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Abstract. By using a box model for the magnetosphere and by using a matrix
eigenvalue method to solve the cold linearized ideal MHD equations, we examine
the temporal evolution of the irreversible coupling between fast magnetospheric
cavity modes and field line resonances (FLRs). By considering the fast mode
frequency to be of the form w; = wy, — iwy;, and using a Fourier transform
approach, we have determined the full time-dependent evolution of resonance
energy widths. We find that at short times the resonances are broad, and narrower
widths continue to develop in time. Ultimately, an asymptotic resonance Alfvén
frequency full width at half maximum (FWHM) of Awyg = 2wy; develops on a

timescale of T¢; = w;il. On timescales longer than 7y;, we find that the resonance

perturbations can continue to develop even finer scales by phase mixing. Thus, at
any time, the finest scales within the resonance are governed by the phase mixing

length L,(t) = 27 (tdwa/dz)™". The combination of these two effects naturally
explains the localisation of pulsations in L shells observed in data, and the finer
perturbation scales which may exist within them. During their evolution, FLRs
may have their finest perturbation scales limited by either ionospheric dissipation or
by kinetic effects (including the breakdown of single fluid MHD). For a continually
driven resonance, we define an ionospheric limiting timescale 77 in terms of the
height-integrated Pedersen conductivity ¥p, and hence derive a limiting ionospheric

perturbation scale L; = 27 (r7dws/dz)™", in agreement with previous steady state
analyses. For sufficiently high ¥ p, FLR might be able to evolve so that their radial
scales reach a kinetic scale length L. For this to occur, we require the pulsations

to live for longer than 7 = 27 (Lkde/dw)_l. For t < 7%, 71, kinetic effects and
ionospheric dissipation are not dominant, and the ideal MHD results presented here
may be expected to model realistically the growth phase of ULF pulsations.

ten observed by HF radar at the ionospheric footpoints
of oscillating field lines.

Dungey [1954, 1967] first suggested that pulsations
were standing Alfvén waves on dipolar field lines
(toroidal modes). He also identified fast poloidal com-
pressional waves, which should propagate across the
background magnetic field, and subsequently completed
the first decoupled studies of these modes. Southwood
[1974] and Chen and Hasegawa [1974] independently
presented the first attempts at a full theoretical anal-
ysis of the coupled pulsation problem. They proposed
that the solar wind, incident upon the magnetospheric
cavity and driving magnetosheath flows, could excite a
travelling Kelvin-Helmholtz surface wave on the mag-
netopause. Having an evanescent structure within the

1. Introduction

The coupling of fast magneto-acoustic waves and
Alfvén resonances has been an active research topic for
many years. This phenomenon is believed to be im-
portant for heating solar and laboratory plasmas, as
well as being responsible for driving pulsations in the
Earth’s magnetosphere. It is this last application which
we will concentrate on in this paper. Magnetic pulsa-
tions are regularly observed by both space-borne and
ground-based magnetometers, in the form of ultralow
frequency (ULF) waves standing on dipolar field lines.
The Doppler signatures of these pulsations are also of-

Copyright 1995 by the American Geophysical Union.

Paper number 95JA00820.
0148-0227/95/95JA-00820$05.00

magnetosphere, this wave mode could tunnel to excite
resonant field line oscillations deep within the magneto-
sphere. These models however, often require excessively
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high magnetosheath velocities to explain the observed
pulsations [Hughes, 1994].

Later treatments suggested that global fast modes
could be excited throughout the entire magnetospheric
cavity in response to sudden impulses in the solar wind
[Kivelson et al., 1984; Kivelson and Southwood, 1985].
In this model, standing waves would be set up between
the large Alfvén velocity gradient at an outer boundary
(often assumed to be the magnetopause) and a turning
point within the magnetosphere. The evanescent tail
of the modes, beyond the turning point, then drives
the Alfvén resonances. This phenomenon has been
subjected to much theoretical and numerical modelling
[Kivelson and Southwood, 1986; Allan et al., 1986a; In-
hester, 1987; Kivelson and Southwood, 1988; Zhu and
Kivelson, 1988; Lee and Lysak, 1989; Wright, 1992b]
and has been used to predict the frequencies of the cav-
ity mode harmonics, and hence the frequencies of the
observed driven nightside/early morning Pc5 Field Line
Resonances [Samson et al., 1992a, 1992b; Harrold and
Samson, 1992; Walker et al., 1992; Ruohoniem: et al.,
1991]. However, a little known paper by Radoski [1976],
considered the coupling of cavity modes to Alfvén res-
onances numerically well before 1985. His early pa-
per predicted many quantitative features which are now
well known. His work has many similarities to this pa-
per, and the interested reader is referred to this work.

Recent papers by Wright [1994a], Rickard and Wright
[1994,1995], have considered the propagation of com-
pressional modes down a waveguide. The waveguide
models an open magnetospheric cavity where energy
can propagate downtail. They conclude that compres-
sional waves, with a low azimuthal wavenumber k,, will
propagate only slowly downtail, while high k, modes
propagate away quickly downtail. These low k, modes
will thus be able to act as long lived and coherent drivers
for Alfvén resonances, and hence cavity models, using a
small ky prescription, may still provide a good approxi-
mation for modeling coupled pulsation phenomena even
when the cavity is open. After all, a waveguide solution
may be synthesized from a sum over cavity solutions
with suitable k, values.

Much work has been completed on ULF waves in
the Earth’s magnetosphere over the last 30 years and
readers are referred to the reviews by Southwood and
Hughes [1983], Hughes [1983, 1994], and Wright [1994b)
for further details. Both the “Kelvin-Helmholtz” and
the “cavity/waveguide” mechanisms may be responsi-
ble for coupling solar wind energy into ULF pulsations,
the dominant one at any time probably depending upon
solar wind and magnetosheath conditions. It is prob-
ably impossible to explain all data with solely one of
these mechanisms.

In the present paper we concentrate upon the cavity
model. We use numerical and analytical modeling to
address the time-dependent growth of pulsations and
the question of field line resonance (FLR) widths.

The latitudinal extent of FLRs is important for two
reasons. While Pc 5 pulsations observed by ground-
based magnetometers show frequencies corresponding
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to theoretically predicted cavity mode frequencies,
satellite observations often show several pulsation pack-
ets with finite width in L shell, which suggests that they
might have been driven by a broadband source, such as
a solar wind impulse incident on the magnetosphere.
If cavity modes do drive these pulsations, then theory
must explain how they can drive Alfvén waves with a
finite frequency bandwidth. Satellite observations show
that Pc 5 ULF pulsations often occur in spatially (L
shell) confined wave packets with typical widths which
can be as small as ~ 0.5Rg [Mitchell et al., 1990;
Lin et al., 1992]. Magnetometer observations of low-
latitude pulsations inside the plasmasphere also found
widths as small as 0.2 Rg [Ziesolleck et al., 1993], which
were believed to be driven by tunnelling global modes
[Allan et al., 1986b; Zhu and Kivelson, 1989]. Radar
measurements of high-latitude FLR’s found equatorial
resonance widths of ~ 0.5Rg using the STARE radar
[Walker et al., 1979], and ionospheric widths of < 45
km, mapping to an equatorial width of ~ 0.35Rg, us-
ing the Goose Bay HF radar [ Walker et al., 1992].

