest frame (which may, in general be com-
plex, w = w, + iw;) and k, and k. are the components of
the wavenumber in the y and z directions, respectively.
We have taken the boundary at x = 0 to be perfectly
reflecting and set the = component of the perturbed ve-
locity to zero there. In the magnetosheath we require
the x component of the group velocity to be directed
away from the magnetopause boundary in the reference
frame moving with the flowing plasma. This require-
ment leads to the condition that [see also Mann et al.,
1999; Mills et al., 1999]

(M)

where w! is the Doppler-shifted frequency is given by
w! = w — kv, sin « in the rest frame of the magnetosheath,
and ms is the component of the complex wavenumber
in the magnetosheath in the z direction defined as

Re (w)) Re (m2) + Im (w!) Im (my) > 0,

w? — k2c?
m% = ——022 2 . (8)
X;

|
1
i 0.>0
[ l
!
!
¢

1-§ 1+§ Xy
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Here we have used the definitions k = ,/k2 + k2 and
a =tan™! (k,/k.). These conditions allow us to de-
termine the solutions of the equations in the magneto-
sphere and magnetosheath to within an arbitrary phase
and amplitude.

In the boundary layer we may combine the linearized
hydrodynamic equations (since there is no magnetic
field in this region) to obtain two first-order ordinary
differential equations for the pressure perturbation, pr
(which is the same as the plasma pressure perturbation
in this region since the magnetic field is zero), and the
displacement in the z direction (= u,1 /[w — kv (2) sin o,
where u.; is the component of the perturbed velocity
in the z direction). The two equations are

BT v (575 )
d [ ug \ _ im?(x)
dz (w' (m)) " pee? (@)

where m? () is the z component of the complex wave-
number in the boundary layer, defined by

w/? z) — k2c2
m2 (.’L‘) — ( ) 2 s2 ,
Cs2

(10)

- and W' (z) = w — kv (z) sin @ is the Doppler-shifted fre-

quency at .

Taking the phase of the solution in the magnetosphere
to be zero and its amplitude to be one, we use the an-
alytical solutions in the magnetosphere to find the val-
ues of the perturbed total pressure and z component of
displacement (&, = uy1/w’) at £ =1 — ¢ since the to-
tal pressure and x displacement are continuous every-
where. We then use a fourth order Runge-Kutta scheme
to integrate across the boundary layer and match the
solutions at £ = 1 + § to those from the solution in the
magnetosheath to find the eigenvalues of our problem.

®,<0
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Figure 3. The integration contours in the complex z plane for (left) w; > 0 and (right) w; < 0.
The dotted-dashed line indicates the position of the branch cut.
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However, for real w, there is singularity and branch cut
associated with (9) where

W' (z) =w — kv (z)sina =0, (11)
which inhibits integration along the real x axis. In order
to overcome this we may instead integrate in the com-
plex z plane around the singularity. In this case we find
that the position at which the singularity occurs has a
positive imaginary part of z when w; > 0 (see Figure
3). Therefore we must ensure that we always integrate
beneath the singularity (i.e., we are taking the branch
cut associated with the singularity to be directed up-
ward in the complex z plane). For simplicity, we place
our integration contour so that we first integrate from
r=1-6to =1-0+ iz, (where z;, < 0), and
then to =1+ 6 + iz, and finally to z =1+ 6 (see
Figure 3). In general, when we consider unstable modes,
we may take z;,, = 0, but when the growth rate is small
we find that it is easier to take a nonzero value of z;,
since the integration needs a very fine grid to converge
if the singularity is too close to the real z axis. When
w; < 0, we must take z;,, < 0. If z;,, is not sufficiently
large, the branch cut will not be circumvented. This will
result in the integration path arrivingatz =1+ Jon a
different Riemann sheet to that required for a physical
solution. This behavior manifests itself as poor numeri-
cal convergence as the singularity nears the integration
contour, and a jump in the solution at =1+ 6 as
it crosses the contour, corresponding to the switching
from one Riemann sheet to another.

