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Azimuthal phase speeds of field line resonances
driven by Kelvin-Helmholtz unstable waveguide modes
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Abstract. A model for the coupling of Kelvin-Helmholtz unstable fast cavity
modes to field line resonances (FLRs) is presented. We consider a bounded,
nonuniform magnetospheric flank separated from a semi-infinite, field-free, flowing
magnetosheath by an infinitely thin magnetopause. Fast cavity modes may become
unstable for sufficiently high flow speeds, and we find that for any flow speed there
is a common phase speed at which all the harmonics have their maximum growth
rate. The common phase speed is less dependent on the equilibrium structure
within the magnetosphere than on the local structure of density ratio and relative
velocity jump at the magnetopause. We perform a local analysis of the reflection
and transmission of modes at the magnetopause. By requiring the spontaneous
radiation of modes from the magnetopause, we may predict a phase speed at which
we would expect the maximum growth rate to occur for any set of parameters.
These predicted phase speeds are found to be in agreement with both those found by
our model and observations of FLRs that are observed simultaneously at different

latitudes.

1. Introduction

Ultralow frequency (ULF) waves are observed al-
most continuously on the fanks of the magnetosphere
‘e.g., Engebretson et al., 1998]. It was first suggested
by Dungey [1935] that these pulsations were standing
toroidal Alfvén modes on the dipolar field lines of the
Earth. Southwood {1974] suggested that surface modes
driven by the Kelvin-Helmholtz instability at the mag-
netopause could couple to the Alfvén waves, feeding
energy into these field line resonances (FLRs). How-
ever, the magnetosheath velocities required to drive the
FLRs by this mechanism were found to be much higher
than those observed [Hughes, 1994, and the frequencies
of the FLRs driven in this way do not explain the low
frequencies observed [ Walker et al., 1992].

Kivelson and Southwood [1985] showed that in a
nonuniform magnetosphere, a turning point exists within
the magnetosphere beyond which only an evanescent
tail of a cavity mode may propagate. The Alfvén res-
onance is then thought to be driven by this evanes-
cent tail. The frequencies of these oscillations have
been predicted through various models [e.g. Kivel-
son and Southwood, 1986] using the eigenfrequencies
of the magnetospheric cavity to predict the frequencies
of the FLRs. Wright (1994 and Rickard and Wright
[1994, 1995] showed how the waveguide cutoff frequen-
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cies could also match FLR frequencies. However, re-
cent observations by Ziesolleck and McDiormid [1994]
showed that FLRs observed simultaneously at different
latitudes on the flanks of the magnetosphere can have
the same azimuthal phase speed, and it is this phe-
nomenon that we aim to explain. Wright and Rickard
[1995] have already noted that such observations are
consistent with resonances driven by a running pulse
on the magnetopause rather than by a stationary pulse.
In this paper we identify a new mechanism associated
with Kelvin-Helmholtz excited waveguide modes. We
show that the azimuthal phase speeds of the waveguide
mode and the FLR it can excite are the same.

We employ the theory of overreflection of waves [Mc-
Kenzie, 1970]. McKenzie [1970] modeled an infinite,
uniform magnetosphere and showed that for certain pa-
rameters a wave incident on the magnetopause from the
magnetosphere will be amplified when reflected. In-
deed, for certain phase speeds the transmission and
reflection coefficients become infinite. This solution is
better described in terms of the spontaneous radiation
of modes from the magnetopause intc the magneto-
sphere and magnetosheath. Mann et al. [1999] mod-
eled a bounded uniform magnetosphere showing that
oscillatory modes may also become unstable for realis-
tic flow speeds and analyzing the reflection coefficient of
these unstable modes, they showed that the maximum
growth rate for each mode corresponded to a peak in the
reflection coefficient. Mann et al. considered a uniform
magnetosphere with perturbations only in the direction
perpendicular to the magnetospheric magnetic field and
so found no Alfvén resonances. Mills et al. [1999] con-
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sidered a model similar to that of Mann et al.; however,
they included a nonzero plasma beta and propagation
of disturbances in all directions in the magnetopause
plane. Once again, the uniform nature of the magneto-
sphere in that model prevented any Alfvén resonances.
Walker [1998] gives a review of the theory of the excita-
tion of the magnetospheric cavity, including a discussion
showing that waves incident on the magnetopause from
the magnetosheath may only be transmitted efficiently
when their frequency matches that of one of the normal
modes of the cavity.

