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Abstract. Standard models of the Earth’s outer magnetospheric waveguide assume
that a perfectly reflecting magnetopause can trap energy inside the waveguide. In
contrast, we show that the near-noon magnetopause often acts as a leaky boundary,
wave trapping only being possible for large magnetosheath flow speeds. Moreover,
for sufficiently fast flow speeds, we show how waveguide modes may be energized by
magnetosheath flows via the overreflection mechanism. Unbounded simulations of
the growth of surface waves via the development of a Kelvin-Helmholtz instability
(KHI) vortex sheet show growth rates which increase without limit proportional
to wavenumber (k,), until the assumption of a thin boundary is no longer valid.
For a bounded magnetosphere, however, overreflected body type waveguide modes
can introduce wavenumber selection, that is, generate modes with maximum linear
growth rates at finite £y. A necessary condition is that the wave is propagating in
the magnetosphere, that is, the wave’s turning point lies inside the magnetosphere.
By developing a new description of both KHI and. waveguide mode growth in
terms of overreflection and the propagation of negative energy waves, we show
how the maximum growth rate can be understood in terms of the reflection
coefficient of waves incident upon the magnetopause. Our model can also explain
the observed local time dependence of Pc3 field line resonance wave power, and
can explain the observed correlation between high solar wind speeds and -Pc5 wave
power. Finally, we show how a waveguide with a free magnetopause boundary
supports quarter-wavelength modes. These modes have lower frequencies than the
standard (magnetopause velocity node) half-wavelength modes, perhaps generating

the millihertz waveguide mode eigenfrequencies which appear to drive field line

resonances in HF radar data.

1. Introduction

The possibility that the magnetopause can be sub-
ject to the Kelvin-Helmholtz instability (KHI) had been
known for over 4 decades [e.g., Dungey, 1955; Parker,
1958]. The compressional KHI can generate unsta-
ble {growing) surface waves on the magnetopause, and
these have been suggested as energy sources for low az-
imuthal wavenumber (m) Pc5 ULF pulsations through
the fleld line resonance (FLR) mechanism [Southwood,
1974; Chen and Hasegawa, 1974a,b]. Later modifica-
tions to the FLR theory suggested waves could be driven
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by radially standing compressional disturbances, rather
than surface waves, and resulted in magnetospheric cav-
ity mode theory [Kivelson et ol., 1984; Kivelson and
Southwood, 1985, 1986]. Unlike surface modes, the cav-
ity modes do not have amplitudes which decay exponen-
tially away from the magnetopause, and they can hence
more easily drive FLRs deep in the magnetosphere.
Moreover, the frequency spectrum of the cavity modes
is structured by the magnetospheric cavity ringing at
its natural frequencies. The cavity model has since
been refined with the introduction of the waveguide
model, whereby the cavity remains open downtail [Sam-
son et al., 1992; Harrold and Samson, 1992; Wright,
1994: Rickard and Wright, 1994.. In this case, waveg-
uide modes propagate antisunward down the waveguide
but still have frequencies which are determined by the
natural frequencies of the magnetosphere. It is possi-
ble that waveguide modes can be driven by either so-
lar wind impulses near the magnetospheric nose {see,
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for example, the recent observations of Mann et al
11998]), or by magnetopause instabilities on the flanks
le.g., Ziesolleck and McDiarmid, 1994], depending upon
solar wind conditions.

Interestingly, a consideration of the theoretical exci-
tation of waveguide modes has received little attention
to date. In a series of papers, Allan and his cowork-
ers considered the excitation of cavity modes by simpli-
fied driving terms le.g., Allan et al., 1985, 1986.. Simi-
larly, Southwood and Kivelson (1990 considered the ex-
citation of magnetospheric cavities by sudden impulses,
while Wright and Rickard (19952 considered random
buffetting. However, almost all cavity or waveguide
simulations consider the magnetopause to act as a per-
fectly reflecting rigid boundary. Consequently, the ex-
citation of waveguide modes by magnetopause instabil-
ities cannot be considered {since the magnetopause is
fixed). In a very recent paper, A. D. M. Walker (Exci-
tation of magretohydrodyramic cavities in the magne-
tosphere, submitted to Journal of Atmospheric, Solar,
and Terrestrial Physics, 1998) considered the trapping
of magnetospheric cavity modes excited by the trans-
mission of waves from the solar wind across the magne-
topause. However, Walker set the magnetosheath fow
speed to zero, so that neither the effect of fows on wave
trapping nor the excitation of waves by magnetosheath
flows was considered. In this paper we consider a waveg-
uide model which is bounded by a free magnetopause,
and investigate the energization of waveguide modes by
magnetosheath flows.

