JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. A2, PAGES 2381-2390, FEBRUARY 1, 1997

Multiple-timescales analysis of ideal poloidal Alfvén
waves

Jan R. Mann

Astronomy Unit, Department of Mathematical Sciences, Queen Mary and Westfield College,
London

Andrew N. Wright ! and Alan W. Hood

Department of Mathematical and Computational Sciences, University of St. Andrews, Fife
Scotland

Abstract.

Time-dependent analytic solutions for the evolution of undriven ideal standing
poloidal Alfvén waves are considered in a box model magnetosphere. Assuming an
“azimuthal” variation of expi\y, where X is large, we use the asymptotic method of
multiple timescales to determine analytic solutions over the long timescale o defined
by 0 = et, where € = 1/A. Our asymptotic poloidal Alfvén wave solutions (with
A > kg, k,) accurately reproduce the undriven ideal wave polarization rotation
from poloidal to toroidal in time determined numerically by Mann and Wright
[1995]. Using the same asymptotic method, we further consider the evolution of
radially localized large A Alfvén waves. We find that undriven waves having k,,
A > k,, oscillating in a radially inhomogeneous plasma remain incompressible to
leading order and experience similar asymptotically toroidal behavior as ¢t — oo.
Consequently, undriven poloidal Alfvén waves and, in general, transversally localized
large A ideal Alfvén wave disturbances have a finite lifetime before they evolve into
purely decoupled toroidal Alfvén waves. This polarization rotation may be apparent
in waves driven by the drift-bounce resonance mechanism in situations where the
wave evolution occurs more rapidly than ionospheric damping. This can be possible
on the dayside of the magnetosphere, with the evolution more likely to be observable
toward the end of a temporal wave packet when the driving mechanism is no longer

operative.

1. Introduction

Understanding the time-dependent evolution of ul-
tralow frequency (ULF) hydromagnetic waves is impor-
tant when trying to identify pulsation energy sources
and when interpreting both ground-based and satellite
data. ULF waves with quasi-sinusoidal wave trains have
historically been classified according to their oscillation
period. More recent studies [e.g., Kokubun et al., 1989]
have highlighted the importance of analyzing wave po-
larizations when trying to identify wave energy sources.
ULF pulsations may be driven by sources which are ei-
ther internal or external to the magnetosphere.

Early work on the external excitation of pulsations
considered the possibility of coupling solar wind excited
Kelvin-Helmholtz magnetopause surface waves to local-
ized field line resonances (FLRs) at positions where the
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local Alfvén eigenfrequency matched the frequency of
the surface wave [e.g., Chen and Hasegawa, 1974; South-
wood, 1974]. Later treatments considered the excita-
tion of magnetospheric cavity /waveguide modes which
could themselves excite FLRs where their frequencies
matched local Alfvén eigenfrequencies [e.g., Kivelson
and Southwood, 1985, 1986]. These external sources res-
onantly excite essentially Alfvénic waves having low az-
imuthal wavenumbers (m < 10) which are dominantly
toroidally (azimuthally) polarized.

Several other excitation mechanisms have been pro-
posed which can extract free energy from internal mag-
netospheric plasma configurations, such as the drift-
mirror instability [Hasegawa, 1969] and ballooning in-
stabilities [e.g., Chan et al., 1994]. Free energy can
also be extracted from energetic particle populations,
for example, through the drift-bounce resonance mech-
anism [Southwood et al., 1969; Southwood, 1976; Chen
and Hasegawa, 1988]. Depending upon the local plasma
configurations, both mechanisms may sometimes be op-
erative, resulting in, for example, the coupled drift-
Alfvén-ballooning-mirror (DABM) instability discussed
by Chen and Hasegawa [1991].
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In this paper we consider the temporal evolution of
large m radially polarized transverse Pc4-5 pulsations
(classified as R class waves by Kokubun et al. [1989])
which may have been excited by drift-bounce resonance
with energetic protons. Waves driven by this mecha-
nism are expected to be dominantly radially polarized,
with the instability favoring large m and low frequen-
cies [Southwood, 1976]. The lowest frequency standing
waves which are unstable are second harmonic [see, e.g.,
Southwood and Kivelson, 1982], and this may explain
the observations reported by Takahashi and McPherron
[1984] of the predominance of the second harmonic in
observations of radially polarized afternoon Pc4 waves.