We extend the models of Mann et al. [1999] and Mills
et al. [1999] by using a generalized waveguide version
of the box model of Southwood [1974]. It has a bounded
nonuniform magnetosphere, with a free magnetopause
boundary (i.e., the boundary may be disturbed, and we
do not require the total reflection of modes back into the
magnetosphere), and is similar to that studied by Fujita
et al. [1996]. We find the fastest growing normal modes
of this equilibrium subject to suitable boundary condi-
tions. These modes may be interpreted as a negative
energy wave in the magnetosheath which feeds energy
into a magnetospheric cavity waveguide mode, which
can in turn couple energy into Alfvén resonances within
the magnetosphere. We show that the phase speed at
maximum growth rate of the different harmonics is the
same, and we show that this can be explained by the
theory of overreflection developed by McKenzie (1970
[see also Miles, 1957; Ribner, 1957 and used by Mann et
al. [1999]. We compare the phase speeds of the fastest
growing Alfvén resonances (FLRs) with those predicted
by the overreflection theory.

The structure of this paper is as follows: Section 2
outlines our model and the governing equations, and
section 3 describes our numerical results. Section 4 de-
scribes the theory of wave overreflection and section 5
compares the numerical results to those obtained by the
overreflection theory. Finally, section 6 summarizes our
results.
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2. Model and Equations

In this paper the flank equilibrium is modeled as a
bounded, nonuniform magnetosphere adjoining a field-
free, semi-infinite magnetosheath flowing with a con-
stant velocity. This model is essentially that studied by
Fuyjita et ol. [1996]. Figure 1 shows a schematic view of
our model. Throughout this paper we use variables nor-
malized to the equilibrium sound speed, ¢, and dexnsity,
p2, in the magnetosheath and the width of the magne-
tospheric cavity, d. (Time is normalized by the quantity
d/cs, pressure is normalized by vP; and the magnetic
fields are normalized by /YPap,.) Thus the magne-
topause is placed at z = 1. The fleld lines are taken to
be finite in extent, which we have modeled by placing
perfectly reflecting boundaries at z = +1. The perfectly
reflecting boundaries in 2 in the magnetosphere repre-
sent the fact that the field lines in this region have a fi-
nite length and are terminated in the ionosphere, which
is an efficient reflector of Alfvén waves.

In order to study only the fast modes and their cou-
pling to the Alfvén waves, we have assumed that 8 =0
in the magnetosphere so that there is no plasma pres-
sure. Thus, in order to vary the Alfvén speed v, across
the cavity, we must vary the equilibrium density, p;. We
have chosen a quadratic profile for the Alfvén speed, and
the coefficients are fixed by choosing the ratio between
the Alfvén speeds at the inner boundary and the magne-
topause (ve = v, (¢ = 0) /v, (¢ = 1)) and by taking the
gradient of the profile to be zero at the magnetopause
(so that close to the boundary the profile may be reason-
ably approximated as constant). Therefore our Alfvén
speed profile is

v (2) =v, (1) {(vr —1)2* =2(vr — )z +vr}. (1)
We find the value of v, (1) using total pressure balance
at the magnetopause and the ratio of densities either
side of the boundary so that

2 p
’Ug (1) = :”pl <1>C§. (2>
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Figure 1. A schematic representation of our bounded, nonuniform magnetosphere model.
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In the magnetosheath the linearized ideal MHD equa-
tions may be combined to give a second-order ordinary
differential equation (ODE) for the pressure perturba-
tion,

@

dz?
Here mg is the 2 component of the wavenumber in the
magnetosheath given by

/

+m3ps =0. 3

(4)

m2 =

Here, k is the total wavenumber tangential to the mag-
\/ k% + k2, where k, and k, are
the wavenumbers in the y and z directions, respectively,
and ' is defined to be the Doppler-shifted frequency of
the oscillations in the rest frame of the magnetosheath
and is related to the frequency, w, by

netopause given by &£ =

' = w = kyv,. (5)