We have taken a maximum step size of ~ 5 x 1074
in our Runge-Kutta scheme, giving a maximum global
error of ~ 10719, In our Newton-Raphson root finder
we have found the roots to within v < 106,
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4. Results

4.1. Double Roots Corresponding to Fast
Surface Modes

In this section we investigate the behavior of double
roots that are associated with fast surface modes. In
order to find the double roots we must first solve the
dispersion relation to identify the maxima of the growth
rate. Figure 4 shows the effect of a finite width bound-
ary layer on the phase speed (vpn = w,/k) and growth
rate, w;, of the fast surface mode when v, = 2 and for
modes propagating parallel to the flow in the magneto-
sphere (so that @ = 7/2). We have taken 6 = 0,0.05,0.1
shown by the solid, dashed, and dotted-dashed lines, re-
spectively. Increasing the value of § decreases both the
phase speed and growth rate from their values for an
infinitely thin magnetopause. Indeed, in the 6 = 0 case
the growth rate is unbounded for large k, but when
§ # 0 the growth rate has a maximum for finite £ and
decays toward zero as k continues to increase. This is
in agreement with the result found by Walker [1981].

Figure 5 shows the asymptotic growth rate v as a
function of reference frame speed vy for the fast sur-
face mode wavepacket when Av =2 and a =7/2 for
different values of §. These curves indicate that this
mode is associated with a convective instability when
v =0 (ie., in the rest frame of the magnetosphere)
since v < 0. The values of vy at which y(vy) = 0 will
correspond to the speed at which the front and back
of the growing wavepacket will move in the magneto-
spheric rest frame with constant amplitude. In frames
with vy < 0.15 the wavepacket will run ahead of the ob-
server leaving no disturbance for large time. Conversely,
frames with vy > 1.73 correspond to the observer run-
ning ahead of the wavepacket and, again, seeing no dis-

8 HEARANE BN AL BN B

Figure 4. The (a) phase speeds and (b) growth rates of the fast surface mode when v, = 2 and
a = /2 for § = 0 (solid line), § = 0.05 (dashed line), and J = 0.1 (dotted-dashed line).
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Figure 5. The growth rate v of the fast surface
mode wavepacket as a function of reference frame vy
for Av =2 when ¢ = 0.05 (solid line), § = 0.1 (dashed
line), and § = 0.2 (dotted-dashed line).

turbance for large time. The maximum gamma occurs
at for the value of vy corresponding to the group veloc-
ity of the wavepacket, i.e., the maximum growth rate
is seen by an observer who moves so as to just keep up
with the wavepacket. The maximum value of -y scales as
1/6, and the range of reference frames for which the in-
stability is absolute (v > 0) is identical for all nonzero 4.
Physically, this corresponds to the surface mode being
confined to the vicinity of the boundary layer and being
insensitive to the inner boundary where the amplitude
is very small. The spatial growth rate of these modes
will also scale as ~ 1/§, so that the e-folding length will
be proportional to 4.

Next we look at the dependence of the function ~y (vy)
on the change in plasma flow speed Av. Figure 6 shows
the asymptotic growth rate, v (vf), when 6 = 0.1 and
a = 7 /2 for various values of Av. The mode indicates
a convective instability in the rest frame of the mag-
netosphere for all flow speeds except Av = 0.5 (shown
here by a dotted-dashed line), which would only occur
near to the nose of the magnetosphere. Thus, for most
of the flanks of the magnetosphere the fast surface mode
wavepacket corresponds to a convective instability. For
a given value of § we can see that the maximum growth
rate initially grows as the flow speed increases from zero
but then decreases as Av increases from ~ 1. The spa-
tial growth rate will be largest for small flow speeds and
decreases as the flow speed increases. Determining the
range of frame speeds (vy) for which « is positive or
negative is crucial in determining the nature of the in-
stability in a given frame, such as the magnetospheric
rest frame. It is evident from our results that the nature
of the instability in a given frame is dependent on the
value of Av, among other things. Although the trends
are clear from our diagrams, we have not identified any
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simple relations for identifying the different vs regimes.