Detailed satellite observations of these Alfvénic radi-
ally polarized waves show them to occur during periods
of quiet geomagnetic activity, at all local times, with
a maximum occurrence in the afternoon and a mini-
mum occurrence between 0400 and 1100 magnetic lo-
cal time (MLT) [Anderson et al., 1990; Kokubun et al.,
1989; Takahashi and McPherron, 1984]. They typically
occur when L < 7 around noon, increasing with lo-
cal time to have L > 7 at midnight [Anderson et al.,
1990]. Waves can be extended in longitude, typically
~ 1.5—8.0 hours in MLT [Engebretson et al., 1992] and
are strongly localized in latitide with observed equato-
rial widths ~ 0.2 — 1.6 Rg by Singer et al. [1982], and
a range of 0.2 — 3.1 Rg (with a mean of 1.2 Rg) in 21
events reported by Engebretson et al. [1992].

Despite their broad longitudinal extent, multiple sat-
ellite observations of poloidal Alfvén waves often show
high incoherencies between adjacent satellites. This im-
plies large azimuthal wavenumbers, typically m ~ 100
[Hughes et al., 1978b]. Detailed examination of particle
behavior in the presence of poloidal Alfvén waves by
Takahashi et al. [1990] confirmed azimuthal wavenum-
bers m ~ 100, found westward phase propagation, and
concluded the waves had been driven by drift-bounce
resonance with ~ 100-keV protons. Other studies have
also found evidence for Pc4-5 poloidal Alfvén waves be-
ing driven by bounce resonance with energetic protons
[Hughes et al., 1978a, b; Singer et al., 1982; Hughes
and Grard, 1984; Takahashi and McPherron, 1984; En-
gebretson et al., 1988; Kokubun et al., 1989; Anderson
et al., 1990; Engebretson et al., 1992].

Giant pulsations (Pgs) are a subset of radially polar-
ized Pc4 waves, with similar properties to the poloidal
Alfvén waves discussed above. Their occurrence, how-
ever, is limited to the early morning, with the waves
characterized by smaller (but still large) azimuthal wave-
numbers (typically m ~ 20 — 40). Pgs are also strongly
radially localized (with typical equatorial widths ~ 1
REg), are observed during quiet times, and have ex-
tremely sinusoidal ground magnetometer signals [Ros-
toker et al., 1979; Glassmeier, 1980; Hillebrand et al.,
1982; Poulter et al., 1983; Chisham et al., 1990; Taka-
hashi et al., 1992]. Poloidal Alfvén waves, by virtue
of their larger azimuthal wavenumbers and hence finer-
scale ionospheric variations, are believed to be screened
from ground-based magnetometers [Hughes and South-
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wood, 1976; Takahashi et al., 1992]. Pgs may also be
driven by the drift-bounce resonance mechanism [Glass-
meier, 1980; Chisham et al., 1992; Chisham, 1996].

‘Compressional storm-time Pc5 waves are also be-
lieved to be driven by westward drifting energetic par-
ticles; however, they are not the subject of this paper.
Storm-time Pc5s are thought to be driven by parti-
cles injected during substorms, whereas the poloidal
Alfvén waves we consider are essentially incompress-
ible and appear to be driven some time after injec-
tion during quiet geomagetic periods characterized by
low convection electric fields but perhaps during peri-
ods of enhanced ring current [Anderson et al., 1991].
As suggested by Engebretson et al. [1992], since the
DABM instability is stabilized by 1-keV ions [Chen
and Hasegawa, 1991], poloidal Alfvén waves are perhaps
only excited once the low-energy particle population has
decayed, allowing the higher-energy ~ 100-keV protons
to drive the waves.

Despite being dominantly radially polarized, trans-
verse poloidal Alfvén waves observed in the magneto-
sphere (and Pgs observed from the ground) are often
associated with a significant azimuthal component [e.g.,
Tokahashi and Anderson, 1992]. Whilst these waves
are consistent with the guided poloidal mode discussed
by Radoski [1967], the existence of the toroidal com-
ponent has in the past been interpreted as a coupling
between the poloidal and toroidal modes. As shown in
time-dependent numerical studies by Mann and Wright
[1995], an initially poloidally polarized Alfvén wave os-
cillating in a radially inhomogeneous plasma experi-
ences a polarization rotation from poloidal to toroidal in
time due to phase mixing. Hence the existence of both
poloidal and toroidal components in high-m wave ob-
servations could be attributed to evolution of the wave
fields in time.