Using the outgoing boundary condition to choose the
sign of the root of ms, we can find a solution in the mag-
netosheath to within a complex constant. The outgoing
boundary condition requires that the z component of
the group velocity of the waves in the magnetosheath is
positive in the rest frame of the flowing plasma, which
can be shown to be equivalent to requiring that

Re (w') Re (m2) + Im () Im (my) > 0 (6)

[see Mann et al., 1999; Mills et al., 1999]. The bound-
ary condition, equation (6) can not be applied to real
frequency modes as these are trapped in the magneto-
sphere and decay in the magnetosheath (i.e., they have
no propagating character or group velocity in the mag-
netosheath). Such modes require ms to be imaginary
and so can only occur when w'? < k%¢2,. The boundary
condition we impose on these modes is that the pertur-
bation vanishes at large z,

~\

Im(ms) > 0. (73

In the magnetosphere we have combined the lin-
earized ideal MHD equations to obtain two first-order
differential equations for the perturbed total pressure
pr (which, since 8 = 0, is the magnetic pressure in the
magnetosphere) and the z component of the perturbed
velocity, u,. The two ODEs are
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where my is given from

w? — k%

vZ(z
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m? (z) = @)
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and may be interpreted as the magnetosphere fast mode
wavenumber in the z direction. Allowing a complex
frequency, we actually have four equations for the real
and imaginary parts of the velocity and pressure.

The inner boundary of the magnetosphere (z = 0) is
assumed to be perfectly reflecting, and thus we take

ue (£ =0) =0, (11)
which is equivalent to requiring that

dpr

E—(x:@}:@.

(12)
Starting from this point, we integrate the four ODEs us-
ing a fourth-order Runge-Kutta method and match the
solutions to those in the magnetosheath through the
boundary conditions at the magnetopause, which are
taken to be continuity of total pressure and displace-
ment in the z direction, &,

prie=1)=pz=1), (13)
far(z=1) = Efxfl(or:=1)=
Uz2
C&/'—L;Cyvo (37=1> = 53:2(:6:1) (14}

Our dispersion relation is expressed as the following two
equations, which are evaluated at z = 1,

prY _ p (22

Re <§xl) Re <522> '
o 23

ke <§x2> o (5:2> )

Equations (15) and (18) are then solved using a two-
dimensional Newton-Raphson method.

There is a singularity in the ODEs, equations (8) and
(9), at

(15)

(16)

w? — k203 (z) = 0, (17)
which for real w occurs when
w = xk,v, (). (18)

The singularity is associated with an Alfvén resonance
at the position z defined via equation (18) [see South-
wood, 1974]. For real w it is not possible to integrate
along the real z axis as this contains a singularity, and
so we cannot solve our dispersion relation numerically
in this case. For complex w = w, + iw;, equation (17)
becomes

2
-

2 e
w? = w? — k202 (z) + 2w = 0, (19)
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and the singularity is removed from the real z axis
and moves into the complex z plane. Thus, for un-
stable modes, we may integrate across the magneto-
spheric cavity (i.e., along the real z axis), and solve
our dispersion relation. As we are interested in study-
ing the fastest growing modes in our system, the singu-
lar behavior for real w poses no problems in our study.
Note that the singularity (even at complex z) is actu-
ally a branch pole. Integration along the real z axis for
modes that decay in time is not straightforward, since
the branch cut will be encountered. With some care
this case can be treated too [Zhu and Kivelson, 1988].
We define the resonant point, zp, such that

Wy

“r 20)
kz’ (O/

Ve (zR) =
i.e., at the point at which a singularity would occur
for real w. We also define the turning point, z;, to
be the point at which the nature of the mode in the
magnetosphere changes from oscillatory to evanescent.
For real w this point is defined by

m (-’Q) =0, (21}
which gives that
ve (2:) = fk: (22)

This will remain a reasonable approximation to the
point where the nature of the mode becomes dominantly
evanescent for complex w if w,/w; > 1, which will be
the case for the waveguide modes that we will examine.

Since k = (/k2 + k2 > k., the turning point occurs

for a lower value of the Alfvén speed than the resonant
point, which in our model means that
Tt > TR {23)

In other words, the resonant point is deeper in the mag-
netosphere than the turning point is.