Also, if pulsation scales can narrow to kinetic scale
lengths (including where single-fluid MHD breaks
down), then mode conversion from the MHD wave mode
to kinetic Alfvén or electron inertia waves may oc-
cur. Previous numerical models by Inhkester [1987] and
Rankin et al. [1993] found that kinetic effects could be
important within the lifetime of pulsations, and hence
excitation of these wave modes might explain observa-
tions of auroral arcs which show that their electron pre-
cipitation can be modulated at the frequency of a co-
existing FLR [Samson et al., 1991, 1992a; Xu et al.,
1993]. Walker et al. [1992] show how resonances can be
excited so that they take on what they call a “packet
structure” in time. Here the amplitude of the resonance
grows over several cycles in response to the cavity mode
driver, then decays due to dissipation once this forcing
is removed. For these kinetic/two-fluid effects to be-
come important, small scales must be reached within
the lifetime of this packet.

Pulsations may be damped by a variety of mecha-
nisms, and this can be important both in determin-
ing their lifetimes, and in generating finite latitudi-
nal widths. The dominant pulsation energy dissipation
mechanism is generally considered to be ionospheric.
FLRs drive strong field-aligned currents (FACs) which
are closed by Pedersen currents flowing in the iono-
sphere. These Pedersen currents then damp the pul-
sations by resistive dissipation at the ionosphere. How-
ever, for dayside and active nightside conductivities,
this dissipation may be small and allow the FLRs to
be relatively long lived (~ 10 — 30 cycles).

Using our numerical model, we investigate both the
pulsation energy widths developed by FLRs in space,
and whether sufficiently small latitudinal scales can be
developed within FLRs so that kinetic effects become
important.

The paper is structured as follows: section 2 outlines
governing equations and the numerical model; section
3 describes the numerical results and interprets them
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using analytic theory. Section 4 discusses the results in
relation to observations in the Earth’s magnetosphere
and section 5 summarizes the paper.

2. Governing Equations and Numerical
Model

We now turn to the detailed solution of the cou-
pled ideal MHD wave problem by linearising and as-
suming that the plasma is cold. We adopt the magne-
tospheric box model of Southwood [1974], and assume
that the magnetic field is uniform and lies purely in the
zdirection (See Figure 1). By adopting a density profile
p(z), we define a continuous Alfvén velocity profile in
the x (radial or L shell) direction, with the y direction
completing the triad and representing the azimuthal di-
rection of the dipole magnetosphere.

Assuming that the southern and northern ionospheric
boundaries at z = 0, 2y are infinitely conducting, then
both displacements &, and &, are zero there (1 e.,

£(2=0,2) = 0). Similarly, boundaries in the % d1-
rection are provided by the large Alfvén velocity gra-
dients at both the magnetopause and the plasmapause.
On these boundaries, we impose the condition £, = 0,
which ensures that waves incident on either of these
two boundaries are totally internally reflected, and that
wave energy is contained within the box. We assume
periodic boundary conditions in the y direction, and
hence choose displacements to vary as

&= ({x(:c,t),fy(:c,t),O)ei’\y sink,z. (1)

Here the factor sink,z yields a standing wave solution
between the perfectly reflecting northern and southern
ionosphere, and A specifies the azimuthal variation of
the waves. With this prescription for £, we can de-
rive from the cold linearized ideal MHD equations [e.g.,
Boyd and Sanderson, 1969], the following two coupled
differential equations:
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Figure 1. Schematic diagram of the Cartesian box
model magnetosphere used in this study. We straighten
out the background magnetic field to give a uniform
field B = Bpz. An inhomogeneous Alfvén speed is ob-
tained in the x direction by applying a density profile
p(z) between & = 0, 1. (These boundaries represent the
plasmapause and the magnetopause respectively.)
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If we choose A = 0 or 0o, these two equations decou-
ple [Dungey, 1967]. For A = 0 they essentially describe
the evolution of the fast mode (&;) (equation (2)), and
the Alfvén mode (&) (equation (3)). When A — oo,
& — 0 and &, describes a decoupled poloidal Alfvén
wave. When A # 0 or oo, the wave modes are coupled
together and energy initially in the fast mode may mode
convert to Alfvén wave energy on localized field lines.
Asymptotically in time, energy which is initially resi-
dent in the fast mode in our model will ultimately reside
in narrow resonant Alfvén fields, until it is lost through
various dissipation mechanisms [Radoski, 1974].

In this model, all lengths are normalized to the
magnetopause-plasmapause distance L., velocities are
normalized to the Alfvén speed in the center of the
box, and hence normalized k, determines the (constant)
field line length. We choose a monotonically decreasing
va(z) profile, defined by

v,2(2) = A? — B? cos(mz) (4)

so that £ = 0 represents the plasmapause and z = 1 the
magnetopause. Consequently, fast cavity modes tend
to be confined at high z (the low-density region) and
couple to Alfvén resonances positioned at lower z.

To satisfy the boundary conditions on &, in the x
direction, we write this perturbation as a half-range
Fourier sine series [e.g., Cally, 1991]

[ee]
& = Z am (t) sin(rmaz). (5)
m=1
The form of (2) and (3), suggest that £, be expanded
in a cosine series,

o)
i€y = lbo(t) + Z bm (t) cos(mma). (6)
2
m=1

Following a similar procedure to that used by Cally
[1991] for an incompressible plasma, and assuming a
time dependence of exp(—iwt), the coupled equations
(2) and (3) can be written as a single generalised ma-
trix eigenvalue problem, as explained in Appendix A.
By truncating the expansions to m < N, the resulting
2N + 1 eigenvalues and associated eigenvectors are used
to reconstitute the solution of an initial value problem
across the box for all times until energy reaches the
finest scale, that is, until ay or by # 0. This numerical
method is novel and has several advantages over more
standard finite differencing schemes. Notably, by taking
a sufficiently large number of Fourier modes, and fol-
lowing the propagation toward finer scales through the
phase mixing process, we can ensure that at any time
the structure of the waves is being fully resolved. Our
code allows us to compute the resolved wave structures
at any time simply by calculating the Fourier summa-
tion. This removes the usual finite difference code preb-
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lems in calculating long timescale evolutions, whereby
the disturbance must be calculated at every previous
timestep.

To fully investigate the coupling of magnetospheric
cavity modes to FLRs, we choose A # 0 and take the
initial conditions to be the state where only the first &,
Fourier mode is excited and at rest, and where no en-
ergy resides in the Alfvén continuum (i.e., set a1(0) =
L,amz1(0) = 0 and b,(0) = am(0) = b,(0) = 0,
where @ denotes da/dt). As the system evolves, en-
ergy from this state couples to the Alfvén continuum
and excites the field lines resonant with the fundamen-
tal fast cavity mode. By varving the parameter A, the
strength of the coupling between the two wave modes is
altered, with maximum coupling occuring at some low
azimuthal wave number [ Kivelson and Southwood, 1986;
Zhu and Kivelson, 1988].

We select values of the parameters A2, B?, and k,
so that only the fundamental fast cavity mode eigen-
frequency lies within the Alfvén continuum, defined by
w?(z) = k2v%(z). To do this, we calculated the de-
coupled (A = 0) fast cavity mode eigenfrequencies us-
ing a fourth-order Runge-Kutta numerical integration
of (2), and used the fact that the cavity mode frequen-
cies remain approximately constant for small changes in
A [Zhu and Kivelson, 1988; Walker et al., 1992; Wright,
1994al.