Early work on the KHI considered the stability of
the vortex sheet separating unbounded, incompressible
plasma flows [e.g., Chandrasekhar, 1961]. Later work
showed how the inclusion of plasma compressibility has
an important effect on the KHI le.g., Sen, 1964; Fe-
jer, 1964; Southwood, 1968; Ong and Roderick, 1972; Pu
and Kivelson, 1983]. In an incompressible plasma the
phase velocity of a KH wave is aligned with the bound-
ary between the two flowing plasmas. In contrast, the
compressible KHI generates a component of wave phase
velocity perpendicular to the boundary [Pu and Kivel-
son, 1983]. The direction of the phase velocity of waves
driven by magnetopause instabilites, and the resulting
energy transport, form important aspects of our analy-
sis and are topics to which we return later in the paper.

Standard treatments of the unbounded compress-
ible KHI (with the components of the wavenumber
in the vortex sheet held fixed) have shown that the
KHI has both upper and lower cutoff fiow speeds, the
waves being stable for flow speeds less/greater than the
lower/upper cutofl speeds, respectively. The lower cut-
off speed (U,) is due to the stabilizing action of mag-
netic field tension; U, for a mode propagating parallel
to the flow is given by the Alivén speed calculated us-
ing the component of the magretic fleld parallel to the
fow le.g., Miura, 1992]. The existence of the upper
cutoff speed {U,) for unbounded compressible plasmas
le.g., Fejer, 1964; Sen, 1964; Pu and Kivelson, 1983
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corresponds physically to the situation where the phase
speed of the wave reaches the fast magnetoacoustic
speed in either of the bounding media. In that case
the waves change from being spatially evanescent (sur-
face type; modes to spatially oscillatory (body type)
modes which propagate away from the boundary and
stabilize the KHI. Since the waves can now transport
energy away from the interface, the solution does not
grow exponentially in time, as is the case for the surface
waves which confine energy to the vicinity of the inter-
face. Introducing an inner boundary, however, such as
2 turning point in the magnetosphere, can allow the
propagating (body) waves to become trapped in a mag-
netospheric cavity. If the magnetopause continues to
be unstable, then this can result in the modes becom-
ing energized by magnetosheath flows, and introduces
the possibility that magnetopause instabilites can gen-
erate unstable {growing) body modes, in addition to the

.more well known KHI-generated surface modes.

For a vortex sheet the growth rate of the instabil-
ity increases without limit with increasing wavenum-
ber parallel to the flow. Mathematically, the problem
is ill-posed, and ultimately results in an inconsistency
whereby the assumption that the wave’s scale length re-
mains much larger than the width of the boundary layer
is no longer satisfied [e.g., Lerche, 1966]. Similarly, the
MHD approximation breaks down once the scale lengths
approach kinetic scale lengths such as the ion gyrora-
dius. This led researchers to investigate the stability
of unbounded media, separated by a shear flow bound-
ary layer of finite thickness le.g., Ong and Roderick,
1972]. The introduction of the feature of finite thick-
ness stabilizes the high wavenumber modes, and gener-
ates a KH wave with a maximum growth rate at a finite
wavenumber e.g., Walker, 1981; Miura and Pritcheit,
1982]. Moreover, the fact that the change in the velocity
of the shear layer happens over a finite width removes
the upper KH cutoff speed, and allows the waves to be
unstable for any {even superfast magnetoacoustic) flow
speed [Papamoshou and Roshko, 1988; Miura, 1992.

Interestingly, by introducing an inner boundary, it is
also possible to stabilize the high azimuthal wavenum-
ber modes. Until recently, the effect of introducing
an inner magnetospheric boundary on magnetopause
instabilites has received little attention. Fujita et al.
[1996] considered the MHD eigenmodes supported by
2 bounded ronuniform magnetosphere, connected via
an infinitesimal free magnetopause to a flowing magne-
tosheath, and concentrated on the behavior of KH sur-
face waves. Their bounded model showed that under
conditions of large magnetosheath fiow speeds, waves
could possess maximum growth rates at finite wavenum-
bers, and they attributed this spectral structuring to
the assumed nonuniformity in the magnetosphere in
their model.

In this paper we consider a similar model to Fujita
et al. [1996]; however, we consider the behavior of both
surface and body type solutions. To elucidate the im-
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portant physics, we consider both the bounded mag-
netosphere and the unbounded magnetosheath to be
aniform, and show that nonuniformity is not a neces-
sity for wavenumber selection. Simply introducing 2
boundary in the magnetosphere can select a wavenum-
ber with a maximum growth rate. We show that a
necessary condition is that the waves’ phase speed is
superfast magnetoacoustic in the magnetosphere; that
is, the turning point of the waves lies inside the magne-
tosphere, and hence the mode is of body type and has a
spatially oscillatory character inside the magnetopause.
This is reasonable, since if the natural frequencies of
the magnetosphere are to determine the frequencies of
the modes, as is postulated in waveguide mode theory,
then the modes must be propagating between the mag-
netopause and their turning point.

We also present a new interpretation of the KHI, and
for the energization of waveguide modes, by considering
the reflection and transmission of waves incident upon
the magnetopause. We employ the concepts of wave
overreflection and negative energy waves [Landau and
Lifshitz, 1987; also McKenzie, 1970] and show how this
reveals an understanding of the physics of the interac-
tion of the flowing magnetosheath with the stationary
magnetosphere. The growth of the waves and the exis-
tence of the maximum growth rate at finite wavenumber
can be understood in terms of this wave overreflection.