@,/ 'k,

MILLS AND WRIGHT: AZIMUTHAL PHASE SPEEDS OF FIELD LINE RESONANCES

The strength of the resonant coupling depends on the
distance between the turning point and the resonant
point. The points may only coincide when k = %, (i.e.,
k, = 0). However, the resonance occurs in the y compo-
nent of the perturbed velocity, and since this is defined
from the linearized ideal MHD equations as

kyw

Uy = ST — k)P (24)
there will be no coupling when &, = 0. As k, increases
from zero, the decay length in z of the fast mode
(= 1/my) decreases, and the separation of z; and zp in-
creases. Thus the amplitude of the fast mode becomes
very small as k, becomes large, and very little energy
may penetrate to drive a resonance in this limit. Thus
the strength of the resonant coupling first increases and
then decreases with &, as the resonant point moves away
from the the turning point [Kivelson and Southwood,
1986..

3. Results

We will examine the behavior of the first three body
mode harmonics when %, ==, taking also the flow
speed v, = 10 and p; (z = 1) = 0.192 (which we will use
for all our results). We have used a flow speed slightly
higher than those commonly observed on the flanks of
the magnetosphere in order to examine various unsta-
ble harmonics in both z and 2. As shown by Mills et
al. [1999] the onset of instability for fast cavity modes
is given by
v = 22t (25)

sina

where o = tan™* (k,/k.) and is the angle between the
vector k and the equilibrium magnetic field By. Thus
choosing a large value of the flow ensures that we can
study several harmonics for larger values of k.. In this
section we will consider only modes having k, = 7; how-
ever, we will consider the phase speeds for other k., v,
and ¢ in section 5.

1

024681012
ky

Figure 2. The first three harmonics in z when k., = 7, vp = 8, and v, = 10: (a) and growth
rates (b). The asterisks show the phase speed at maximum growth rate for each of the modes.
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Figure 2 shows the phase speeds and growth rates
of the first three harmonics of the body modes when
k, = 7 and vg = 8. The maxima in the growth rates of
the modes occur for ky = 2.73, 5.93, and 9.48. The cor-
responding phase speeds at maximum growth rate are
wr/ky = 6.40, 6.43, and 6.55, respectively, and these are
shown by asterisks in Figure 2a. The modes most likely
to be observed are those that have the largest growth
rates, i.e., those for which the growth rate is a max-
ima. The phase speeds of these modes at the max-
ima are very similar, and this implies that the observed
modes would have similar phase speeds: a prediction in
excellent agreement with the observations reported by
Ziesolleck and McDiarmid [1994].

Now we will look at the fastest growing part of these
three modes in more detail. Figure 3a shows the eigen-
function uy, (the real part of the perturbed velocity in
the y-direction) as a function of z, and Figure 3b shows
the Alfvén speed profile. In Figure 3a the dashed and
dash-dotted lines indicate the positions of the turning
and resonant points (z; and zg), respectively, and in
Figure 3b show the corresponding values of the Alfvén
speed. The wavenumber is dominantly imaginary when
z < 7, and it would be reasonable to expect the so-
lution to appear evanescent in this region. However,
we see a clearly defined waveform centered around the
point zz. This is an Alfvén resonance centered close to
the predicted position of the singularity based on w,.
+u2) as
a function of z. The strong peak here corresponds to
the Alfvén resonance.

Figure 5 shows the eigenfunction and Alfvén speed
profile for the fastest growing part of the second har-
monic mode. Again, we see there is a clearly defined
resonance near the predicted value of zg. The resonant
point is deeper inside the magnetosphere for this mode
and is farther from the turning point.

Figure 4 shows the magnitude of uy(= /42,
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Finally, Figure 6 shows the eigenfunction and speed
profile for the fastest growing part of the third har-
monic. Here ky is much larger than it is for the funda-
mental mode, and the resonant point is much deeper in
the magnetosphere. The coupling strength is also much
less strong, and the resonance is much smaller compared
t0 the background oscillation. However, in this case, be-
cause of the fact that this is a higher harmonic, we can
more clearly see that the mode is dominantly oscilla-
tory between the magnetopause and the turning point
but that it becomes dominantly evanescent beyond that
point.

For the values of flow speed v,, Alfvén profile vg and
wavenumber k. chosen, there are three resonances oc-
curring within the magnetosphere, all having very simi-
lar values of phase speed. Now we examine the theory of
wave overreflection at the magnetopause which enables
us to understand the consistency of the phase speeds.