To check the validity of our code, we followed the
temporal evolution of an “energy” invariant. Following
Bray and Loughhead [1974], we combine components
of the field variables occuring in the linearised, cold
MHD equations to yield the magnetic and kinetic en-
ergy density terms of the form pgv*.v/2 and b*.b/2p,,
where v* is the complex conjugate of v. This pro-
duced an equation in standard conservation form, that
is, OW /8t + V.S = 0, given by

(590 G2 o (Eecem) o

No net flux of S flows out of our model box, and hence
using the divergence theorem and integrating over the
box volume V' gives 8/t [, WdV = 0, and hence
fV WdV is the required invariant. We can hence iden-
tify W as the energy density of the waves in our model,
and use it to follow the transfer of energy as a function
of z from the cavity mode to the FLR in our simula-
tions.

We also checked that the calculated eigenvectors were
orthogonal under the weighting of the density profile;
that the decoupled (A = 0) fast cavity eigenvalues
matched those calculated using a fourth order Runge-
Kutta shooting algorithm; and using an analogy of our
form of the decoupled fast mode equation with Math-
ieu’s equation [McLachlan, 1947], that the decoupled
eigenvectors were calculated correctly.

3. Results

To study how the fundamental cavity mode couples
to the Alfvén continuum, we choose normalized param-
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eter values of A2 = 1.0, B2 = 0.9, and k, = 2.0. These
ensure that the Alfvén resonance occurs well within the
magnetospheric box, so that its growth can be stud-
ied without the edges of the box significantly altering
its structure. With these chosen parameters, the fun-
damental cavity eigenmode has a normalised angular
frequency w & 3.574. Higher harmonic cavity eigenfre-
quencies lie outside the Alfvén continuum, so that only
a single resonance is driven within the box.

3.1. Fast and Alfvén Mode Interaction

For small values of A, &; and &, are the dominant
components for the fast and Alfvén modes respectively
and thus provide a useful distinction for discussing our
results.

We find that the fundamental cavity mode has ap-
proximately 16% of its amplitude in the second Fourier
mode, as well as around 1% in the third. Hence its ma-
jor amplitude component (~ 83%) corresponds to the
fundamental Fourier mode. By imposing the above ini-
tial conditions comprising only this Fourier mode, and
choosing A = 1.0, we can approximate a strongly cou-
pled fundamental cavity eigenmode driver. There will,
of course, also be components of higher cavity eigen-
modes present which will not be resonantly coupled to
the Alfvén continuum.

Figure 2 shows snapshots of the driven &, pertur-
bations at two times. In response to the fast mode
driver, a driven field line resonance grows at the ex-
pected position (z & 0.22), where w4(z) = 3.574. Fig-
ure 2 also shows how the resonance width narrows while
the Alfvén oscillations grow in amplitude at the reso-
nant field line. At both of these times, the resonance is
already clearly showing a localised structure in z.

To further illustrate this temporal evolution, we use
(7) and plot the energy density in the system as a func-
tion of both z and time (See Figure 3). The plot shows
the growth of the Alfvén resonance in response to the
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Figure 2. The development of £, perturbations at the
resonance in response to the fundamental fast cavity
mode driver, for A = 1.0. The solid line shows the &,
perturbations at ¢ = 5, and the dotted-dashed line at
t = 15. The growth in amplitude and the narrowing of
scales in &, due to phase mixing, are clearly shown.



MANN ET AL.: STUDY OF CAVITY MODE DRIVEN RESONANCE WIDTHS

)] 04 @) N A
@) @) o @] o

energy density

N
O

T rrr [ rrrrrrrrrryrrrrrrrj

N
@)

=

19,445

o

Figure 3. Surface plot of the energy density (arbitrary units) of the wave modes as a function
of both z and time (up to t=15) for a strong coupling case with A = 1.0. The initial fast mode
&, = sinz perturbation sends a fast mode pulse propagating across the box in the-z direction.
This fast mode energy becomes ducted at large = (in the low Alfvén speed region), but is quickly
damped as it drives a large amplitude Alfvén resonance around z = 0.22. The energy width of
the resonance is seen to narrow in time as it is driven by the fast mode.

initial fast mode. As this system evolves in time, a fast
mode pulse propagates backward and forward across
the box. This pulse sets up a standing global cavity
eigenmode confined to large z, as expected, and both
couple energy into the Alfvén resonance.

The energy envelope of the driven resonance is nar-
row, centered on z & 0.22, and its width decreases in
time. Simultaneously, the amplitude of the fast cav-
ity mode decreases as it is mode converted to Alfvén
waves, driving a resonance with increasing amplitude.
Ultimately, the resonant amplitude saturates, once all
the fundamental cavity mode energy has been trans-
ferred. The remaining fast mode energy, confined to
large z, continues to oscillate but does not drive FLR’s.
This remnant fast mode energy represents the propor-
tion of the initial &; Fourier mode which existed in cav-
ity eigenmodes other than the fundamental, and whose
eigenfrequencies lie outside the Alfvén continuum.

3.2. Temporal Evolution of Resonance Energy
Widths

From Figure 3, it is clear that the energy width of the
resonance narrows in time. Previous theoretical studies
have concentrated on the expected temporal asymptotic
resonance width. Considering the fast mode to have a

complex frequency with an imaginary component wy;,
Southwood and Allan [1987], derived a resonance width

-1
AX ~wp; (Mﬂ) ,

T (8)

where z, represents the resonance position.

We can continue this analysis further by examining
the temporal evolution of this width. Assuming an
e~ dependence, (2) and (3) can be combined to give
a single equation for &,

d?¢,
dx?

, dK? 1 ¢y
dz (K2 —k2)[K2— k2 — 2] dz
HE? k2= 2%, =0

9)

where K%(z) = w?/v%(z).

The usual procedure for solving this equation involves
adopting a field-aligned wavenumber k,, which has both
real and imaginary components. This has the required
effect of removing the singularity and allows for Poynt-
ing flux to be driven toward the ionospheres to represent
dissipative losses there. Specifying k, = k,, + tk,; and
taking a Taylor expansion of K2(z) about (z — yes),
where z,.; (= z, — i€) is defined by K?(z,.s) = k2 and
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represents the resonance position, then (9) can then be
written (in the vicinity of the resonance) as [Southwood,
1974; Rankin et al., 1993],

d?¢, 1
dz?

dés

=T 32 -
(z — zp + 1€) dz A =0

(10)

where

(11)

and &, represents the resonance position on the real
axis.

A problem exists with this formulation, as noted by
Kivelson and Southwood [1988]: the field-aligned cur-
rents of an Alfvén wave are closed by Pedersen currents
in the ionosphere, and thus k,; is determined by Xp,-
the height-integrated Pedersen conductivity. The fast
mode interacts with the ionosphere in a different fash-
ion to the Alfvén wave, typically being better reflected
and having a smaller k,;. Thus a problem arises in a
coupled fast-Alfvén wave solution; it is impossible to
choose a single value for k,; which is appropriate near
the resonance (dominated by Alfvénic perturbations),
and away from the resonance (dominated by the fast
mode). In the literature, k,; is chosen to be that corre-
sponding to the Alfvén wave in all studies we are aware
of.