We have also considered fast surface modes propagat-
ing nonparallel to the magnetosheath flow (not shown
here). We found that the asymptotic growth rate is al-
ways largest for modes propagating parallel to the flow
and the maxima of the asymptotic growth rate occurs
for lowest vy when the modes propagate parallel to the
flow.

4.2. Double Roots Corresponding to Fast Body
Modes

The bounded nature of the magnetosphere in the
model we have considered allows the propagation of
modes that are oscillatory in the magnetosphere (body
modes) as well as surface modes. In this section we
consider the behavior of double roots corresponding to
fast body modes. Figure 7 shows the effect of a nonzero
width boundary layer on the dispersion of these modes.
Like the fast surface mode, the growth rate is gener-
ally reduced and the maximum occurs for lower k as ¢
is increased. The phase speed is generally reduced as
well but not as significantly as in the case of the sur-
face mode. The effect on the growth rate is greater
for the second harmonic (Figure 7d) than for the first
(Figure 7b).

Figure 8 shows the asymptotic growth rate v as a
function of vy for the fundamental fast body mode when
6 =0.1and @ = 7/2. We have taken Av = 5,7.5, and 10,
shown here by the solid, dashed, and dotted-dashed
lines, respectively. For all these values of the flow speed
we find that the double root indicates a convective in-
stability in the rest frame of the magnetosphere, and
the lower value of vy for which v = 0 is very similar for
all the curves. As the flow speed increases, the maxi-

20 [ | T T T T T

1.5F

20 25 30

Figure 6. The growth rate v of the fast surface
mode wavepacket as a function of reference frame vy for
Av = 0.5 (dotted-dashed line), Av =1 (dashed line),
lAv): 2 (solid line), and Av =5 (triple-dotted-dashed
ine).
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Figure 7. (a,b) Fundamental mode and (c,d) second harmonic. The (left) phase speeds and
(right) growth rates of the fast body mode harmonics when v, = 5 and @ = 7/2 for § = 0 (solid
line), § = 0.05 (dashed line), and § = 0.1 (dotted-dashed line). The dotted lines in Figures 7a
and 7c show the value of the fast speed ¢y in the magnetosphere.

mum value of the growth rate increases, and the range
of reference frames for which the instability is absolute
also increases.

Next we consider the effect of a nonzero k, on the
double roots of this mode. Figure 9 shows « (vys) for the
fundamental fast body mode when Av =5 and § = 0.1
for different values of a. As we decrease a from m/2,
we see that the maximum growth rate decreases slightly

1.4F

1.2F

1.0F

0.8

0.6 F

0.4Ff

0.2
0.0t

Figure 8. The growth rate v of the fundamental fast
body mode wavepacket as a function of reference frame
vy for Av =5 (solid line), Av = 7.5 (dashed line), and
Av = 10 (dotted-dashed line) when o = /2.

and occurs for higher vs. These double roots still in-
dicate a convective instability in the rest frame of the
magnetosphere.

5. Results From a Numerical Simulation

In order to help interpret our results we have com-
pared them to the results from a two-dimensional (z—y)
time-dependent code that solves the linear MHD equa-
tions for the equilibria described in the previous sec-
tions. The code uses a staggered mesh on which the
equilibrium variables together with their derivatives
are defined. The perturbed velocity and total pres-
sure are advanced in time using Hymans third-order
predictor-corrector method with fourth-order differenc-
ing in space. The computational domain lies between
z = [0:10] and y = [-60 : 60]. The boundary con-
ditions are periodic in the y direction, and no normal
velocity (with the appropriate symmetry conditions for
the other variables) is imposed in the z direction. For
the cases illustrated here the spatial grid sizes for the
numerical integration (dz and dy) are taken to be 0.025,
and energy is conserved to within 1000th of a percent.
Note that although our simulation is periodic in y, we
have taken the boundaries to be so far away that negli-
gible wave energy reaches them.