Standard waveguide treatments assume a perfectly
reflecting magnetopause, and generate half-wavelength
modes between the magnetopause and the turning point.
In contrast, we show that for typical magnetopsheric pa-
rameters the magnetopause often acts as a leaky bound-
ary. Increasing the flow speed zllows the boundary to
become reflecting, with wave overreflection allowing an
energization of the waveguide mode harmonics when the
magnetosheath fow speed is sufficiently fast. This may
explain both the localization of Pc5 wave power on the
fdanks and the observed correlation between large so-
lar wind flow speeds and Pc5 wave power in the outer
magnetosphere le.g., Engebretson et al., 1998

We also show how the waves driven in our model
are often quarter-wavelength harmonics. The free mag-
netopause boundary allows the waves to approach a
velocity antinode at the magnetopause, and generates
quarter-wavelength modes. These new waveguide modes
have lower frequencies than the usual (velocity) nodal
waveguide mode harmonics, and this may provide an
explanation for the low (millihertz) frequencies of FLRs
which are believed to be driven by the waveguide modes.
Consequently, our investigation of the excitation of the
waveguide modes strengthens waveguide mode theory
further by providing an explanation for the excitation
of waveguide modes with preferred azimuthal wavenum-
bers {m is a free parameter in standard cavity mode
treatments), and offers a possible mechanism for gen-
erating low-frequency (millihertz) waveguide modes by
proposing a consideration of quarter-wavelength modes.

The paper is structured as follows: Section 2 presents
our model and the governing equations; section 3 in-
troduces the concepts of wave reflection and overreflec-
tion; section 4 presents the results from our simulations;
and section 5 discusses them in the context of magne-
tospheric pulsations. Finally, section 6 summarizes our
paper. )

2. Model

In this paper we consider a simplified compressible
MHD model consisting of a bounded magnetosphere,
separated by a sheet magnetopause from a semi-infinite
fowing magnetosheath. For simplicity, both the mag-
netosphere and the magnetosheath are assumed to be
uniform. The magnetosphere is cold, has a uniform den-
sity pg, and is permeated by a uniform magnetic field
Bo = Bgz. The magnetosheath is assumed to be fleld
free, has a plasma density p. and a background plasma
pressure P,, and is flowing parallel to the magnetopause
boundary {which lies in the gz plane) with a velocity
U = Uy. The inner boundary of the magnetosphere is
perfectly reflecting and lies at = = d, while the magne-
topause lies at z = 0 (the X direction pointing from the
magnetopause into the magnetosphere). The model ge-
ometry is illustrated in Figure 1. An important param-
eter in the simulations is § = ¢s/ca, where ¢ = vP./pe,
¢% = BZ/uopo, and v is the ratio of specific heats, taken
to be 5/3. Once we choose &, the background density
ratio pp/pe is given from zeroth order pressure balance
as po/pe = 68%/5.

In the magnetosphere we consider linear waves which
vary ~ expi{wt — k;z — kyy — kzx), and in the magne-
tosheath ~ expi(wt—k.z—kyy—~xz). The wavenumbers
k. and & are given by the dispersion relations for fast
magnetoacoustic modes

2 2 2

B = E—ky—h 1)
w—Uky)? .

W o= L = ) — k2 — k2. 2)

In a nonuniform magnetosphere, Alfvén waves can be
excited at locations where the eigenfrequencies of the
fast waves match the local Alfvén eigenfrequencies. Our
model considers uniform plasmas, so that the fast and
Alfvén waves are decoupled. Moreover, we choose &k, =
0 to remove the Alfvén mode from the simulations. This
allows us to examine the excitation of fast magneto-
spheric waveguide modes by magnetosheath flows with-
out the complication of the waves coupling energy into
a field line resonance and yields considerable insight on
the excitation of the fast waveguide modes.

MHD wave solutions on either side of the magne-
topause are connected through two boundary conditions
at z = Q. First, the total pressure is assumed to be con-
tinuous (lest the boundary suffer infinite acceleration),
and second the normal linear displacement on each side
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Figure 1. Schematic diagram of the model magnetosphere and magnetosheath. Also shown
are schematic incident (I), reflected (R), and transmitted (T) rays of waves incident upon the

magnetopause.

of the undisturbed boundary must be continuous {so
that there is no cavitation). Considering the normal
magnetopause displacement ¢ to have the same form as
the waves driving the motion {which follows from lin-
earity), that is, £(y,t) = & expi(wt — kyy), the normal
velocity of the disturbed boundary v, is given by e.g.,
Lamb, 1932
= De

= 5
Equating £ from the velocities v, and v, on each side
of the interface results in the boundary condition

Uz

©

s = @
(w—Uky) w
Note that although the normal displacement must be
continuous, it is the quantity v, /(w — Uk,) which must
be continuous across the boundary and not v, (cf. equa-
tion (18), page 482, of Chandrasekhar [1961]). The per-
turbation v, will only vary continuously if the back-
ground velocity U also vales continuously. The inner
magnetospheric boundary is assumed to be perfectly re-
flecting, so that v;|,., = 0, from which it also follows
that dpr/dz],_, = 0, where pr is the total pressure
perturbation.