Alfvén waves naturally drive field-aligned currents,
and by imposing an imaginary k, the damping of these
Alfvén waves by currents flowing in the resistive iono-
spheres can be readily modeled. However, imposing the
same boundary conditions on the fast mode waves forces
them to similarly drive large Pedersen currents. This
would cause the fast modes to become damped directly
by Joule dissipation, when in fact they should not be
significantly damped by this mechanism. This is be-
cause the Pedersen currents driven by the fast modes
are several orders of magnitude less than those driven
by Alfvén waves. In fact, the fast mode electric field
should be subject to the boundary condition Ejs & 0,
where Fjs represents the wave electric field at the iono-
sphere [Kivelson and Southwood [1988]].

In order to avoid potentially unrealistic effects, we
choose to adopt a more physical picture for “damping”
the fast mode. In an entirely analogous way, we choose
to remove the singularity in (9) by adopting a complex
frequency rather than a complex k,. This represents the
oscillating cavity mode naturally, which is decreasing
in amplitude as it couples to the Alfvén resonance (cf.
the quasi-modes)[Barston, 1964; Sedldcek, 1971]. If we
assume that K2(z) is complex, because of the complex
cavity mode frequency, we can write

€ = 2k, k;i/(dK*(z)/dx)

(12)

with the negative sign so that the e~*! dependence
“damps” the cavity mode. This assumes that the entire
fast mode will decay uniformly as it drives the Alfvén
resonance, which should be a particularly good approxi-
mation when ) is small [ Wright, 1992a]. This then gives
(10), with the damping now defined by

Wi =wpr — Wi,
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—2LUf,fwf,-
v (x) (dK2(z)/dz)’

With this approach, the cavity mode is damped due
to coupling to the Alfvén resonance rather than direct
ionospheric dissipation. We can hence consider that the
width of the Alfvén resonance, in the absence of iono-
spheric dissipation, will be determined by which field
lines the cavity mode actually drives.

To calculate the temporal evolution of this resonance
width, we can hence examine the frequency bandwidth
of the driver at any time 7y by taking the Fourier trans-
form of the &, time history, to give F'(w) [Bracewell,
1986]. To remove the phase effects of F(w), we can
consider the bandwidth of the driver in terms of energy
or power (i.e., in terms of displacements squared). We
can thus write

€=

(13)

P) = [FW)|"F(w) = &} x
14 e~2@riTo _ 9g—wsiTo cos[(wyr —w
[wfi + (@}, —w?)]

)7o] (14)

where [F(w)]* represents the complex conjugate of
F(w). Hence we have an analytic expression for the
frequency spectrum in energy of the driving fast cavity
mode.

Two different width regimes exist for the function
P(w): 1) short times (15 < 1/wy;)

4¢3

Ple)= W} + (wyr —w)?] Sinz[(wﬁQ_ w)TO]' (15)
If wpr > wy; then
P(w) ~ ¢27sinc? ((wfr; w)m) (16)

where the sinc function (familiar from Fourier optics)
is defined by sinc(z) = sin(z)/z; 2) asymptotic times
(ro > 1/wy;)

&
[w}i + (wr —w)?]

Pw) = (17)

This is a Lorentzian profile, and has a full width at half
maximum (FWHM) of Aw = 2wy;.

In terms of the above analysis, the energy width of the
resonance region will be determined by the frequency
bandwidth of P(w). By calculating the FWHM fre-
quency bandwidth Aw at any time 75, we can predict
the physical energy width of the resonance AXg at this
time using the relation

AXE(m0) = (Aw(ro)/wa’ (/)

where ' = d/dz.

Considering the spectrum of individual plasma dis-
placements by taking the square root of P(w), sug-
gests that the asymptotic FWHM of the FLRs, seen in
terms of their fields, will be a factor of /3 greater than
AXEg. We can denote this length by Ly;. This differ-

(18)
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ence between perturbation and energy FWHM can be
seen clearly in our numerical results, shown later.

Consequently, we can predict the temporal evolution
of AX g which we expect to see in our numerical model.
We do this by solving the transcendental equation for
Aw using the function P(w), inserting the value of wy,
(the fundamental cavity mode eigenfrequency, calcu-
lated using the Runge-Kutta routine) and a value for
wy;.

Using the approximation that all fast mode oscilla-
tions can be described by a single complex frequency
(see equation (12)), and energy conservation, we in-
fer that the Alfvén energy (calculated on the basis of
pEZ/2 + b2 /(20)), integrated across the entire magne-
tospheric box, would grow as

E4(t) = Ea0(1 — exp(—2wy;t)). (19)

Consequently, plotting In{[E 40 — Ea(t)]/E 40} against
t, allows wy; to be calculated from the gradient.

The width calculated by the above ad hoc method,
AXEg, can then be compared to the widths measured
directly from the results of the numerical solution (see
Figure 4). In this figure, we plot as solid lines the over-
all energy width of the resonance measured using the
results from our numerical code, and show the width
evolution which we expect on the basis of this Fourier
analysis as dashed lines. Figure 4 clearly shows how
this energy width decreases as time evolves and ulti-
mately saturates to a constant value determined by the
damping rate of the fast cavity mode.

It is clear that this simple analysis, whereby we as-
sume that the energy width of the resonance is governed
by the frequency bandwidth of the driver, matches our
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Figure 4. Temporal evolution of FLR energy widths.
As time evolves, the energy width of the resonances
AXE in space is seen to narrow due to phase mixing,
and asymptotically approaches the width due to the
damping rate of the driving fast mode wy;. The solid
lines show the widths as measured from the results of
our numerical solution, and the dashed lines show the
fit to these results based on our Fourier analysis where
we assume the driving fast mode to have the form &, =

Ex0 exp[—i(wfr — i(.dfi)t].
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numerical results excellently. This is a new result, which
predicts that the overall widths in L shell of pulsations
in the Earth’s magnetosphere will evolve and narrow in
time. Satellites crossing these L shells should observe
relatively broad resonances soon after a cavity mode has
started to deposit its energy at the resonance. Obser-
vations of well-established FLRs, long after the cavity
mode has driven the resonance, should have a narrower
saturated width given by (17). As stated above, these
asymptotic widths will be determined by the damping
rate of the cavity mode, which in the real magneto-
sphere will depend not only on their coupling rate to
Alfvén waves (in our model governed by wy;) but also
other cavity mode losses such as propagation downtail,
into the polar cap, or out through nonperfectly reflect-
ing boundaries such as the magnetopause.

We believe that analysis using this procedure can
give valuable insight into why resonances adopt spe-
cific widths and perhaps provide an important analytic
tool when considering the various driving mechanisms
which have been proposed for exciting magnetospheric
pulsations.

3.3. Fast Cavity Mode Coupling Rates

Clearly, with our box model for the magnetosphere
and within the framework of ideal MHD, the loss of en-
ergy from the cavity mode occurs only as a result of
coupling to an Alfvén resonance. In a realistic magne-
tosphere, with additional fast mode energy losses, wy;
may be slightly larger than the value adopted here.
Once a suitable value of wy; has been estimated, the
frequency bandwidth of the fast mode is determined.
Consequently, this coupling rate has an important role
to play in determining the energy widths adopted by
resonances.

Using the method for obtaining wy; previously de-
scribed, we can follow Kivelson and Southwood [1986]
and Zhu and Kivelson [1988] and plot wy; verses the

parameter A2/w3 (we choose this parameter as our or-
dinate to facilitate comparison with previous studies
which assumed a linear density profile and where a
transformation to yield Budden’s [1961] equations gen-
erates the variable A2/w3. See also Forslund et al.
[1975]). For our study, we find that the maximum cou-
pling rate occurs when our normalized (dimensionless)
A = Amaz = 1.6, which corresponds to A2 /w3 & 0.5 (see
Figure 5). This gives a damping of wy;/ws, = 0.06,
which means that the fast mode would damp on a
timescale 7;; = 2.65 periods. This is encouraging as it
means that resonances excited by this rapidly damped
fast mode can develop narrow overall energy widths on
the timescale of a few driving periods, as was suggested
necessary by Walker et al. [1992].