Our boundary conditions at z = 0 and 10 provide
perfect reflection. This is desirable at £ = 0, as the
Alfven speed variation in the real magnetosphere re-
fracts waves, which is mimiced by simple reflection in
our model. The boundary condition at = 10 has little
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Figure 9. The growth rate v of the fundamental
fast body mode wavepacket as a function of reference
frame vy for Av = 5 when a = 7/2 (solid line), o = 7/3
(dashed line), and a = 7/4 (dotted-dashed line) and
6=0.1.

effect on the solution since the amplitude of the unsta-
ble wavepackets decreases exponentially with z and so
is small there. Indeed, this was verified in other runs
where the boundary was moved in z and no difference
in the behavior of the solution was observed.

In this simulation we perturb the equilibrium and al-
low the system to evolve in time. The initial pertur-
bation is taken to have a wavelength in the y direction
similar to that of the fastest growing normal mode and
is contained within an envelope, so that overall, the y
dependence of our initial displacement is given by

1 2
Uz (Y) = 3 [1 + cos(-—gy—)] cos (kyy); —2.5 <y< 2.5,
(12)

0 5 10 15 20 25
t
Figure 10. The perturbed velocity in the z direction

as a function of ¢ for y = 2.5 in the rest frame of the
magnetosphere (vy = 0) at z = 0.5 and with Av = 2.
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Figure 11. The logarithm of the absolute value of
the perturbed velocity found by the numerical simula-
tion (dotted line) and that predicted by our asymptotic
analysis (dashed line) at £ = 0.5 and y’ = 0 in the ref-
erence frame vy = 1 and with Av = 2.

30

and u;; = 0 elsewhere. The z dependence of the per-
turbation is chosen to be surface mode like in the first
case (when Av =2) as it is only surface modes that
will be excited. In the Av =5 case, body modes will
also be excited, and we have used a quarter wavelength
variation in z within the magnetosphere for the initial
perturbation.

First, we examine the case where Av = 2 and @ = 7/2,
when the only unstable normal mode is the fast sur-
face mode. We have taken § = 0.1 and the asymptotic
growth rate as a function of vy in this case is shown
by the dashed line in Figure 5. Figure 10 shows the x
component of the perturbed velocity as a function of
time in the rest frame of the magnetosphere at y = 2.5
(the leading edge of the pulse) and z = 0.5. The pertur-
bation passes over the observer and the signal at large
times is zero. This confirms that the instability is con-
vective in the rest frame of the magnetosphere.

Now we consider the evolution of the disturbance in a
reference frame moving with vy = 1. Here we expect to
find an absolute instability since v (1) > 0 (see Figure
5). In Figure 11 we have plotted the disturbance at the
point ¥’ = 0 (where y' = y — vyst) as a dotted line, and
we have overplotted the evolution that our asymptotic
analysis (Equation (2) predicts as a dashed line. We
have matched the phase and amplitude of the results at
t = 30. The agreement between the prediction and the
numerical results is excellent. In this case the growth
rate predicted by our analysis is 1.72, and the global
growth rate of the system in the numerical simulation
(which should be close to that of the fastest growing
mode) is 1.74.

In Figure 12 we have plotted the position of the pulse
in y at lots of different times to get an idea of the spatial
growth rate of the mode. We have taken a reference
frame moving with vy = —29 in which we would expect
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Figure 12. The position of the wavepacket in y at various times plotted one over the other. The
solid lines give the envelope of spatial growth predicted by our asymptotic analysis.

the instability to be convective. We have chosen this
reference frame so as be able to clearly see that spatial
growth of the disturbance as it propagates along. The
solid line indicates the envelope predicted by our spatial
growth rate calculation and fits the numerical data very
well.