In this paper we present multiple-timescales analytic
solutions for undriven high-m poloidal Alfvén waves in
fully compressible inhomogeneous MHD plasmas. We
compare our analytic solutions to numerical results and
examine the importance of the radial localization of
poloidal Alfvén waves in the solution to the initial value
problem. The paper is structured as follows: section 2
describes the governing equations and examines the rel-
evant orderings of wave parameters; section 3 computes
the multiple-timescales wave solutions; section 4 con-
siders the characteristics of azimuthally standing and
traveling waves; and section 5 compares our analytic
solutions to numerical results. Section 6 compares our
results to other high-m Alfvén wave studies and to ob-
servations, and finally, section 7 concludes and summa-
rizes our paper.

2. Governing Equations and Wave
Variable Orderings

We consider the evolution of MHD waves in a one-
dimensional box model for the magnetosphere [e.g.,
Southwood, 1974]. We assume a uniform background
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magnetic field (B = Byz), introduce a transverse Alfvén
speed gradient by prescribing p(z), and assume a per-
fectly conducting ionosphere. We consider a low-g3
plasma (where 3 is the ratio of thermal/magnetic pres-
sure), and solve for the plasma displacements

€ = (&(z,t), & (z,1),0)e™ sink, 2. (1)
The waves are periodic in ¥ (analogous to azimuth in
a dipole) and are standing in %, having wavenumbers A
and k,, respectively. The wavenumber X > k, through-
out this study.
Within this model, linear MHD waves can be de-
scribed by the following coupled (and normalized) dif-
ferential equations

1 8%, 1 b,
= - 2
R@or T T TR @)
1 8%, i
-5y =—— 3
06 .
bz - '——a; - ’L)\éy (4)

where w4 (z) is the local Alfvén frequency defined by
w%(z) = k2v%(z). Lengths are normalized with respect
to the depth of the box (L), magnetic fields by By,
and densities by po in the center of the box. Time is
normalized with respect to Ty = L;/Vy, where Vi is
the normalizing Alfvén speed (Vy = Bo/+/1opo)-

Equations (2) and (3) can be considered to describe
poloidal and toroidal Alfvén waves, coupled by the (lin-
ear) compressional magnetic field component b,. Since
we consider waves with large A it is instructive to inves-
tigate wave variable orderings in this limit.

2.1. Poloidal Alfvén Waves (A > 0/0z,k,)

As discussed by Mann and Wright [1995], when az-
imuthal wave variations are more rapid than those in
either the radial (%) or field aligned (2) directions (i.e.,
A > 0/0z,k,), the following ordering exists. From our
normalization v4 ~ O(1), and hence (3) implies that for
k. ~ O(1) then &, ~ &, and hence b, ~ &,/). Conse-
quently, the left-hand side of (4) is ~ &, /A, which must
be much less than the right-hand side of (4) when X is
large. Hence the two terms on the right-hand side of
(4) must balance;

06, /9 ~ —iXE,. (5)

This generates the ordering &, ~ & /A, b, ~ &/A ~
& /)2, when 8/0z ~ O(1).

We can formalize this ordering by expanding the vari-
ables &; and &, in a power series in ¢, that is,

§z = sz +5€z1 + 62622 + -
éy = §y0 +5€y1 + 6251,12 +--

(6)
(7)

(where £4n ~ O(1),a = z,y). The above ordering re-
quires &0 = 0, and at leading order
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afzo
Oz
which suggests the ordering € = 1/\.

+iXe&y =0, (8)

2.2. Transversally Symmetric Alfvén Waves (A ~
0/0x > k)

We can also consider orderings when both perpendic-
ular wave variations occur on lengthscales much shorter
than those parallel to the background field. This will
be appropriate for some of the radially localized high-m
waves discussed earlier. To illustrate this we consider
0/0x ~ X and both > k,. In this case (3) still im-
plies b, ~ &,/\ and hence the right-hand side of (4)
must still be the balance of 9¢,/0z ~ —i\{,. Now,
however, both polarizations will be dominated by the
leading order terms, that is, &0, £yo # 0. Assuming A
still represents the largest magnitude in the system we
can retain the ordering e = 1/\. Strictly, this restricts
the magnitude of the z variations to 8/8z ~ X so that
(6) and (7) still correctly describe the wave variations
at every order.

3. Multiple-Timescales Analysis

In this section we use the asymptotic method of
multiple-timescales to determine analytic wave solu-
tions over timescales much longer than ¢. Following
standard methods [e.g., Bender and Orszag, 1978], we
define a long timescale o = et, with € = 1/), as sug-
gested by (8) and treat the variables t and o as inde-
pendent. Multiple-timescales analysis allows the deter-
mination of the wave solutions as a function of both ¢
and o.