Zhu and Kivelson [1988] found that using their box
geometry with density proportional to  the maximum
coupling occured when the parameter A2/ws = 0.5.
Qualitatively our results agree well with their analy-
sis (any differences being attributable to the different
density profiles). In the hemicylindrical model of Al-
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Figure 5. Coupling strength of the fast and Alfvén
wave modes. We measure the coupling rate of the fast
mode by wy;, and plot it against the parameter A?/w$
using the results from our numerical code. Maximum
coupling occurs where A & 1.6. The coupling strength
decreases on either side of the maximum giving the
asymptotic decoupled limits at A = 0, co.

lan et al. [1986a], the maximum coupling occured when
their dimensionless m = 3. This is of the same order as
our dimensionless A, .z = 1.6.

3.4. Phase Mixing Lengths

From the analysis in the previous section, it is clearly
possible for cavity modes to drive FLRs with a finite
width in L shell, encompassing resonant field lines with
arange of natural Alfvén frequencies, as seen in satellite
data [Mitchell et al., 1990; Lin et al., 1992].

It is well known that the coupling of fast and Alfvén
MHD wave modes has many analogies to the behav-
ior of a classical driven harmonic oscillator (see Wright
[1992b] and Steinolfson and Davila [1993] for the case
of cavity modes excited in solar coronal loops). Con-
sequently, exactly on resonance where the real part of
the cavity mode frequency matches the local Alfvén fre-
quency (wgr = wa(z)), we expect to observe mono-
tonic growth of Alfvén oscillations on a timescale of
T = wf"il. Off resonance, however (but still within
Aw), we expect a beating Alfvén wave response due to
the frequency mismatch between the cavity mode and
the now slightly different natural Alfvén frequency of
this particular field line. On timescales longer than 7y;,
once the driving cavity mode has decayed, the Alfvén
oscillations should then settle down to vibrate with their
own natural frequency w4 (z) [Allan and Poulter [1989]].

Figure 6 reproduces this expected behaviour both on
and just off-resonance using our numerical model. This
response compares well with the previously published
results of Allan and Poulter [1989] and Wright [1992D]
for the magnetospheric case and those of Poedts et al.
[1990] and Steinolfson and Davila [1993] for the coronal
loop case.

As a consequence of the inhomogeneous background
natural Alfvén frequency in the x direction, then we
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can expect the perturbations within these radial pul-
sation packets, which are initially excited in phase, to
drift out of phase with each other in time. This process
is called phase mixing [Burghes et al., 1969; Heyvaerts
and Priest, 1983]. Phase mixing continually reduces the
scale length of the disturbance in time, and we can de-
fine the length scale reached after a time t as the phase
mixing length Lpp(t).
Considering an ideal solution of the form

&y(z,t) = A(z) expliwa(z)t] (20)

and assuming that 8/0y = 0, we can differentiate with
respect to z to gain the local wavenumber k;(z). This
then gives ky(x) = w/;(z)t (where prime denotes d/dz)
and allows us to define

Lon(t) = 27 [wiy(2)] " . (1)

Although the decoupled oscillation of each field line
relies upon d/dy = 0, we shall see from our numeri-
cal model, that even when 9/8y # 0 the scale length
of the solution in z is still dominated by the decou-
pled phase mixing length. This continual narrowing of
spatial scales in time can be thought of as a wave propa-
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Figure 6. Growth of &, perturbations in time. (a)
the growth of the &, fields exactly on resonance, at
the position ¢ = 0.22 for A = 1.0, which represents
a quite strong coupling case. The resonant amplitude
grows smoothly to a maximum value which is attained
once all the fundamental cavity mode energy has been
transferred to the resonance. (b) The off resonance be-
haviour, again for A = 1.0, showing the expected beat-
ing between the driving cavity mode frequency wy, and
the natural Alfvén frequency wa(z), here at x = 0.17.
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gating in modenumber space toward higher harmonics.
Cally [1991] considered the speed of propagation of the
outermost wavefront in this mode number space for an
incompressible plasma, and the concept is discussed in
greater detail in the work by Cally and Sedldcek [1994].

As finer scales develop, the Alfvén oscillations (¢),
develop very high gradients of 9¢, /0, associated with
very strong field aligned-currents j, given by

. __(Vxﬁh_nl(@&_@k>
= po  po \ Oz By
Bok, cosk,z (8& . >
= ZoBCo8EE (T _ing, ), 2
e ( 0 _ixg (22)

where po = 47 x 10~7 NA~2.

Figure 7 shows snapshots of the spatial structure of
the energy density, the resonant Alfvén perturbation
described by &y, and the derived field-aligned current
for two chosen values of A at one single time, ¢ = 45.

The first column in Figure 7 shows results for a small
value of A (here taken as 0.1), where ¢ < 74; = 330.
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The system evolves so that at this time, the resonance
energy width AXFg is small and of the order of Ly, as
are the perturbation scales within the resonance. An
almost singular resonance is excited with little obvious
fine &, structure visible beneath the energy envelope.
This compares well with the full nonlinear FLR reso-
nance width results published by Rankin et al. [1993].
In their model, they drive resonances with a ramped
and then constant amplitude incident fast mode. We
would expect this driver to be almost monochromatic
and drive a very narrow resonance. Some small finite
width is developed in their scheme due to dissipation
and non-linear processes which they included in their
numerical code.

The second column of Figure 7, on the other hand,
shows perturbations excited with a rather larger value
of A = 1.0, where t > 7;(A) = 7. In this case, the
anticipated j, and & fine scale spatial oscillations are
clearly seen beneath the now much broader energy en-
velope AXg.

We can now see why the perturbations show the two
types of behavior seen in Figure 7. For small coupling

200F
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Figure 7. Energy density, £, perturbation and j, as a function of z at the time ¢ = 45. Left
Column: The A = 0.1 case, where the coupling of the fast and Alfvén modes is weak. For this
case t < 74; ~ 330. We can see that significant energy still resides in the fast mode at high x,
and that both the energy and £, have similar narrow widths governed by the phase mixing length
(Lpn). Strong field aligned currents j, have already been established at this time. Right column:

The A = 1.0 case, representing stronger coupling.

This is a case where t > 74; &~ 7. Here the

energy width is broad and has saturated at the asymptotic width. However, the £, perturbations
have continued to develop fine scales through phase mixing and these are apparent inside the

energy envelope. In the case shown in this second

column, more energy has been transferred to

the resonance and it has driven extremely strong field aligned currents (FAC’s).
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rates (here the A = 0.1 case), the value of wy; is small,
and the time 74;(}) is large (~ 330). Consequently, the
energy envelope is still narrowing at ¢ = 45 and has a
width of order the phase mixing length.

For the stronger coupling rate, shown in the sec-
ond column of Figure 7 (A = 1.0), the energy width
AXE is wide, and this is reached in the now short time
77i(A) & 7. Now, t > 74;, and the phase mixing length
Lyp is much smaller than the overall pulsation width.
Consequently, fine structure is revealed inside the reso-
nance envelope.