Next we compare our predictions and numerical simu-
lations for the case when Av = 5, @ = m/2, and § = 0.1.
Figure 13 shows the value of v at the double roots cor-
responding to the fast surface mode (dot-dashed line)
and the first and second harmonics of the fast body
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Figure 13. The growth rates v of the fast mode
wavepackets as a function of reference frame vy for
Av =25 when o =n/2 and § = 0.1. The roots shown
may be identified with the fundamental body mode
(solid line), the second harmonic (dashed line), and the
surface mode (dotted-dashed line).

mode (solid and dashed lines, respectively). We expect
the system to be convectively unstable in the rest frame
of the magnetosphere, and in reference frames moving
with speeds 0.3 < vy < 1.5 we expect the dominant
plasma response to be that of a surface mode. The
fundamental fast body mode will dominate in reference
frames in the range 1.5 < vy < 3.2. The peak in v of
the double root corresponding to the second fast body
mode harmonic occurs below the curve of the funda-
mental mode since the group velocities at maximum
growth rate of the two modes are similar. The second
harmonic will dominate for 3.3 < vy < 4.3.

Figure 14 shows the disturbance as a function of y’
(in the reference frame vy = 1.8) when ¢t = 20 and at

1.0[ i | j ' !
§ o0s5f
i) [
w -
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3 [
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—1.OI: 1 1 1 1 L
-30 =20 =10 O 10 20 30
yl

Figure 14. The perturbed velocity in the z direction
as a function of y' when ¢t =20 at z = 0.5 and in the
reference frame moving with vy = 1.8.
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Figure 15. The perturbed velocity in the z direction as a function of  when ¢ = 20 in the frame
moving with vy = 1.8 at (left) y' = —15 and (right) y' = 7.5 (see Figure 14).

z =0.5. We can clearly see that the initial pulse has
largely split into two separate shapes, one moving slower
than this reference frame and one moving faster. Look-
ing at Figure 13, we expect the fast surface mode part
of the pulse to move at a speed of —0.8 in this reference
frame, which at ¢ = 20 would correspond to a position
of y' = —16. There is indeed a pulse centered at that
point. Similarly, we would expect the center of the fast
body mode pulse to have moved to position of y' = 6,
which again agrees well with Figure 14. The pulse cen-
tered around y' = —9 is formed because of the interfer-
ence of the front of the fast surface mode disturbance
with the tail end of the body mode disturbance. We
can also use this plot to estimate the wavelengths, A
at the centers of the wavepackets and compare them to
our predictions. For the fast surface mode we predict a
wavelength of A = 1.3 and the simulation gives A = 1.4.
For the fast body mode we predict A = 3.7, and the sim-
ulation also gives this value. Once again, the agreement
between our predictions and the numerical simulation
are excellent. Figure 15 shows the cross sections in z of
these two parts of the pulse. The first plot shows a cut
along y' = —15 in Figure 14. The perturbation has a
classic “surface mode” character in the magnetosphere

- and has a decaying oscillation into the magnetosheath.
The second plot shows a cut along y' = 7.5 in Figure
14, and the perturbation is a body mode with a quarter
of a wavelength trapped in the magnetosphere. This
agrees well with our predictions of the evolution of the
two types of mode.

Our prediction for the asymptotic growth rate in the
reference frame moving with vy = 1.8 for this case gives
~v = 0.84 and a frequency of 2.72. Thus, in this frame we
have an absolute instability and from Figure 13 we see
that the fundamental waveguide mode wavepacket will
dominate at large ¢t. The fast surface mode wavepacket
is also absolutely unstable in this reference frame, but it

has a smaller growth rate. The results from the numer-
ical simulation give the frequency as 2.7 and the growth
rate as 0.84, so the agreement is again excellent.

6. Discussions and Conclusions

We have shown that (except for the fast surface mode
when the magnetosheath flow speed is very small) the
double roots corresponding to both fast body and sur-
face modes indicate that the magnetopause is convec-
tively unstable to the KHI in the magnetospheric rest
frame. Thus the most important factor in determining
the effect on the equilibrium of these unstable distur-
bances is their spatial growth rate (or their e-folding
length).