With these boundary conditions, fast MHD wave
modes are governed by the equation

,2

.Po K & -

tan kzd + ¢t — — e = () 3)

¥ Pe ko (w— Uky)? )

with k, and & given by (1) and (2) above. Here,

W = W+, ke = kgr +1ky; and k = &, + ik;. Con-
sequently, (5) can describe waves which are either spa-
ially oscillatory, or evanescent, or both, in each of the

magnetosphere and magnetosheath, and can be stable
(ws = 0), or growing or decaying (w; < 0 or > 0 respec-
tively).

Equation (5) is a transcendental equation which we
solve numerically using a Newton-Raphson scheme for
the complex eigenvalues w = w, + iw;. The disper-
sion relations {1) and (2) contain solutions which can
be propagating in either the positive or negative % di-
rections. In the magnetosphere the solutions are inde-
pendent of the sign of the square root for %k, in {1);
however, in the magnetosheath, choosing the sign of x
in (2) selects waves whose phase propagates toward or
away from the magnetosphere. We choose w, > 0, and
select x, to ensure that the phase of the waves in the
flowing magnetosheath frame propagates away from the
magnetosphere toward z — —oo. With the real part of
the Doppler-shifted flow frame frequency w; = w,~Uky,
then since the waves in the magnetosheath flow frame
vary ~ expi(w't — kz), we have s, < 0 when wl > 0,
and £, > 0 when w, < 0. If k. = 0, we choose the
solution which decays exponentially as z ~ —oc (ie.,
Ky > 0).

3. Wave Reflection and Overreflection

Central to the theme of this paper is the question
of how energy is transported from the fowing magne-
tosheath, across the magnetopause, and into the mag-
netosphere. Physical understanding of this problem
can be gained from a consideration of the reflection of
waves incident upon the magnetopause from the mag-
netosphere {see the schematic rays shown in Figure 1).
Considering an incident wave of unit amplitude (I = 1),
being reflected with a reflection coefficient R, and trans-
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mitted into the magnetosheath with a **ansmission co-
efficient T, then the total pressure perturbation in the
magnetosphere

pro = expi{wt — kyy) {expik,z + Rexp —ikzz}, (6)
and in the magnetosheath
pre = T expi{wt — kyy) exp —iKz. (7}

The linear boundary conditions on the continuity of to-
tal pressure, and normal displacement on the magne-
topause result in the conditions

I1+R = T (8)
T 1 ki {R—1)
s e BLITE (9)
pe (w—Uky) pow?®
which can be solved o give
kg pelw — Uky)? + kpgw?
R - mp€< y> 5100 (10}

kzpe(w — Uky)? — rpow?”

As discussed in section 2, we choose the sign of &, to give
waves which propagate away from the magnetopause in
the magnetosheath flow frame.

Waves incident upon the magnetopausef from the mag-
netosphere can be (1) perfectly reflected {|R| = 1), (2)
partially transmitted {{R| < 1), or {3) oveneﬁecﬁed
(IR! > 1). In case 1, the magnetosheath wave solution
is exponenuahv decaying toward z = —o0, $0 K, = 0,
and &; > 0. With a bounded magnetosphere, modal so-
lutions to {5) which experience perfect magnetopause
reflection represent trapped body modes which have
wyr # 0 and w; = 0 [Roberts, 1991}, and are the free mag-
netopause boundary representations of the rigid bound-
ary trapped cavity/waveguide modes.

In cases 2 and 3, k» # 0 and the magnetosheath solu-
tions contain phase which propagates in either the =%
direction. Whether the waves grow or decay depends
upon a consideration of the direction of propagation of
the waves’ phase and group veiocities. The % compo-
nent of the group velocity of the waves is given by

8wk \
KKt Pl (1L
the real part being equal to
2 o !
CoiRpld, — K3y
Re(vy) = __S<’T—22=> (12)

lw!

i

Since a single mode will satisfy the magnetosheath dis-
persion relation, then taking the imaginary parts of the
dispersion relation we have w./k, = c2k;/wi. As the
choice of the positive or negative root for . changes
when . changes sign (w!. 2 0 when &, $ 0, as described
at the end of section 2), then it follows that the sign of
the two terms in the parentheses in {12} will always be
the same and be negative. Hence J'ze {real) group ve-
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locity is always direcied away from the magnetosphere
toward z = —oc. Interestingly, while wave momen-
tum is a frame independent quantity, energy density is
frame dependent. McKenzie (1970 provided an elegant
discussion of this, and shows that wave energy density
is given by

3

W

= 60:—; (13)
w

Here € is the wave energy density in the fluid rest frame
(as defined, for example, by Anderson [1963]). McKen-
zie {1970] showed that waves with negative energy in
the rest frame of 2 flowing medium have opposite di-
rections of phase propagation in the flowing and rest
frames. Consequently, if ' becomes negative, the waves
in our model formally adopt a negative energy density
in the magnetosheath in a stationary frame. Moreover,
the Poynting flux of the wave, S, is given by

— 1140\
S= EVg '\24;

so that the reversal in the sign of ¢ reverses the direc-
tion of S (remember v, does not change sign, see above).
This obviously reverses the direction of energy propaga-
tion and can allow the magnetosheath waves to energize
the magnetosphere.