4. Theory of Wave Overreflection

A useful concept in understanding the unstable be-
havior of our modes is that of wave overreflection. We
now consider a model with an unbounded uniform mag-
netosphere and consider the effect of a wave impinging
on the magnetopause boundary from within the mag-
netosphere. We assume that some part of the wave is
reflected back into the magnetosphere and that some
part is transmitted through the magnetopause to prop-
agate in the magnetosheath. Figure 7 gives a schematic
view of these three waves.

Sen [1964], and later Pu and Kivelson [1983], showed
that for a compressible plasma there are two impor-
tant speeds in considering the development of the insta-
bility at a flow discontinuity between unbounded plas-
mas. Southwood [1968] also found these two speeds and
showed that they could be predicted [see also Mills et

(2)
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Figure 3. The fastest growing part of the fundamental mode (corresponding to ky = 2.73,
vp = 6.40, and w; = 3.55) when v, = 10 and vg = &: (a) eigenfunction uy- and (b) Alfvén speed
profile. The vertical lines in Figure 3a show the positions of the turning point, @; (dashed
line), and the resonant point, zr (dash-dotted line). The horizontal lines in Figure 3b show the

corresponding values of v, (2) at those points.
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Figure 4. The magnitude of the complex function u,
as a function of z for the parameters shown in Fig-
ure 8. The vertical lines show the position of the turn-
ing point, 2, {dashed line), and the resonant point, 2z
{dash-dotted line) predicted for stable modes.

al., 1999]. The first speed, v, is the minimum speed
at which instability can occur; at a higher speed, vy,
stability is regained, and the modes become purely os-
cillatory on both sides of the discontinuity.

McKenzie [1970] showed that the reflection coefficient
for this system {the ratio of the amplitude of the re-
flected wave to that of the incident wave) is given by

1-Z
i \
R= 1+2Z° (26)
where for our system,
(o~ + 2
7= M {w—kyv,) (27)

mae (W2 — k7))

where € = p; /pa.
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In deriving equations (26) and (27) we have assumed
that w is purely real and that m; is also real (so that
we do actually have a wave propagating in the magne-
tosphere). The sign of m; is taken to be positive so
that the group velocities of the incident and reflected
waves are in the correct sense. Unlike the bounded case
that we considered in section 2, stable modes may exist
with m3 > 0 (i.e, ms isreal). In this case, the modes are
purely evanescent on both sides of the magnetopause for
low flow speeds. As the flow speed increases, the sys-
tem becomes unstable, but if the flow speed is further
increased, the mode restabilizes, becoming osciliatory
on both sides of the magnetopause. According to equa-
tion (4) there are two possibilities for the sign of mé:
(i) m3 < 0 and (i) m& > 0.

In case 1, mga is purely imaginary, and thus Z is also
purely imaginary (Z = {|Z}). Thus

1-42Z]
R= —uZl (28
1+42Z] (28)
IRl =1. (29)

In this case, we have total internal reflection of magne-
tospheric waves, and there is no transmitted wave {we
have an exponential decay into the magnetosheath).
Conversely, in case 2, Z is real, and therefore R is
also real. We may now subdivide this case into two
further possibilities: Z <0 and Z > 0. If Z <0, then
R > 1, and we have overreflection In fact, (Rl — oc
when Z = —1, implying that
my (W — kyvo)” +mae (WP — k203) =0, (30)
which is the dispersion relation for stable oscillatory
modes for the unbounded magnetosphere model. Thus
overreflection of modes may occur only when m3 > 0,
corresponding to the mode being oscillatory on both

(8)
20
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Figure 5. The fastest growing part of the second harmonic mode {corresponding to &, = 5.93,
vp = 6.43, and w; = 4.74) when v, = 10 and vp = 8: (a) eigenfunction uy, and {b) Alfvén speed
profile. The vertical lines in Figure 5a show the positions of the turning point, z:, {(dashed
line), and the resonant point, zr (dash-dotted line). The horizontal lines in Figure 3b show the

corresponding values of v, (x) at those points.
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Figure 6. The fastest growing part of the second harmonic mode (corresponding to k, = 9.48,

vp = 6.55, and w; -0637 when Vo = 10 and vp

= 8: (a) eigenfunction uyr and (b) Azzven speed

profile. The vertical lines in Figure 6a show the posmons of the turning point, z; (da,shea
line), and the resonant point, zr (dash-dotted line). The horizontal lines in Flgare 6b show the

corresponding values of v, () at those points.