We have shown that the system is only absolutely
unstable when the flow speed is very small, which cor-
responds to the nose of the magnetosphere, where the
boundary layer is very thin and the validity of MHD
is questionable. Elsewhere, the system is convectively
unstable. The e-folding length of the fast surface mode
(when convectively unstable) ranges from ~ 1 Rg for
low values of flow speed (Av =2) and § = 0.01 (close
to where we expect the modes to begin being excited) to
~ T Rg when Av = 5 and § = 0.1 (corresponding to the
equilibrium further around the magnetospheric flanks).
From these values we see that the surface mode distur-
bances will initially grow very quickly as they convect
around the magnetosphere, so that nonlinear effects will
dominate. This is in agreement with Manuel and Sam-
son [1993], who showed that the nonlinear effects can
broaden the boundary layer. Further around the flanks
the spatial growth rate reduces and the disturbances
will not grow very much larger before reaching the mag-
netotail, which is expected to be more stable. (We as-
sume that the total distance from the nose around the
flanks to the start of the magnetotail to be ~ 30 Rg).
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The fast body modes may only become unstable when

Cf + Cs2

Av > ——
sin o

(13)
where ¢y is the fast speed in the magnetosphere [see
Mills et al., 1999]. Therefore they may only become un-
stable away from the nose of the magnetosphere. In this
region we find e-folding lengths of the order of 20 Rg,
indicating that these modes will not grow significantly
as they convect around the magnetospheric flanks and
that nonlinear effects are unlikely to be significant for
these modes on the flanks of the magnetosphere.

Fast body modes may couple to and drive FLRs in
the magnetosphere [Mills and Wright, 1999]. However,
these globally oscillatory modes have proved surpris-
ingly elusive in data, suggesting that the body of the
flanks of the magnetosphere are not significantly dis-
rupted. The large e-folding lengths of these modes ex-
plains why they would be hard to observe. However,
they may still drive FLRs as they convect around the
magnetosphere. If the fast body modes are driven im-
pulsively, the FLRs will be driven for a finite number
of cycles as the modes convect past. If the modes are
continuously driven, the FLRs will also be continuously
driven, but the amplitude of the driving modes (the
fast modes) will remain small. In either case the fact
that the modes are convectively unstable helps to ex-
plain why the linear theory of FLRs has been so suc-
cessful. Figure 16 gives a summary of these results with
a schematic diagram showing the regions of the magne-
tosphere we are considering.

We have also studied the stability of the KH sur-
face and body slow mode wavepackets which may only
propagate at oblique angles to the flow, which are all
convectively unstable in the magnetospheric rest frame.
We found that slow surface modes will have e-folding
lengths of the order of 100 Rg, and slow body modes
will e-fold over distances of upward of 1000 Rg. Thus
these modes will not grow to any significant amplitude
as they convect over the flanks of the magnetosphere.

We have compared our results to those from a two-
dimensional, time-dependent MHD code and found that
the asymptotic behavior predicted by our method agrees
well with that found in the code at large times. We have
seen how the modes convect past a fixed point in the

Magnetotail

Figure 16. A schematic of the regions of the magne-
tosphere we are considering.
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magnetosphere leaving zero displacement at large time.
We have also seen that for an equilibrium with more
than one unstable normal mode, the initial wavepacket
may split into two parts corresponding to the different
normal modes. In the reference frame of our simulation
both these wavepackets are absolutely unstable and so
will ultimately perturb every point in space. Thus these
wavepackets will not totally split, but their centers will
be seen to move apart.

In the preliminary study we have presented here the
magnetic field in the magnetosheath and low-latitude
boundary layer (LLBL) has been neglected. Such an
omission is not important for the antisunward propa-
gating modes we consider here if the background field
were to be directed northward. This is because the
waves do not bend the field lines and so the stabiliz-
ing effect of field line tension is absent. Indeed, just
such an equilibrium field is often adopted in modeling
le.g., Miura, 1984; Wu, 1986] because it is simple and
represents the most unstable configuration in which the
physics can be most easily studied. Moreover, satellite
data confirm that at times it is a realistic configuration
[Manuel and Samson, 1993).