Case 2 occurs when ) = w, — Uk, > 0 and is il-
lustrated in Figure 2a. Here x,. < 0 and the phase
of the magnetosheath waves propagates away from the
boundary in both the rest {w,/&,) and the flow (w./k,)
frames. Similarly, the waves propagate in the same di-
rection as U downtail in both frames (i.e., w,/ky and
wy./ky > 0). In this case the magnetopause acts as &
partial reflector, |R! < 1, and the outgoing waves re-
move energy from the magnetospheric cavity, creating
leaky waveguide modes which decay in time.

For sufficiently large flow speeds, w!. can become < 0.
This case is illustrated in Figure 2b. In this case we
choose the root &, > 0 so that the phase and group
velocity in the magnetosheath flow frame remain away
from the magnetosphere (i.e., wl/x, < 0). In the sta-
tionary magnetosheath frame, however, the wave phase
is reversed, and the wave propagates toward the mag-
netosphere {w, /K, > 0). The group velocity in the sta-
tionary magnetosheath frame remains away from the
magnetopause, but in this frame the waves carry nega-
tive energy. Consequently, when w, < 0, we have case
3 which represents overreflected waves with [R| > 1'
the magnetosheath waves carry negative energy in
stationary frame and transport energy from the ﬁow,
across the magnetopause, and into the magnetosphere.
In this overreflected case the ¥ phase speed in the flow-
ing magnetosheath frame opposes U (wi/k, < 0), and
is opposzte to the ¥ phase speed (w,/ ky) in the station-
ary frame. When the possibility for wave overrefiection
in a bounded medium is considered (for given k, and
k.), it is clear that the the upper cutoff velocity of the
magnetopause instability no longer exists. This follows
because for a sufficiently large flow speed, w) can be-
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Magnetosheath Phase Velocities

(@) o= o-Uk >0

(b) of=wv-Uk,<0

>y

o// k<0 ¥
©r/x <0 ¥

Azimuthal Phase Velocities

J > Moving L J
©i/k] U Frame  |of/k, U |
- Stationary ___>i
o,/ k, Frame o/ ky

Figure 2. Schematic illustration of the waveguide mode magnetosheath phase velocities in the
static (using w,) and the moving (using w}.) frames. (a) Standard (positive energy) waves which
propagate away from the magnetopause in both the flowing and stationary frames. The ¥ phase
velocity is in the same direction as U in both frames. (b) Overreflected (negative energy) waves
which have phase propagating away from (toward) the magnetopause in the flowing (stationary)
frames. In the flowing frame the waves’ ¥ phase velocity propagates against the magnetosheath
flow U. In the stationary frame the flow carries the waves’ phase in the positive ¥ direction to

create a phase speed in the positive y direction.

come < 0, and the propagating wave solutions in the
flowing medium can energize the waves trapped in the
bounded medium. Rather than damping the instabil-
ity by transporting energy away from the boundary, the
magnetosheath waves transport energy from the back-
ground flow into the waves trapped in the magneto-
sphere, which grow in time. Hence, the instability can
generate growing modes even for phase speeds which
are superfast magnetoacoustic.

Interestingly, as pointed out by Pu and Kivelson
[1983] (see the end of their section 3), classic KH sur-
face waves in a compressible plasma always have real
frequencies in the flow frame w! which are negative
(ie, wp = w, — Uky < 0). Consequently, compress-
ible KH surface waves are in fact always overreflected
at the surface supporting the waves (remember that in a
compressible plasma, KH surface waves have a compo-
nent of phase velocity perpendicular to the boundary),
even though this terminology is not normally used to
describe them. Since w! < 0, the energy transport asso-

ciated with compressible KH wave occurs via the propa-
gation of negative energy waves in the flowing medium.

Negative energy waves are a very interesting phe-
nomenon, and can provide a powerful tool for estimat-
ing the instability criteria of flowing plasma configu-
rations [e.g., Cairns, 1979].. Moreover, in dissipative
plasmas the negative energy waves themseives can drive
instabilities. If energy is lost from a negative energy
wave through dissipation, its amplitude grows and it is
hence unstable. Interestingly, in an unbounded tangen-
tial discontinuity between flowing incompressible dis-
sipative media, there exists a negative energy surface
wave which becomes unstable at a fow velocity slower
than the lower KH cutoff velocity U, in both hydrody-
namics [e.g., Cairns, 1979, and references therein] and
MHD [Ruderman and Goossens, 1995; Joarder et al.,
1997]. Since we are considering an ideal MHED plasma,
this type of negative energy wave instability will not
occur; however, it forms an interesting research area in
its own right.
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4. Results
4.1. Leaky Waveguiée Modes

An important aspect of current waveguide mode the-
ory is the postulate that under general magretospheric
and solar wind conditions the magnetopause can act as
a near perfect reflector. We show here that the speed
of the solar wind has a vital role to play in determining
whether the required efficient wave trapping can take
place.