Combining (2) and (3) by eliminating b,, we obtain

1 9%,

PG, 1o 1 oG
w?(z) ot ‘

T inoz \wi(a) o8 5y) - )
It turns out that since b, ~ &,/ and 0¢, /0z+iX¢, ~ 0
for both the wave orderings discussed in sections 2.1
and 2.2, inserting the power series expansions (6) and
(7), and substituting for the leading order (nonzero)
component of §, in terms of £, on the right-hand side of
(9) generates, in both cases, the leading order equation

1 02 (
w? (z) ot2
0 1 8% [0 0&z0
2) 9 o z e 3. (1
¢ {Bx [wﬁ(m)aﬁ ( Oz ) * s ]}+O(E )- (10)
This equation describes both dominantly poloidal and
more symmetric transverse Alfvén wave disturbances
depending upon the magnitude of the z variations (i.e.,
whether A > 0/0z or A ~ §/0z, respectively).

To proceed, we rewrite the &, expansion in (6) in
terms of a multiple-timescales variable ®, that is,

€z0+€§z1+---)+§$0+€€zl+...=

&(z,t) = Bo(z,t,0) + €Pq(z,t,0) + ... (11)
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and following standard techniques use the chain rule to
substitute

0%, 8@, 828, 0%%, \
2~ o (28t80+ o8 )“LO(E ) (12)

This results in a hierarchy of equations in powers of e,
which can be solved to generate the wave solutions.
3.1. Zeroth-Order Solution

To leading order, we simply have the equation

1 8%%,
=T 0, = 1
A@ o 00 (13)
which has the solution
®o(z,t,0) = & + By = Hyf (z,0) exp +iwa(z)t
+Hy (x,0) exp —iwa(z)t. (14)

The integration constants Hg and Hy can, at this
stage, be different functions of z and o.

3.2. First Order Solution

Substituting the zeroth-order solution into (10) and
retaining terms up to order € we find

1 029,
w?(z) Ot2
2 el iwﬁ(m)a + 2iwﬁ(m)a28<§(’;
w?(z) Otdo walz) O wa(z) 0o

+&, =

2 9%, L iwi(z) . iwF(z) ,085
+ (“ (@) 0100 T onlm) P T 0@’ be )
(15)

where the z derivatives have been calculated according
to

odE + -, .
e +Hy (x,0)iw), (z)t exp tiwa(z)t
x

+HFE' (z,0) exp tiwa(z)t (16)
and where a' = da/0z. We look for the o dependence of
HOi so that @, is not secularly driven by ®, (i.e., so that
the first-order oscillator on the left-hand side of (15) is
not resonantly driven at w4 (z)). This ensures that the
asymptotic expansion orderings of ®y,®; ... with € re-
main valid over the long timescale o, rather than just
the short timescale ¢, and generates a solvability con-
dition whereby the right-hand side of (15) must equal
Zero.
Hence the poloidal Alfvén wave solvability condition
is
OHF
B0

OHE

+ow?(z)HE + 0w () 5
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with the solution

1
In Hf = -3 In(1 + w3 (z)0?) + InG*(z). (18)
The constants of integration are determined by bound-
ary conditions, for example, G*(z) = HF (z,0 = 0), so
that

G*(z)
(1+w2(z)0?)z

In (17) we have assumed Hy' (i.e., 8/dx) < A, corre-
sponding to the poloidal Alfvén wave case. When Hoi'
is large, additional terms can be introduced into the
solvability condition to take account of the increased
magnitude of G*'(x). We consider the inclusion of these
additional terms where necesssary when we compare our
asymptotic solutions to numerical simulations in section
5.

The leading order toroidal solution is calculated from
(8), so that

Hi(z,0) = (19)

+1
&y = _TO exp +iwa(z)t — iw'y (z)o Hy exp +iwa(z)t
-1
——)‘\)— exp —iw(z)t + iw)y (z)o Hy exp —iwa(z)t. (20)
Wave fields initially oscillate ~ exp Ziw4(z)t, and as
time evolves, the initial coherent wave disturbance phase
mixes in time whilst the wave amplitudes develop ac-

cording to (14) and (20), with Hi as given in (19).
3.3. Second- and Higher-Order Solutions

Second- (and higher-) order solutions can be found
by continuing the multiple timescales analysis. The
second-order solution gives a solvability condition for
the o dependence of ®; and so on. Since higher-order
solutions scale with powers of €, they are relatively
unimportant and become increasingly algebraically te-
dious to compute. Hence we do not present any higher-
order solutions here.