If magnetospheric pulsations have lifetimes longer
than 7¢;, they have time to evolve (phase mixing) fine
structure within their energy envelope. Realistic spa-
tial pulsation packets in the magnetosphere may con-
tain several spatial oscillations and satellites crossing
these pulsation packets might see oscillations from both
crossing oscillations in space, as well as the temporal os-
cillation of the field lines (cf. the AMPTE/CCE results
of Anderson et al. [1989]).

Ideal phase mixing means that the £, perturbation
scales continually narrow in time. Following Cally
[1991], we can plot a diagram of the magnitude of the co-
efficients b, (i.e., the £, Fourier amplitudes) as a func-
tion of time. In the incompressible work of Cally [1991]
a clear pulse of energy was seen propagating in wave
number space toward higher Fourier harmonics (and
hence smaller spatial scales) in time. Figure 8 shows
the magnitude of the coefficients b,, at two times, and
a similar (if less smooth) picture of this propagation
is revealed for the &, components in our compressible
case. We can estimate the finest scales which may be
generated by phase mixing by considering the maxi-
mum magnitude of the natural Alfvén frequency gradi-
ent |w| and then using

max’
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Figure 8. The magnitude of the components b,,(t)
in the Fourier series expansion for & = bo(t)/2 +

Zﬁ___l bm (t) cos(rmz), plotted at two times, for A =
1.0. We can clearly see a wave pulse propagating in
wavenumber space (m) towards higher harmonics and
hence finer scales, due to phase mixing. The solid line
represents an early time (¢ = 5) and the dashed line a
later time (¢ = 15).
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(23)

/
kg maz = Mmas™ = lwa |ma:c t

to give

Mmaz = ; lwA,Ima:c t. (24)
This predicts an increase in m between two times as
Am = (Jw'y],,00)At. Hence between ¢=5 and 15, the
foremost wavefront should advance by a Am of 51, in
good agreement with the results shown in Figure 8.

In the real magnetosphere, pulsations can be damped
by a variety of mechanisms, such as ohmic dissipation
in the ionosphere. This can damp the pulsation, as well
as creating finite widths. If pulsations generate suffi-
ciently fine scales in space, then they can mode convert
to kinetic or two fluid wave modes which may broaden
the resonance [Rankin et al., 1993]. These dissipation
mechanisms may limit the extent to which realistic pul-
sations will phase mix and hence limit the finest radial
scales which they will develop. We discuss these effects
and compare our results to other studies in the following
sections.

4. Discussion

4.1. Overall Pulsation Energy Widths

We can now compare the asymptotic resonance
widths (AXEg) developed in our numerical model with
the overall pulsation widths which have been observed
in the terrestrial magnetosphere.

We use (18) and follow Anderson et al. [1989, and
references therein] by adopting their dipole magnetic
field geometry. By assuming fast mode damping pa-
rameter of wy;/wy, = 0.06 (to illustrate a typical cou-
pling strength), then we expect the asymptotic values
of AXg to be ~ 0.2REg at L = 4 (assumed to be inside
the plasmasphere), and at L = 7 (in the outer magne-
tosphere) ~ 0.4Rg. For a less strongly coupled cavity
mode, these widths would be reduced.

Resonance widths seen in radar data are of ~ 0.5Rg
[Walker et al., 1979] and ~ 0.35Rg [Walker et al., 1992].
Walker et al. [1992] note that their observation was at
the limiting ionospheric resolution of their radar (~45
km) and hence that the real width of the FLR which
they observed could have been narrower than the in-
ferred width of ~ 0.35Rg. Similarly, the satellite ob-
servations of Mitchell et al. [1990] showed pulsations
(which they believed to have been driven by a cavity
mode) with a width of ~ 0.5Rg. These widths are
clearly of the order predicted by our numerical code.

4.2. Magnetospheric Perturbation Widths AX;

We now discuss the likely dominant damping mech-
anisms for magnetospheric pulsations. By considering
this damping, we can determine whether pulsations are
sufficiently long lived that the phase mixing structure
within the energy envelope can develop.

Allan and Poulter [1989] concluded that it would take
approximately hundreds of periods or more for dissi-
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pative phase mixing to damp out magnetospheric pul-
sations. Consequently, it is unlikely to be an impor-
tant pulsation damping mechanism. Kelvin-Helmholtz
instabilities can be driven in regions of high-velocity
shear, which may be generated by phase mixing within
Alfvén resonances. These instabilities could be impor-
tant for both widening the resonance region and for
damping the pulsations. However, this will be a non-
linear effect, so is not present in our linear analysis.
(See Browning and Priest [1984] for a discussion of the
Kelvin-Helmholtz stability of phase mixed Alfvén wave
fields.)

The dominant mechanism for dissipating pulsation
energy is usually regarded as ionospheric Joule heat-
ing. The energy dissipated by this mechanism clearly
depénds on the conductivity of the ionosphere, which is
modeled using the height-integrated Pedersen conduc-
tivity X p of the assumed thin sheet ionosphere.

We have discussed the different ionospheric bound-
ary conditions which are applicable to decoupled cavity
modes and Alfvén waves. We have argued that even for
coupled modes, assuming two different boundary con-
ditions prov1des a good approximation, and hence that
the overall width of an FLR can be understood in terms
of the frequency bandwidth of the cavity mode rather
than being due to direct ionospheric dissipation.

However, once the Alfvén waves have been driven by
the cavity mode, they have a finite lifetime based on
this ionospheric damping. To incorporate the effects
of ionospheric dissipation into our dynamic analysis in
terms of phase mixing, we can consider the following
theory.

4.2.1. Steady state analysis. The standard
treatment in the literature for the case of continually
driven pulsations finds the standard steady harmonic
solution to the coupled wave problem by considering a
single complex k, (wy; = 0,k;; # 0). The leading or-
der solution for &, modes can be written as [Southwood,
1974]

& ~In(A(z — 2, + i€)). (25)
Writing down the leading order solution for the &, (i.e.,
Alfvén wave) resonant response, then we obtain

1

~—_— . 26
& Az — 2, + i€) (26)

Considering this function, we can write

1

|y | ~ T (27)

Al(e —2,)2 4+ €2)2

and derive a perturbation FWHM A X of

AXe = 2V/3e (28)

where ¢ is calculated using a complex k, based simply
on ionospheric dissipation (see equation (11)). Ellis and
Southwood [1983] show that for vg > (ueXp)~! (as is
appropriate for the Earth), then
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We expect that a time-dependent solution will asymp-
tote to this width for large times, and now demonstrate
how our dynamic analysis in terms of phase mixing may
reproduce this result.