Under the WKB approximation, fast magnetoacous-
tic modes in a box model magnetosphere le.g., South-
wood, 1974] are governed by [Inhester, 1987; Wright,
1994

ae
(15)

GTZPTO - ( w?

= s - k) pro = 0.

()
where pro represents the total pressure perturbation in
the magnetosphere. If, for s&mphcm' we ass‘.me that
the magnetosheath is uniform with ¢2 # 0 and ¢4 = 0
{cf. our model in section 2}, then waves there can be

“described by the total pressure perturbation Pr. ancé
are governed by

dsze
dz?

(s — T7E 2
- (‘“’ f Mg ,f} pre=0  (16)
£

(ie., the z wavenumbers in the magnetosphere and the
magzze*os’}eam are given by {1) and (2}). We can ex-
amine the possibility that W&\’GS may become trapped
in the magnetosphere by examining the structure of
the wave potentials across the magnetopause. By anal-
ogy with the one-dimensional (1-D) time independent
Schrodinger equation from guantum mechanics

3

dz?
then we see that F is egu*v&em to —(k2+k2) and V is
equivalent to Vs P = —w?/c% () in the magnetosphere
and to Viyysy = —{w-U Ay}z/c, in the magnetosheath,
where in the c;aa,zz*zzm mechanical case ¢ is the particle’s
wave function, % is Planck’s constant h/27, m is the
particle mass, F is the total energy of the particle, and
V{z) is the spatial form of the potential energy.

A necessary condition for wave trapping is that the
wave Do‘:emiaé increases across the magnetopause (at
z = 0), Varsp < Virsy. For trapped wave modes with
w, # 0 and w; = 0, this condition can be written as

om? N -
e {E-ch}}@z& amn

wr{l—=08) < Uky (18

N

where § = ¢s/ca. For the magnetosphere, § is certainly
< 1, a typical value being § = 0.4, which represents a
density increase at the magnetopause pe/po & 5. Even
allowing for a nonzero magnetosheath magnetic field (so
that ¢4 in the magnetosheath is nonzero), the fast mag-
netoacoustic speed decreases significantly at the mag-
netopause so that taking § < 1 is physicaily reasonable.
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As can be seen from {18}, with U = 0 it is not possi- -
ble to generate trapped waveguide mode solutions when
6 < 1. For situations where § > 1, for example, in so-
lar coronal loops le.g., Nakariakov and Roberts, 1995,
trapped cavity modes do exist when U = 0 {(an anal-
vsis of leaky and nonleaky waves in coronal flux tubes
was addressed by Cally (1986, although the possib"ﬁ

ity for wave overreflection was not considered). In th

magnetospheric case (where ¢ < 1) these waves wi i
be leaky in regions where U is small, such as near the
subsolar point. Clearly, a consideration of variations in
magnetosheath flow speed is essential in order to create
modes which are trapped at particular magnetospheric
local times and under particular solar wind speed con-

ditions.

4.2. ’I&”apped Waveguide Modes

We are interested in confining body waveguide modes
inside the magnetopause. These body wave modes are
spatially oscillatory in the stationary magnetospher
plasma and have phase speeds which are super-Alfvéni
that is, wy/ky > ca. In our analysis a useful parame-
ter is the phase speed normalized to the Alfvén speed
in the magnetosphere, , = wr/kyc,q super-Alfvénic
waves having Q, > 1. Moreover, for irapping to oc-
cur the waves must be spatially evanescent in the fow-
ing medium (s, = 0,%; > 0} so that no energy propa-
oates across the boundary. For stable waveguide modes

wy # 0 and w; = (), this generates the condition

(o — Uk N2
2 2 kst Y/ \
K =k — 2 S ) as
i Yy CZ RV
{remember we have taken k. = O for simplicity), which
can be writien as
U=—cs < o< U +cs (20)

ky

e, M =6 < Q, < M +§6). Combining these two
conditions generates a propagation band for the trapped
body waveguide modes of

Maxcs, U —¢;s] < :}3 <U+e¢, (21)
v

(e, Max 1, M - & < Q. < M +§). Interestingly,
the condition on k; given in (19) can also be derived
from a consideration of the wave potentials. The con-
dition {(outlined in section 4.1) that Viysp < Viysy is
a necessary but not sufficient condition for wave V&p-
ping. An additional, more restrictive, condition is tha
E — Vysy < 0. This is, of course, equivalent to eé:ze
condition given in {19).