When the envelope G*(z) is localized (as is typi-
cally the case for poloidal Alfvén waves in the magneto-
sphere), its gradients can form an important parameter
which changes the features of even the first-order solu-
tion. For magnetospheric pulsations this behavior ap-
pears to be more important than the form of the higher-
order solutions, and we discuss this in section 5.

4. Physical Wave Solutions

Physical Alfvén wave solutions can be calculated from
the theory presented earlier by taking ¢£ = Re(¢,)
and ¢ = Re(¢,), where Re(a) means the real part
of a. When comparing theory to observations, stand-
ing or propagating azimuthal phase variation gener-
ates wave solutions with differing polariszations. Since
Hf'(z,0) = 0 as 0 — o0, both poloidal and toroidal
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initial wave disturbances decay as they drive the addi-
tional toroidal wave (the second term on the right-hand
side of (20)). Both azimuthally standing and propa-
gating solutions asymptote toward decoupled toroidal
oscillations at the local natural Alfvén frequency wa(z)
in accord with the asymptotic state predicted by Ra-
doski [1974].

4.1. Azimuthally Standing Waves

In this case the waves are torsional waves consisting
of oscillating twisted flux tubes standing in y and is
produced by setting Hi = Hy; = Hp/2 and Gt =
G~ = G/2, so that

¢P = Re(Ho(w,0)coswa(z)texpilysink,z)
¢&F = Hy(z,0)coswa(z)tcos Aysink,z (21)
55 = sin Ay sin k,z X
HI
(How;,cr sinwa(z)t — TO cos wA(x)t)

55 = —Iy(z,0) cos(wa(z)t + @) sin A\ysink,z  (22)

where )
Iy = (Hywy (2)*0® + Hy?/N?)=

and

¢ = tan™ (How's (z)o A/ H}).

The waves initially oscillate in phase, and in a medium
where w4 (z) is negative (e.g., outside the plasmapause,
where the local Alfvén frequency decreases with L shell),
waves with negative )\ will develop a clockwise polariza-
tion in time (when viewed in the direction of By). Nu-
merical solutions of this type were presented by Mann
and Wright [1995, Figure 5] and are considered further
in section 5.

4.2. Azimuthally Propagating Waves

Poloidal Alfvén waves driven by the drift-bounce res-
onance mechanism will have azimuthal phase propa-
gation, since they are driven by maintaining constant
phase with westward drifting, mirroring energetic pro-
tons. Such solutions are generated by setting Hi = 0
and Hy = Hy, that is, Gt = 0 and G~ = G, which
yields £ of the form

& =
& -

Again using (5) generates the associated toroidal signal

Re(Hq exp(—iwa(z)t) exp iy sink, z)
Hg cos(wa(z)t — My) sink, 2.

(23)
E; =sink,zX
[How;l(x)a cos(wa(z)t — Ay) + —Ii—(l) sin{wa (z)t — Ay)]

55 = Ipsin(wa(z)t — Ay + @) sink, 2. (24)
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In this case the initial (traveling) ¢£ and 55 are in
quadrature. For waves outside the plasmapause with
negative A (westward phase propagation), they are po-
larized clockwise (viewed in the direction of By) pole-
ward and anticlockwise equatorward of the peak in
G(z). Wave evolution drives an additional toroidal
component in phase with the initial poloidal wave, and
this rotates the polarization ellipses clockwise (viewed
in the direction of By) when both w/s(z) and X are neg-
ative.

5. Comparison Between Asymptotic and
Numerical Results

Here we compare our analytic solutions to numerical
results for azimuthally standing waves calculated using
the code described by Mann and Wright [1995] (see also
Mann et al. [1995]). The Alfvén speed variation in this
model is described by

v;%(z) = A? — B2 cos(nz) (25)
where we have chosen A2 = 1 and B?2 = 0.2. To in-
corporate the dependence of the wave solutions on the
envelope of the disturbance, we consider G(z) of the
form

G(z) = exp(~(z — z,)*/13,). (26)
The code describes azimuthally standing waves, and we

consider waves which are initially at rest and linearly
incompressible so

Oz (z,t =0)

E + iy (z,t =0)=0

(27)
(hence G(z) also determines the initial toroidal field).

The relative magnitudes of A and G’ determine the
initial toroidal and poloidal amplitudes, being domi-
nantly poloidally polarized for A > G', toroidally for
A < G', and nearly symmetrically polarized when X ~
G'. Assuming that 8/8z ~ z,', the wave amplitudes
will be approximately equal when z,, = A~1. Since
the initial wave profiles are Gaussian we find that the
= integrated energies E, (= epdz) and E; (= e;dx)
(where ep ¢ = p{?w /2 + b2 ,,/2p0) of the initial poloidal
and toroidal fields have the ratio E,/E; = A?z2 and
hence are equal when z, = A~!.