(29)

4.2.2. Phase mixing analysis. A steadily driven
resonance (wyg; & 0) is best simulated in our model by
a weak coupling case, A — 0. We choose to adopt a
dynamic viewpoint of this situation in terms of a super-
position of Alfvén waves: Alfvén waves with relatively
large amplitude and spatial scale in z are continually
being driven. The Alfvén waves excited at a given time
will phase mix more and more the longer they live; how-
ever, they also decay in amplitude and so become more
insignificant. Thus ionospheric dissipation limits the
finest scales that can be achieved for significant ampli-
tudes. If we assume that after an e-fold damping time
71 (due to ionospheric dissipation) the Alfvén wave am-
plitude is no longer significant, we can determine the
finest scales which the pulsation can develop. This is
given by the limiting ionospheric phase mixing length,
Ly

Ly~ QW[TIWAI(Z‘)]_I. (30)
We can now write
x
o~ 1fy = EE (31)

where 7 represents the ionospheric damping rate of an
undriven Alfvén wave component, and hence

B A
This predicts the finest wave scales which develop in a
steadily driven pulsation to be o« [Epzow’y (z)] 1.
The steady harmonic (wy; = 0, ki # O) estimate for

the resonance width of £, from the previous subsection
(equations (28), (11), and (29)) gives

by
AXe = 2V3 (-—Pgozo wk(m))

Again this clearly results in AX; x [Epzow A(x)]‘
This analysis shows how our novel dynamic phase mix-
ing treatment can reproduce more standard steady har-
monic results. The two results differ by a factor ~2,
but this is not totally unexpected because of the order
of magnitude estimate of the ionospheric e-fold damp-
ing time. It is encouraging that our treatment, based
on phase mixing, reproduces the expected result that
ionospheric damping will limit the finest &y perturba-
tion scales which may be developed by a continually
driven resonarce.

-1
AXe ~ Ly ~ 2 (Mw' (x)) L 32

-1

(33)

4.3. Pulsation Characteristics

We can also consider the effects of ionospheric dissi-
pation on FLRs driven by single damped cavity modes
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(i.e., with wy; # 0). If 77 > 744, then this introduces the
possibility that FLRs have fine phase mixing structure
inside their overall width.

Fine scales which are created within a pulsations en-
ergy envelope will continue to narrow by phase mix-
ing, whilst their amplitude decreases due to ionospheric
dissipation. If the Alfvén waves gain their energy on
timescales which are quick compared to 77, that is,
1 3> Ty;, then we can view the pulsation in two stages:
the first, for times of order 74;, is essentially the ideal
growth of the resonance; the second (¢t > 7y;) repre-
sents the undriven phase mixing decay of Alfvén waves.
Hence we can calculate an ionospheric pulsation damp-
ing rate by considering the decay of undriven Alfvén
waves. For FLRs driven by rapidly damped cavity
modes, this should be reasonably accurate.

A numerical calculation of this ionospheric damping
rate, in a dipole magnetospheric geometry, was com-
pleted by Newton et al. [1978]. They found that for
typical dayside (or active nightside) Xp, the damping
decrement y/wa, ~ 0.01 (see, for example, their Fig-
ure 9, with L = 7 and £p = 10-20 mhos (9 x 10'? -
1.8 x 1013 esu); they calculate y/wa, ~ 0.0075—0.018).
If we define the e-fold ionospheric damping time of
the pulsations as 77, then this value of y/wa, corre-
sponds to 77 = 15.9 Alfvén wave periods. This is
longer than 7y; for pulsations driven by strongly cou-
pled fast cavity modes, and therefore we would expect
these dayside pulsations to develop the phase mixing
fine structure within the resonance envelope. Similarly,
using typical nightside conductivities of ¥p ~ 0.1-1
mho (~ 10! — 10'? esu), Newton et al. [1978] found
damping on the nightside can become extreme, having
v/wgr 2 0.1 — 1. Clearly, this is probably not sufficient
for perturbation fine structure to develop significantly
beneath the pulsations energy envelope, even for rapidly
damped cavity modes.

Consequently, satellites crossing dayside or active
nightside FLRs may see oscillations in magnetic field
componerts both from it going through spatial oscilla-
tions, as well as seeing the natural Alfvén oscillations of
the local field lines in time. This implies that inbound
and outbound satellites, which are crossing FLR’s, may
see different apparent frequencies. Frequency shifts of
this forim were seen in the AMPTE/CCE data presented
by Anderson et al. [1989].

If 71 g 7yi, as is the case for the non-auroral re-
gion nightside, then pulsation fine structure of signif-
icant amplitude will not be created within the over-
all resonance envelope and pulsations will be rapidly
damped by ionospheric dissipation. However, Crowley
et al. [1987], used both EISCAT radar and ground-
based magnetometer data from observations of a Pc
5 pulsation to determine both its observed damping
decrement and a theoretically predicted damping rate
calculated on the basis of ionospheric dissipation. Xp
(~ 2 — 5 mho) was inferred from the EISCAT data and
predicted damping greater than that observed. Crow-
ley et al. [1987] argued that the FLRs amplitude was
being enhanced by a cavity mode continuing to drive
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it during the period of observation. This would be a
case where 7 < 7¢;, and explains how pulsations with
short 71 may have longer lifetimes than those predicted
on the basis of 77 alone.

For sufficiently long lived pulsations, then phase mix-
ing can narrow to kinetic/two-fluid length scales L
(such as the ion gyroradius, or the electron inertia
length). These effects will become important, from a
phase mixing viewpoint, if the pulsations live longer

than 7%,
d -1
=27 (—c—u—iLk) .

. (34)

Of course, we would also require that the pulsation still
had a significant amplitude for these effects to be impor-
tant. These kinetic/two fluid wave modes may broaden
the resonance, and will limit the perturbation scales to
~ Ly [Rankin et al., 1993].

To excite equatorial kinetic Alfvén waves, or electron
inertia waves above the polar ionosphere, then pulsation
length scales must narrow to approximately hundreds of
kilometers, ~ 0.05—0.1 Rg [see Rankin et al., 1993, and
references therein]. For those FLRs with 73, < 77, then
these wave modes will be triggered and corisequently
we agree with Inhester [1987] and Rankin et al. [1993]
that kinetic/two-fluid waves may be excited within the
lifetimes of some long-lived pulsations.

On timescales less than both 77 and 71, then we ex-
pect that our ideal MHD code will provide an accurate
description of the evolution of a FLR.

5. Conclusions

We have presented an ideal linearised numerical MHD
model for the coupling between fast and Alfvén waves in
the magnetosphere. Using this model, we examine the
temporal evolution of FLR widths driven by fast cavity
modes. Three regimes for pulsation evolution become
apparent from this analysis. _

First, the overall energy width developed by the res-
onance can be understood in terms of the frequency
components of the driving cavity mode. The frequency
bandwidth of this mode is governed by its damping rate,
and this determines the field lines which are actually be-
ing driven. The overall resonance energy width at any
time is given by the spatial extent of these driven field
lines. This width develops on a timescale 74; = w fi‘l
and approaches an asymptotic FWHM of Awy = 2wy;.
This is a new result, which means that at early times
the overall energy width of a resonance will be broader
than previously thought, and only at large times will it
approach the expected asymptotic width.

Second, for perturbations which live longer than 7y;,
further fine structure can develop beneath this enve-
lope. Phase mixing between adjacent field lines within
the resonance continues to generate finer and finer per-
turbation scales. Thus the finest possible scales at any
time within an ideal magnetospheric pulsation will be
governed by the phase mixing length, given by L4 (t) =
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Table 1. Pulsation Behavior Regimes

Timescales Energy Width

&y Scale Length

Description

decreases o !

AXp = Lph,(t)/\/g

AXEg has saturated
AXp = 2wyi (dwa/dz)™

t< T§i, TI, Tk

T <t T, Tk

AXEg has saturated
AXp ~ 2wyi (dwa/dz) ™

T, TI << 7%

decreases o< t—1

AXe =~ Lpn(t)
decreases oc t7!

AXe ~ Lon(t)

AXe = Lpn(t),
but its amplitude
decays in time

no fine structure beneath
the energy envelope.

&y has fine scale structure
within the energy envelope.

kinetic effects not important.