In Figure 3 we show (1, for the body waveguide mode
harmonics as a function of azimuthal wavenumber ky,d
for d =3 and M = U/cy = 1. Figure 3 shows that the
cutoff lines {at Q. = 1 and O, = M + §) exist as pre-

icted by the theory [cf. Nakariokov and Roberts, 1993,
Figure 1]. The upper azimuthal wavenumber (kyd) cut-

s
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Figure 3. Trapped body waveguide mode harmonics (solid lines) for M = 1 and 51= 3. The
upper and lower wave cutoffs at Q, = M +6 and Q, = Max[1, M —4] are also shown as dot-dashed

and dotted lines, respectively.

off of the trapped body waveguide harmonics is defined
by

_ w = cee (99
b= n=0L2 (22)

and occurs where tank,d = 0, that is, k,d = nr, in
(5). For cases where U — ¢5 < c4 (such as in Figure
3), Q, decreases with kyd from the upper cutoff and
asympiotes to the lower cutoff at (), = 1, the modes
remaining stable for all kyd. Clearly, the first (n = 0)
waveguide mode harmonic has no azimuthal wavenum-
ber cutoff and exists for all k,d.

In the panels in the first row of Figure 4 we show
Q- and Q; (remember Q,; = w,; /kyca) as a function
of M for § = 3 (which represents a typical solar coro-
nal loop case) and kyd = 2 for the first three waveg-
uide mode harmonics (dashed, dotted, and dot-dashed
curves) and also for the unstable KH surface mode (solid
curve) which exists when U > 0. Also shown in the left
panel of this row are the (solid) lines Q, = M =6 and
Qr = M. For U = 0, the first two waveguide mode
harmonics are trapped (€; = 0), while the third (and
each higher) harmonic is decaying (Q; > 0) and repre-
sents a leaky waveguide mode having Q, > M + §. As
M increases, the third harmonic body waveguide mode
becomes trapped once Q. < M +§ at M ~ 0.7. (The
discontinuity at this point arises from the branch cut in
x in the complex plane which results from the choice of
the square root. We select the root which ensures that
the phase of the waves in the flowing magnetosheath

frame remains away from the magnetopause.) The KH
surface mode can be seen to asymptote to Q,,; = 0,
and has a zero asymptotic phase speed Q,., as M — 0.
Note that in this model, the lower KH cutoff speed
is zero because k.B = 0 on both sides of the magne-
topause. Introducing k, # 0, or a magretic field with
a component parallel to k in the magnetosheath, would
introduce the usual lower KH cutoff speed; however,
the qualitative results for flow speeds above the lower
cutoff should remain the same. As can be clearly seen
in the figure, the upper KH cutoff speed does not exist
in this bounded magnetospheric model, the KH surface
waves remaining unstable for any (even superfastmag-
netoacoustic) flow speeds. In the second and third rows
of Figure 4 we show the wavenumbers k; = kg, = iky;
and K = K, -+ ix;. The trapped modes can be seen to
have k;; = 0 and &, = 0, whereas the leaky modes have
®pr < 0.

For comparison, in Figure 5 we show the behavior
of the KH surface and the first three body waveguide
mode harmonics as a function of M for the magneto-
spheric case where § = 0.4 and k,d = 2. In this case,
when M = 0, all the body waveguide mode harmonics
are leaky. Similar general behavior to that in Figure 4
is observed, whereby the body modes become trapped
for Q. < M + 4. Similarly, the KH surface mode is still
unstable for all flow speeds U > 0 and has no upper cut-
off speed. For sufficiently high flow speeds, the trapped
body waveguide modes shown in Figures 4 and 5 be-
come overreflected and grow in time, and we consider
this below.
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Figure 4. Q, and Q; (top row), and kgrd, kzid (middle row) and k.d and x;d (bottom row),
as a function of M for the first three body waveguide mode harmonics {dashed, dotted, and
dot-dashed curves) and the KH surface mode (solid curve) for ¢ = 3 and kyd = 2. The top-left

panel also shows the straight lines O, =

4.3. Overreflected waveguide modes

For the slow flow speed cases discussed above, where
U —c¢s < cg {e.g., Figure 3}, overrefiection never occurs
and the trapped waveguide modes propagate from an
upper cutoff at . = M + § to asymptote to 2, = 1
as kyd — cc. For these slow flow speeds no additional
fast body modes are generated by the flows, in agree-
ment with the conclusions of Nekariakov and Roberts
[1993]. However, for sufficiently fast flow speeds, once
U —¢; > ¢4, additional stable body modes are created.
Moreover, in this case at some value of k,d, these two
stable body waveguide mode branches coalesce, the re-
sulting waves being overreflected at the magnetopause
and growing in time.