We consider two particular examples, the first repre-
senting a poloidal Alfvén wave having large A (typical
of afternoon poloidal Alfvén waves) and the second hav-
ing smaller A (yet still > k,) where at ¢t = 0, £, and
&, have similar magnitudes and represent more sym-
metric transverse waves. In each case we varied z,, as
a parameter; its magnitude relative to 1/ determined
the resultant wave behavior. All numerical calculations
are completed in a box having width Lx = 5 Rg, with
k, = 1.93 to approximate second harmonic waves on
field lines of length 2.5L Rg at L = 6.5.
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A
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t
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Figure 1. The physical plasma displacements ¢ and 65 as a function of time for z,, = 0.1,

= 80. The oscillating fields are generated numerically and overplotted are the asymptotic
envelopes Hy and I calculated using (19). (left) Position z = z, = 0.5 and (right) position

T =1z, +x, = 0.6.

5.1. Poloidal Alfvén Waves

We take A = 80 to approximate afternoon poloidal
Alfvén waves with m ~ 100, and Figure 1 shows numer-
ical time series for ££ and 65 atx =z, and x = T+,
for z,, = 0.1 (i.e., a magnetospheric width 2z,, = 1 Rg).
Overplotted are the leading order multiple-timescale en-
velopes Hy and I calculated on the basis of (19). The
agreement between the multiple timescales and the nu-
merical solutions is excellent. This represents a case
where Az,, = 8 and corresponds to initial conditions
which are dominantly poloidally polarized. The agree-
ment between the analytical and numerical solutions
increases as Az, increases (not shown).

To further illustrate poloidal Alfvén wave behavior,
Figure 2 shows the numerical time evolution of E, and
E; for z,, = 0.25,0.1, and 0.025 corresponding to mag-
netospheric widths 2z, = 2.5, 1.0, 0.25 Rg, respec-
tively, typical of observations. Even for the most local-
ized waves the asymptotic polarization rotation from
toroidal to poloidal remains a robust feature, and the
solutions are accurately estimated using (19). Note that
“the poloidal lifetime” (the time 7 at which E; = E,) is
approximately independent of z,,. Indeed, Mann and
Wright [1995] showed 7 ~ A/w!y(z) and that 7 is de-
termined to leading order by A alone. (For the pa-
rameters employed in Figure 2 (and using the value of
w'y(z = 0.5)) predicts 7 ~ 132.)

5.2. Transversally Symmetric Alfvén Waves

We now take A = 20 and consider initial wave fields
with similar toroidal and poloidal amplitudes. This ap-
proximates m ~ 25 and could be applicable to Pgs.

As we discussed earlier, for more symmetric large-
A Alfvén wave disturbances we can retain additional
terms in the solvability condition which arise from the
z variation of the envelope of the waves, that is, H} and

LOFsT— . ———rr S—
L AN E.
- \\
0.8~ "\ oo
g | ) e
2 1 ~ L lEE i
G 0.6 I «\_\ =
12 — DN - —~
a2 0. N %
o - AN x.=0.25 ]
(=] F BN --- x.=0.1
- L N | 0025 i
E‘O 04 47 \\\n .. =
9] H /}-/ RN
Cch: [ . _/"'// ‘\\:\A
02" ) /’/ \\\“
N y ]
| P
P
0.0b=z" B
. = S P Il n " 1
0 100 200 300
t

Figure 2. Time evolution of the z integrated poloidal
and toroidal energy densities E, and E; for z,, = 0.25,
0.1, and 0.025 when A = 80.
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H('. Assuming that the Alfvén frequency gradients are
of a lower order than the envelope variations, retaining
the Hy gradient terms gives the following solvability
condition:

9Ho 2 2, . OHo ,w' 0H,
W+awA(x)Ho+a w'i (z) o 2¢ 50
! "
—2iew'oa—% - 62% —ieHyw' =0 (28)

0o Jo

where the first three terms are again those from (17).
Assuming that the dominant H, gradients arise from
variations in the wave envelope G(z), substituting Hy =
G'Hp/G and H{ = Hy [(G'/G)" + (G'/G)?] we find the
modified solution

G(z)f* ()
(f(z) + w2 (z)o? — 2iw'y(z)oG' /AG)?
(29)
where f(z) = 1- (2G'w' JwG +G" /G) /2. Strictly, this
solution should only be accurate when G'/G < X and
G"/G < A\? so that the expansions (6) and (7) remain
valid. Clearly, when the scale on which G varies on is
much greater than the azimuthal wavelength, f(z) =1
and the solution reverts to the poloidal Alfvén wave
solution in (19).