&y amplitude reduces due
to ionospheric dissipation.
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AXg has saturated
AXg ~L;

T <t < Tk, Thi
wfi =0
(continually driven)

AXEg has saturated
AXEp = 2wy (dwa/dz) ™

T, Tk <t < 77

AX, has saturated

A X, has saturated

kinetic effects not important.
pulsation maintains dominant
scale AXe ~ Lj.

AXE ~ L;.

&y fine structure saturates.

pulsation couples to kinetic
or two-fluid plasma waves.

AXg ~ Ly

27 (tdwa/ d:c)_l. If ionospheric dissipation is included,
the Alfvén fields will damp exponentially in time as they
phase mix.

Third, for the case of continually driven pulsations
(wyi = 0), for example driven by a small A cavity mode,
then after a time 77 the perturbation width will nar-
row to Ly. At this point the phase mixing process will
cease to produce any finer detectable structure within
the pulsation, which will appear as a single coherently
oscillating wave having width Lj.

If the phase mixing within pulsations can continue for
a sufficiently long time, so that it reaches a kinetic/two-
fluid scale Ly (by experiencing only slow ionospheric
damping), then kinetic/two-fluid effects may also
broaden the resonance fine scales and limit them to the
order of Ly or more. For various values of 7¢;, 77, and 7,
the regimes for pulsation behavior can be summarised
as shown in Table 1.

The combination of these features allows pulsation
energy envelope widths to be created on the timescale
of several cavity mode periods, as observed in data by
Walker et al. [1992], and allows the resonances to nat-
urally exhibit the spatially localized packet structure
across L shells which is also seen in data [Mitchell et
al., 1990; Lin et al., 1992].

We find that pulsations can be expected to exhibit
fine structure inside the energy envelope, so long as
they are not damped on timescales shorter than 7¢;. By
considering ionospheric damping as the likely dominant
pulsation energy dissipation mechanism, we conclude
that for both dayside and active nightside pulsations
whose footpoints lie in the auroral region, ionospheric
damping can be sufficiently small so that this fine struc-
ture is created within the pulsation energy envelope.

Depending on the values of Ly;, Ly, and Ly, we agree
with both Inhester [1987] and Rankin et al. [1993] that
in general it may be possible for some pulsations to
live long enough so that sufficiently small scales can de-
velop, and hence that mode conversion to kinetic or two
fluid waves should be considered. Both kinetic Alfvén

or electron inertia waves can accelerate particles parallel
to the background magnetic field. Hence, it is possible
that FLRs have an important role to play in modulat-
ing auroral emissions and perhaps in generating some
types of auroral arcs [Samson et al., 1991, 1992a; Xu et
al., 1993].

Current radar observations show a limiting resolution
of ~45 km in the ionosphere [Walker et al., 1992]. Thus
smaller-scale observations will be necessary to further
investigate pulsation fine structure. If the electron pre-
cipitation in auroral arcs is in fact a direct result of FLR
fields, then, as suggested by Rankin et al. [1993], opti-
cal auroral observations might be useful for determining
their internal fine structure.

Finally, we note that the MHD code we have em-
ployed should be accurate in describing the evolution of
pulsations during their growth phase. Only as times of
the order of 7 or 7y are approached, do kinetic or dis-
sipative effects become important suggesting that the
ideal MHD approximation in our model requires revi-
sion.

Appendix: Matrix Form of Coupled
Equations

Equations (2) and (3) and the half-range Fourier se-
ries expansions for ; and &, yield coupled equations
for am(t) and by, (t). With v;%(z) = A? — B2 cos(nz),
and @ denoting §%a/8t2, then

_%am_l(t) + A%am(t) — %dm+1(‘)
+(k2 + (1m)")am (1) + Ammbpm(1) =0 (A1)
2. . 2.
B s+ %)~ Zia )

+(k2 4+ A2)by(t) + Amman,(t) = 0. (A2)
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Defining the vector X as

(A3)

and assuming perturbations of the form e~**, (A1) and
(A2) can be written as a generalized matrix eigenvalue
problem,

w:R2Xp = MXn (A4)
where Xy represents an eigenvector, and w2 its corre-

sponding eigenvalue. The matrix R2 is pentadiagonal
and M is tridiagonal, both being Hermitian.

Truncating the summation to a finite number of
" Fourier modes, m = N, yields for the decoupled (A = 0)
case N fast modes and N + 1 Alfvén modes (i.e., a
(2N + 1) by (2N + 1) matrix eigenvalue problem). In
general, we can obtain numerically 2V + 1 eigenfrequen-
cies w2, and 2N + 1 corresponding eigenvectors, repre-
senting the coupled wave modes. Writing oy, as the
components of a solution matrix, having the solution
eigenvectors as its columns, we get a general solution
for both &;(z,t) and &y(x,t) in the form

N
o(z,t) = E am (t) sin(rmz) (A5)
where
2N+1
am(t) = Y @mgn [cn(t) cos(wnt) + da(t) sin(wnt)]
" (A6)

and m; = 2m. And similarly,

N
iéy(z,t) = -;—bo(t) + Z bm (t) cos(mmaz) (A7)
m=1

where
2N+1
bo(t)= Y @1 [en(t) cos(wnt) + dn(t) sin(wnt)]
n=1 (AS)
2N +1
() = D myn [a(t) cos(wnt) + dn(t) sin(wnt)]

(A9)
where my = 2m + 1.

The components of the column vectors ¢ and d (i.e.,
¢n and dy,) are determined by the initial conditions at
t = 0. Hence
(A10)

(A1)

ac =e€

add=é
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where T
C=[ €1,€2,C3,° ", Cn ] (A12)
d=di,ds,da, -, dn | T (A13)
Q = diaglw),wa,ws, . . ., wn] (A14)
_ [bo(t = 0),a1(t = 0),b1(t = 0),
e= 4t =0),ba(t = 0)]T (A15)
- [bﬂ(t = O)a al(t :O)a bl(t = 0); (A16)

o an(t = 0),ba(t = 0))T

The summations for £; and £, can also be written in
terms of a sum over spatial modes. We can write,

2N+1

Ex(z,t) = Z [en (t) cos(wnt) + dy () sin(wnt)] Pne(z)

n=1
(A17)
where ¢,(z) is the spatial variation of the mode in the
% direction given by

N
nz(2) = Z Qg n Sin(rmz) (A18)
m=1
(mg = 2m)
2N+1
i€y(2,8) = Y [en(t) cos(wnt) + dn(t) sin(wnt)] gy ()
" (A19)
where
N
Pny(z) = a1, + Z Qmyn cOs(Tma) (A20)
) (my =2m +1).

The functions ¢n(z) and ¢,y(z) each have a time de-
pendence of e¥i“»?; thus they are normal modes (in
the generalized function sense). In fact, they represent
a Fourier approximation to the Barston modes of the
system [Cally, 1991].

We should also note that for coupled modes, both sets
of spatial modes ¢nz(z) and ény(z) exist for all values
of n from 1 to (2N + 1). Within our numerical scheme,
the decoupled (A = 0) structure of a mode with n cor-
responding to either a fast or an Alfvén mode, leaves
a dominant component in either ¢,,(z) or ¢,y (z), re-
spectively. For this A = 0 case, the amplitude in the
perpendicular polarisation is zero, except for computer
round-off error. Clearly, when A # 0, then both po-
larizations become important for both fast and Alfvén
modes.
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