Allowing the magnetosheath and LLBL field to have
a more general orientation normally introduces some
stabilization, and this has been addressed by Miura
[1995a). The stabilizing effect of the field need not dra-
matically alter the conclusions of our work. For exam-
ple, Manuel and Samson [1993] considered the e-folding
length of the convective instability: They compared the
case in which the sheath and LLBL field was directed
northward (no field line tension stabilization) and that
in which the field was tilted through 30°. The latter
case was more stable, and consequently they grew over
a larger e-folding length that was 5% greater than the
former. Hence the qualitative behavior of the two con-
figurations is the same. It is interesting to note that
the Parker spiral is tangential to the dusk flank but not
to the dawn flank. Mann and Wright [1999] have sug-
gested there should be a statistical bias for the Kelvin-
Helmbholtz instability to operate more often on the dawn
flank, and this may account for the common azimuthal
phase speeds of field line resonances which occur pref-
erentially on that flank.

7. Summary

The interpretation of our results for strong solar wind
flow are shown in Figure 16 and Table 1. This figure
builds on a similar diagram of Mann and Wright [1999],
which identified regions where waveguide modes would
be leaky, stable, or unstable. Our calculations can pro-
vide a more detailed picture of the growth and propa-
gation of the modes.

In region A, there is a small change in equilibrium
flow speed, the LLBL is narrow, and surface mode
wavepackets will be absolutely unstable. Waveguide
modes will leak energy through the magnetopause here.
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Table 1. Summary of the Properties of Fast-Mode Wavepackets in the Regions Shown in Figure 1b

Region Av, km/s LLBL Width/Rg Fast Surface Modes Waveguide Modes
A Av < 100 <0.5 absolutely unstable leaky
convectively unstable
B 100< Awv < 400 0.5—1.5 e ~ 2REg trapped
nonlinear effects — LLBL
C Av > 400 ~1.5 convectivelyRuns_table conve%ivzl }é(;lﬁfstable
e E =

driving of FLRs

In region B the increased change in flow speed provides
perfect trapping for waveguide modes, while the surface
mode wavepacket has now become convectively unsta-
ble with an e-folding length of the order of an Earth
radius (in the rest frame of the Earth). These surface
mode disturbances will quickly become nonlinear, and
Manuel and Samson [1993] suggest that this can ac-
count for the broadening of the LLBL away from noon.

For slow solar wind conditions, region B may extend
all the way to the near-Earth tail. However, for strong
solar wind flow we expect a region C on the flanks,
with a broad LLBL. The equilibrium here can support
convectively unstable surface mode wavepackets (with
e-folding lengths of ~ 7 Rg and convectively unstable
waveguide mode wavepackets (with e-folding lengths of
~ 20 Rg. The waveguide modes will only grow by a
factor of about e as the convect tailward, and so should
remain linear. They can also couple to field line reso-
nances (FLRs). :

Figure 17 shows a schematic summary for the dawn
flank. The convectively unstable surface mode wave-
packet has become nonlinear and broadened the LLBL.

Two wavepackets are shown propagating tailward, and
are associated with the first two convectively unstable
waveguide mode wavepackets. Each of these wavepack-
ets excites an FLR which it leaves in its wake, standing
on closed field lines. The waveguide modes will have
different tailward group velocities, but the wavepackets
are likely to overlap as are the local times of the FLRs
they excite. Such FLRs would be expected to have a
common tailward phase speed [Mills and Wright, 1999],
and this is a useful clue as the the mechanism through
which the waveguide modes are excited.

Appendix A: The Theory of Absolute
and Convective Instabilities

The space-time response of a plasma ¢ (y, t) is defined
by the Laplace-Fourier integral

oco+iod
w w’k i —w
Y (y,t) = / Ny ————Diw k’;)e(’“vy 8 di, dw,
(A1)

(o]

—

/ Non-linear surface mode

Magnetosheath

Site of Initial ( 1 ( )
Disturbance
. Second Fast
First Fast
Mode Mode
_—
]
[ FLR }
Magnetosphere