In Figure 3 we show the numerical time series for ¢£
and & when z,, = 0.2, again at z = z, and z, + zy.
Overplotted as solid curves are the multiple timescales

1.0 |

gyl

@00 }| ! ')W)l)‘im)WNlWIWiWl’lWl‘l’l'x’l‘t’M’1'MhWMM.
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envelopes caclulated from (19); overplotted as dot-dash
curves are the envelopes calculated using the extra G(z)
gradient terms in (29). Both envelopes are in good
agreement with the numerics, with that from (29) giv-
ing better agreement. The additional terms introduce
a slight transfer of energy across the field lines, since
where G' is large the poloidal solution decays faster than
where it is small. Here Az,, = 4 so that in terms of total
energy the wave is still dominantly poloidal; however,
the z and y variations are of a similar magnitude (i.e.
0/0z ~ A). In this case we might expect the Hy gra-
dient terms to be important - in good agreement with
our results.

Further decreasing the radial width of the pulsations
generates initial conditions which are increasingly less
poloidal. As Az, decreases, the assumptions used to
calculate the asymptotic solutions become increasingly
less appropriate, since the waves are no longer clearly
dominated by the scalength 27/A. In Figure 4 we
show the numerical time evolution of E; and E, for
three values of z,, > A~!, when A = 20. The qual-
itative trend of polarization rotation from poloidal to
toroidal remains a robust feature of the wave evolution,
and the concept of a finite poloidal Alfvén wave life-
time remains valid. Once Az,, < 1 (i.e., z,, < 0.05),
the initial wave conditions become dominantly toroidal
rather than poloidal. In this case the monotonic ex-
change of energy from poloidal to toroidal waves po-
larizations ceases; the poloidal waves gaining energy at
the expense of the toroidal ones over short timescales

0 50
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-0.2
—0.4} | | ‘
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Figure 3. Displacements ¢ and 55 versus t for z,, = 0.2, A = 20. The numerical solution
is plotted as the oscillatory solid line, the asymptotic solution from (19) is plotted as the solid
envelope, and the asymptotics from (29) are plotted as the dot-dash envelope. (left) Position
z =z, = 0.5 and (right) position z = z, + z,, = 0.7.
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Figure 4. Time evolution of the z integrated poloidal
and toroidal energy densities E, and E; for z,, = 0.25,
0.1, and 0.05 when A = 20 (Az,, = 5, 2, and 1, respec-
tively).

before again approaching a purely toroidal asymptotic
state (not shown).

Observations show magnetospheric high-m waves to
have widths ~ 0.2 — 3.1 Rg, typically ~ 1 Rg. Our
asymptotic solutions should be very accurate for waves
with m ~ 100, and whilst there may be some small
departure for the narrowest wave envelopes when m is
smaller, for example, ~ 25 (for Pgs), the asymptotic so-
lutions should still be qualitatively correct. In general,
waves with a dominantly poloidal polarization should
display behavior in agreement with section 3. For all
values of z,,, waves with A > k, ultimately have a time
asymptotic state consisting of purely decoupled toroidal
oscillations.

6. Discussion

The time-dependent poloidal Alfvén wave polariza-
tion rotation which we have demonstrated here occurs
naturally for initially poloidally polarized high m waves
oscillating in radially inhomogeneous plasmas. The
physical reason for the polarization changes can be un-
derstood in terms of the leading order incompressibilty
of the waves as follows. In linear theory the compres-
sion of a cold plasma can be identified with b,, which
is zero to leading order for waves with large azimuthal
wavenumbers. From this leading order incompressibil-
ity it follows that adjacent field lines can oscillate nearly
independently of each other and hence in an inhomoge-
neous medium will phase mix and only experience weak
perpendicular dispersion. In a time-dependent model,
phase mixing increases the radial wavenumber (k) in
time, so that as phase mixing proceeds the leading order
poloidal amplitude decreases whilst the toroidal ampli-
tude increases. This generates the asymptotic solution
we presented in section 3.