sides of the magnetopause. In the bounded case, the
modes do not restabilize but remain unstable for all
flow speeds above the onset of instability, so we will
compare the results found using these stable oscillatory
modes to those found in our numerical model for unsta-
ble modes. Note that in the case of stable oscillatory
modes on both sides of the interface, the phase speed
must be below v, sin & — ¢;, and therefore w — kyv, < 0.
Thus we must choose my < 0 in order to satisfy equa-
tion (6). Hence [McKenzie, 1970, p.6] “a resonance is
excited when the incident wave frequency matches the
frequency of one of the characteristic frequencies of the
vibrations of the interface”. This is also the condition
corresponding to waves being spontaneously radiated
away from the boundary even as the amplitude of the
incident wave vanishes. When Z >0, R < 1, and we
have the normal case of partial refiection. We will de-
rive the particular conditions for overreflection in each
case we examine.

1,

Incident Wave

7

Reflected Wave

:
:

Assuming that mZ > 0, we may now define (following
McKenzie (1970))

kl = (mi y ky s k:}
k; {cosb;,sinb; sina,sinf; cosa), (31)
ko = (mo, ky. k)

(32)
where « is the angle between the vector (0,ky, k.) and
the equilibrium magnetic field By, 81 2 = tan™* (k/m; 2),

and Snell’s law requires that ky sinf; = ks siné,. Sub-
stituting these values into equation (27) and noting that

= ks (cosby,sinbssina,sinby cosa),

2
(w—kyv,)” = w? = k% 527

we obtain
sin 26; ¢,
" esin 26, (U2 — w2, sin 6; cos? @)

magnetosphere

magnetosheath

\ Transmitted Wave

Figure 7. A schematic representation of the incident, reflected, and transmitted waves at the

magnetopause.
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where U is the characteristic (fast or slow) magnetoa-
coustic phase speed along the vector ky,

2 2 L2
2 w _ Vg1 T Cs1 " -
U = E?- = L—é—i *+ (35)
\/ (02, + %) — 42 2 sin 6; cos?
5 .
In fact, we have assumed that ¢s; = 0, so we have
U? =2, (36)
Noting that, using Snell’s law,
k?sin? 6
2 2 2 i 1
ms = k5 cos” Oy = ——5—r, 37
2 2 2 tan® 6y (37)
we may define
inf;
tanfy = 71, (38)
where (using equations (4), (3), (31), and (33))
2o m3 _ ({U—vosinb sina)® — ¢, sin? §; 39)

k2 <%

Hence we may substitute for sin26, in equation (34)
using the identity

2Asin 8y
in 269 = o e | 40
S 4oz A2 +sin? §; (40
Hence Z is now defined as
¥ . - 2
P cosb; (U — v,sin b sina) (a1)

T e (U? - w2 sin® 6y cos? )’

where the sign is again chosen to satisfy the outgoing
group velocity condition in the magnetosheath (Z is
chosen to have the same sign as that for the real part
of mg}.

We may now solve the equation Z = —1 to find the
value of the angle, §;, at which resonance {or sponta-
neous radiation of modes) may occur. Then using the
fact that the azimuthal phase speed is

w U

o A S 42
k, sinfsina’ (42)

vp =
we may also find the phase speed at which spontaneous
radiation of modes from the magnetopause occurs. Al-
though this is modeling the unbounded case for purely
real w, this method of predicting an angle and phase
speed for spontaneous radiation will be useful in analyz-
ing the unstable behavior of our modes in the bounded
nonuniform model. The Alfvén speed profile that we
have chosen has zero gradient at the magnetopause, so
that close to this boundary a uniform approximation
is reasonable. Since there is no scale length in the un-
bounded case, the equation to predict this phase speed
(equation (42)) is independent of k¥ and depends only
on the angle between the magnetic field and the prop-
agation vector, . Since o = tan™! (ky/k.), for a fixed
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k., the angle will depend only on k,. As k, becomes
large, o — 7/2, and the phase speed will tend to a
constant value. This agrees with the observations of
Ziesolleck and McDiarmid [1994] that simultaneously
observed field line resonances on the flanks (which are
believed to be driven by the shear flow discontinuity
at the magnetopause) have the same azimuthal phase
speed.