Figure 17. A schematic of the overall effect of disturbances on the magnetospheric flanks.
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Figure 18. The mappings through the dispersion relation D (w,ky,) = 0 from the Laplace
contour, L, onto the complex k, plane showing the division of roots into ky. (upper k, plane)
and ky; (lower k, plane). Also shown is the mapping from the Fourier contour F onto the complex
w plane, showing that all the roots occur below the Laplace contour.

where o is defined to be larger than the largest growth
rate of any mode for real k,. The line along which we
integrate in the complex w plane is know as the Laplace
or Bromwich contour. In the k, plane we describe our
integration path as the Fourier contour. In general, we
may consider modes propagating at oblique angles to
the flow, so that there is a finite wavenumber in the
z direction. The component k. enters the dispersion
relation as a fixed parameter, and so we do not indi-
cate it explicitly in the dispersion relation. Moreover,
since each k, mode decouples from the others, we may
consider each one individually and sum over the permit-
ted values subsequently. Since the most unstable flank
modes will have k, = 0, the majority of this paper fo-
cuses on these modes.

We may map the Laplace contour onto the complex
ky, plane through the dispersion relation, and we find
that each branch of the solution must lie either wholly
in the upper half of the k, plane (having k,; > 0 and de-
noted ky,,) or the lower half of the plane (having k,; < 0
and denoted ky;). This follows from the fact that there
are no solutions of the dispersion relation for real k,
for which w; = o since o is (by definition) greater than

Im {w (kyr)}. Similarly, the Fourier contour may be
mapped onto the complex w plane, and all the branches
of this solution must lie below the Laplace contour. The
positions of the two contours and the mappings between
the two planes is shown in Figure 18.

In order to determine the asymptotic time response
of the plasma we attempt to lower the Laplace contour.
If the whole of the Laplace contour may be placed below
the real w axis, the instability is convective. Otherwise,
it is absolute. Thus we take one point on the Laplace
contour, say wri, and keeping the same value of w, re-
duce the value of w;. We map the roots of the dispersion
relation corresponding to wy; onto the k plane and fol-
low their movement as we change w; as shown in Figure
19. Some of the roots in the &, plane may cross the real
k, axis, however, so long as the Fourier contour may be
deformed to remain above all the k,; roots and below
the ky,, roots, we may continue to reduce w;. However,
if one ky, root and one k,; root move to the same point
as we reduce w; (as seen in Figure 19) we can no longer
deform the Fourier contour between these two points
and therefore can no longer lower the Laplace contour
at this value of w,. The point where two roots meet is

{\

Figure 19. The mapping of the roots of the dispersion relation D (w, k) = 0 onto the complex
ky plane as w; is reduced from its value on the Laplace contour. Here two roots merge forming
a “pinching” double root, which inhibits the further reduction of w; for this value of w;,.
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a double root of the dispersion relation, which satisfies
(1). The double root of the dispersion relation must re-
sult from the merging of one ky, root and one k,; root,
otherwise the Fourier contour may continue to be de-
formed between the two sets of roots. This condition is
called the “pinching” condition. The asymptotic time
response of the plasma is then defined by (2), using the
“pinching” double root with the largest imaginary part
of w.

Double roots of the dispersion relation in the magne-
tospheric rest frame must also be saddle points of w (k, ),
and we can use this fact to identify a double root with
each normal mode of the system for real k,. In a refer-
ence frame moving with a speed vy, w' = w — kyvy must
have a saddle point at a double root. We demand that
the double root must be on the real k, axis and take
the derivative of w’ with respect to k,. We obtain

ow' _ Ow,

ok, = ok, " " o,

O
Bk,

. Bwi
e e e

e (42

which must be zero at a saddle point. Therefore we
require that Ow;/0k, = 0 (i.e., we are at a maximum of
the growth rate for real k,) and

Owr

%, (A3)

= fs
so that we must be in a reference frame moving with
the group velocity of the fastest growing normal mode.
Thus we have identified a double root of the dispersion
relation in the reference frame moving with this speed.
We now follow the double root as we change reference
frames to determine the absolute or convective nature
of the instability as a function of reference frame.
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