Our solutions are applicable to the evolution of un-
driven waves, as studied by, for example, Ding et al.
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[1995]. In the magnetosphere, poloidal Alfvén waves
may be driven by drift-bounce resonance, and in this
sense our results may be more applicable to situations
where the waves are no longer being driven. During the
driven phase of the waves, the full solution will be a
combination of the undriven (or homogeneous) solution
described in this paper and the “particular integral” (or
inhomogeneous) solution. Many features of the driven
solution can be dominated by the homogeneous part of
the solution, as is the case for low-m Alfvén resonances.
Moreover, we can gain a qualitative insight into the
likely behavior of the full driven poloidal Alfvén wave
fields by considering the driven wave fields as a summa-
tion over repeatedly excited evolving solutions to the
undriven initial value problem, such as those presented
in this paper. This thought experiment is equivalent to
a “Green’s function” solution where the inhomogeneous
solution is constructed from a sum (or integral) of func-
tions that are formed from the homogeneous solutions
in a piecewise continuous fashion.

For our polarization rotation to be able to be ob-
served in data, the wave evolution must occur on a
timescale quicker than ionospheric dissipation. For 100s
period, second harmonic poloidal Alfvén waves in a
dipole field at L = 6.5 we estimate poloidal lifetimes
7 (the time for the toroidal amplitude to grow to equal
the (decreasing) poloidal one [see Mann and Wright,
1995]) of ~ 2.6 and ~ 8.5 periods for m ~ 30 and
100, representing typical Pgs or afternoon Pc4s, respec-
tively [see G. Chisham et al., 1996, A statistical study
of giant pulsation (Pg) latitudinal polarization and am-
plitude variation, submitted to Journal of Geophysical
Research]. Using the results of Newton et al. [1978],
we estimate day and night undriven ionopsheric decay
times of ~ 15 and ~ 2 periods, respectively. Conse-
quently, dayside observations should show clearer ev-
idence for wave evolution with the heavy damping at
night expected to show wave signatures more charac-
teristic of the waves driving mechanism rather than any
subsequent evolution.

Satellite observations by Hughes and Grard [1984]
show unusual polarization intervals which might be
the result of wave evolution, although it is difficult
to unravel spatial and temporal changes using satel-
lite data. Since high-m afternoon Pc4 waves are be-
lieved to be screened from ground-based magnetome-
ters, maybe the best way to observe poloidal Alfvén
wave evolution would be using two-dimensional iono-
spheric flows deduced from radars such as SABRE [Niel-
son et al., 1983]. The velocity vectors would be ex-
pected to show latitude-dependent frequencies, com-
bined with a power transfer from poloidal to toroidal
oscillations. Because of the action of the driving mech-
anism, the L-dependent oscillation frequency (a signa-
ture of phase mixing) might be more apparent at the
end of a temporal wave packet, once the waves are no
longer being driven. Since poloidal Alfvén waves with
latitude-dependent frequencies have been observed pre-
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viously in satellite data [e.g., Engebretson et al., 1988],
we believe the poloidal Alfvén wave evolution we have
demonstrated here may be observable using radar.

7. Conclusions

In this paper we have presented time-dependent ana-
lytic poloidal Alfvén wave solutions, applicable to high-
m waves in the magnetosphere, by using the asymptotic
method of multiple timescales. Our solutions show the
leading order phase mixing (expiw(z)t) behavior ex-
pected for Alfvénic disturbances oscillating in radially
inhomogeneous plasmas, and analytically reproduce the
polarization rotation from poloidal to toroidal seen nu-
merically by Mann and Wright [1995).

We investigated the importance of the observed ra-
dial localization of poloidal Alfvén waves in determining
their time-dependent behavior by comparing our ana-
lytic solutions to numerical ones. Our asymptotics pro-
duced highly accurate solutions when A > k;, k., that
is, for initial conditions comprising strongly poloidal
Alfvén waves (applicable to m ~ 100 afternoon poloidal
Alfvén waves). Reducing the waves radial widths so
that k;, A\ > k, (representing more symmetric trans-
verse Alfvén wave disturbances) required the inclusion
of extra terms involving gradients in the waves radial
envelope to maintain agreement between analytic and
numerical_solutions. Reducing the radial widths fur-
ther, so that the waves were no longer initially poloidal,
reduced the accuracy of the asymptotics. Numerically,
in this case the toroidal amplitude grew at the expense
of the poloidal one at early times. However, all the
high-) initial conditions (regardless of radial localiza-
tion) evolved toward the same time asymptotic state,
namely, purely decoupled toroidal oscillations at the lo-
cal Alfvén frequency wa(z). The interpretation of ob-
servations of high-m waves in the magnetosphere should
take account of this evolution.
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