5. Comparing Numerical Results
to Predicted Values

Now we compare the phase speeds found at the max-
ima of the growth rate for the modes found in section 3
with those predicted by the formula in section 4. Fig-
ure 8 shows the value of w,/ky, predicted by placing
Z = -1 in equation (41) and evaluating equation (42)
as a function of k, (using v, = 10 and k, =7). The
symbols represent the values found by the numerical
model with vp = 8 for the fundamental mode, second
harmonic, and third harmonic. We can see that the
numerical values fall very close to the predicted values,
with the fit getting better for higher harmonics. The
larger discrepancy seen for the fundamental mode may
be explained by the fact that this mode has a wave-
length approximately twice the width of our cavity, and
so the approximation of an infinite, uniform magneto-
sphere does not compare well to this mode which has
no real oscillations between the magnetopause and the
turning point. Note that the predicted value of the
phase speed is almost constant for ky, > 3, which agrees
well with the fact that observed FLRs have constant
phase speed.
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Figure 8. A comparison between the phase Speed pre-
éxcted by the overrefiection theory of McKenzie [1970]
(solid line) with the phase speeds at the maxima of the
frrowth rate found by our model when &k, = 7, vgp = §,
and v, = 10 for the fundamental (cross), second har-
monic (asterisk), and third harmonic (diamond) in the
x direction.
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Figure 9 shows the predicted value of the phase speed
at the maximum growth rate as a function of & with the
actual values for the second, third, and fourth harmon-
ics. The values of k, for those harmonics are (from right
to left) /2, =, 3%/2, 2%, and 3x /2. The variation of
the predicted phase speed for these angles is relatively
small, again corresponding well to observed modes hav-
ing a consistent phase speed. The agreement between
the predictions and the results found by our model is
excellent, with best agreement occurring for higher har-
monics in both z and z.

Finally, we compare the numerical and analytical re-
sults for the different harmonics in z and several values
of vg when k, = n/2. Figure 10 shows the predicted
value of the phase speed with the values found at maxi-
mum growth rate in our model for the first, second, and
third harmonics. The values of vy increase from left
to right. Once again, the agreement is excellent, with
the higher modes agreeing more closely. The agreement
is best for low values of vg (which corresponds most
closely to a uniform magnetosphere) but is good for all
values. Thus the phase speeds predicted by the infinite
uniform magnetosphere model may be used as a reason-
able estimate of the phase speeds we expect to observe
in the magnetosphere.

We saw in Figures 9 and 10 that the value of the
phase speed at which we expect spontaneous radia-
tion of modes varies little with k, or a. The values
of the phase speed at maximum growth rate found in
our model are also remarkably insensitive to the varia-
tion of the Alfvén speed in the magnetosphere. In fact,
if we take the limit &k, /k, >> 1, then o & 7 /2, and this
provides a simple limit in which to evaluate the approx-
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Figure 9. The predicted phase speed at maximum
growth rate and the values found by our model for the
second (triangles), third (diamonds), and fourth (aster-
isks) harmonics for various values of k, (from left to
right for each harmonic, the values of k, are 37/2, 27,
37/2, =, and #/2) when v, = 10. Here we have used
v, = 10 and vgp = 8.
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Figure 10. The predicted phase speed at maximum
growth rate and the values found by our model for
the first (crosses), second (asterisks), and third (dia-
monds) radial harmonics for various values of vg (from
left to right, v = 1, 2, 4, 8, and 16) when v, = 10 and
k, =w/2.

imately constant phase speed. (We do not suggest that
ky/k. is large for real ULF waves, since this would pro-
vide very weak coupling between fast and Alfvén waves,
Rather, we note that as the phase speed is insensitive
to k,, this limit is adopted merely for ease of calcula-
tion of the phase speed.) Thus we may now calculate
the phase speed for spontaneous radiation of waves from
the magnetopause when o = 7/2 and use this to predict
the values of the phase speeds of field line resonances in
the magnetosphere. We also assume that v = 2 for this
calculation so that the fast speed U may be simplified

such that
Cs2

U= Va1 = ﬁ, (4:3)

where € = p;(1)/ps. Using these approximations, we
find that

_ cosby (csa/ V€~ v sin 6,)°

- Ay

_ oL cosh (722 — v;s'm&l)2 ()
[(6"1/2 —v,sinf;)” — sin? 915

7 =

where we have used the fact that cs» = 1 since we have
normalized our variables. Solving, for §;, we can then
find the phase speed,

e A (45
vy = N (45)
Figure 11 shows the values of the phase speed as 2
contour plot as a function of v, (the sonic Mach num-
ber of the flow in the magnetosheath) and the ratio of
the density in the magnetosphere to that in the mag-
netosheath, €. Spontaneous radiation of modes may
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Figure 11. The predicted phase speed (normalized to
the magnetosheath sound speed) at maximum growth
rate as a function of the ratio of densities in the magne-
tosphere and magnetosheath, € = p; /ps, and the sonic
Mach number in the magnetosheath, v,.

only occur above the upper critical speed (at which the
modes stabilize in the unbounded uniform case), and
thus we may only predict a phase speed for relatively
high flow speeds. We can see that for a given density ra-
tio the phase speed at spontaneous radiation increases
for increasing flow speed. However, increasing the ratio
of densities, ¢ decreases the predicted phase speed. Al-
though the phase speeds in Figure 11 are approximate,
they provide very reliable estimates. For example, the
parameters used in Figure 10 (¢ = 0.192, and v, = 10)
may be used in conjunction with Figure 11 to infer a
phase speed of 6.7, which is in good agreement with the
true values.

Observations show that the density ratio (and there-
fore the ratio of the Alfvén speed in the magnetosphere
to the sound speed in the magnetosheath) across the
magnetopause varies greatly for different magnetopause
crossings. Fastman et al. [1985] found Alfvén speeds
in the magnetosphere ranging from 200 to 1500 km/s.
Typical magnetosheath sound speeds are in the range
100 to 150 km/s (see observations discussed by McKen-
zie, {1970]). The ratio of the Alfvén speed at the mag-
netopause, v, (1), to the sound speed in the magne-
tosheath, ¢,, can be related to the density ratio, €, using

v, (1) - 5

. 4
Cs B¢ (46)

Using Figure 11, our predictions may be compared to
observational results if either the ratio of the densities
or of the speeds is measured. For the values quoted
above, € lies in the range 0.005 to 0.5.
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6. Conclusions

We have presented a model for the excitation of
Alfvén resonances in the magnetosphere by fast cav-
ity modes driven by the shear flow discontinuity at the
magnetopause. We calculated the expected phase speed
at maximum growth rate following McKenzie [1970] and
showed that the total variation of this speed over the
unstable cavity modes was of the order of 10%. We com-
pared our results to this prediction and showed that our
results agree well with the predictions, with accuracy
increasing for higher harmonics in both z and 2. We
would expect observed phase speeds to be close to the
predictions and, for any given flow speed, to be sim-
ilar for all simultaneously excited resonances. This is
in excellent agreement with the work of Ziesolleck and
MeDiarmid [1994].

Taking the sound speed in the magnetosphere to be
about 100 km/s, the depth of the magnetosphere to
which modes will penetrate to be of the order of 10 Rp,
and the plasma density in the magnetosheath to be 5
times that in the magnetosphere, we may compare the
values predicted by our model with those observed in
the magnetosphere. For a flow speed of about 600 km/s
the phase speed we predict is about 400 km/s. Obser-
vations using HF radar report simultaneously observed
Pc5s having phase speeds of between 50 and 250 km/s
(see Table 1 of Fenrich et al., [1995]). Magnetometer
data show Pc5 oscillations having phase speeds of be-
tween 300 and 1000 km/s [Ziesolleck and McDiarmid,
1994}, which is somewhat higher than those observed
by radar. Our predicted phase speed lies between these
observed values. At this flow speed the fundamental
body mode for vg = 1 has w, ~ 10, which corresponds
to a period of oscillation of about 400 s or a frequency of
the order of 2.5 mHz. This frequency is typical of those
reported by Fenrich et al. [1995] and Ziesolleck and
MecDiarmid [1994], whose events spanned the interval 1
to 7.5 mHz.
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