The overreflected modes have &, > 0 {Figures 4 and
5), so thai in the stationary frame the phase speed
in the magnetosheath propagates toward the magneto-
sphere {(in the Sowing magnetosheath frame the waves
phase speed still propagates away from the magneto-
sphere; see Figure 2b). These negative energy magne-
tosheath waves carry energy from the magnetosheath
flow, across the magnetopause, into the magnetosphere

M =6 and Q, = M. Note that since kyd is fixed, the
normalized wave frequency wrid/cq = Qr ik d.

and generate growing waveguide modes whose amplifi-
cation occurs by overreflection. Interestingly, and this
is particularly clear in Figure 5, once the waveguide
modes become unstable, the growth rate of the KH sur-
face mode decreases drastically. Hence, in cases where
body waveguide modes are energized by overreflection,
the importance of the KH surface wave may be sig-
nificantly reduced. Also, for very large flow speeds,
Figure 5 shows that the overreflected body waveguide
mode harmonics asympiotically approach constant {0,
In particular, this figure shows that these modes have
magnetospheric wavenumbers k, which asymptote to-
wazrd kyrd = nx (and kz:d = 0) so that the frequencies
asymptote toward w, = ca(k2, + k;j)%, that is, Q, =
(1+n?x? /k;jd'z)%. This means that only asymptoti-
cally, as M — oc, do the modes approach the standard
{velocity) nodal magnetopause boundary condition and
generate the corresponding half-wavelength modes. Un-
der slower, more realistic, magnetosheath flow speeds,
the wave modes will not form half-wavelength harmon-
ics, and hence estimates of the eigenfrequencies of mag-
netospheric waveguide modes which assume a zero ve-
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dot-dashed curves) and the KH surface mode (solid cz:\e) for § = 0.4 and kyd = 2. The top-left
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normalized wave frequency w,d/cs = Qpikyd.

locity boundary condition at the magnetopause will be
in error.

Although it might be expected that the transition to
overrefiection would occur at Q, = M — §, in fact this
only gives an approximate condition for the onset of
nstability. For some of the body waveguide modes,
instability can occur when Q. > M — § (of course,
the overreflected waves must have Q, < M, so that
w' < 0). In Figure 6 we show Q, for the first four body
mode harmonics as a function of kyd for § = 0.4 and
M = 2. The upper k,d cutoff for these modes is again
given by kyd = nr/[{(M + §)? — 11*/? (equation (22)).
Now, however, since U — ¢s > ¢y, there exists another
mode which propagates up from Q, = M —§, being cut
of at kyd = nx/[(M - 6)2 — 1]/2. Physically, these
additional modes represent waves which propagate in
the negative y direction when U = 0 \l.e., against the
flow when U # 0). Since the asymptote Q, = M —~ §
represents waves which Dropagabe against the flow at
phase speed ¢; in the flowing magnetosheath Irame,
once U — ¢s > cu, these modes become super-Alfvénic

e that smce ky,d is fixed, the

in the stationary (magnetospheric) frame, can adopt
a spatially oscillatory character in the magnetosphere,
and hence become trapped inside the magnetopause.
At some value of kyd, these two trapped body modes
{W’ﬁich p*ooaoated at #c¢, in the flow frame just in-
side the cutoffs at , = M = 4} coalesce, the resulting
overreflected mode becoming unstable and growing in
time. Mathematically, the appearance of the additional
trapped waveguide mode solutions can be demonstrated
by considering the behavior of (5). For example, con-
sidering real w and U — ¢s; > ¢4, {5) possesses two real
solutions for €, close to Q, = M = for small k,d.
As kyd — oo, the solutions become complex, possess-
ing nonzero w;, representing growing and decaying so-
lutions, respectively (we have chosen the growing {over-
reflected) solution since we choose the solution with out-
going phase in the magnetosheath fiow frame; see sec-
tion 3). At an intermediate value of k,d, there must be
a point where there are two equal real (double) roots:
this occurs at the kyd value where (3) and d/dQ, of (5)
are both zero. Tnese two simultaneous equations can
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Figure 6. ), as a function of kyd for the first four
waveguide mode harmonics as a function of kyd for § =
0.4 and M = 2 (only the trapped and overreflected
branches are shown for clarity).

be solved for kyd to give the kyd value for the onset of
overrefiection. We will not consider this in detail here;
suffice it to say that numerical solution of the simulta-
neous equations correctly predicts the value of kyd for
the onset of instability.

In Figure 7, we show the detailed behavior of the
first four body waveguide mode harmonics from Fig-
ure 6 as a function of kyd (i.e., we still have § = 0.4
and M = 2). Again, for clarity, we have only included
the stable and overreflected parts of the mode evolution
and have not included the leaky waves which exist for
Q. > M + 8. The stable (w; = 0) modes can be seen
to have k;; = 0, k, = 0; the modes develop s, > 0
once the overreflection occurs. Interestingly, the funda-
mental and the third and fourth harmonics have kg ,.d
bounded as k,d — oo, the values of k;,d being given by

kerd = (20 + 1)7/2, (23)

with n = 1,2,3. Each of these modes displays the be-
havior of a fastest growing mode at finite kyd. The
second harmonic, however, shows very similar behavior
to unbounded KH surface modes, having iw;| = oo as
kyd — occ. Similarly, this second harmonic mode dis-
plays (kgrd|, lkz:dl, k,d] and ik;d) all - oo. The fact
that kz;d — —oc and #;d = oo as kyd — oo shows that
this mode exponentially decays away from the magne-
topause increasingly rapidly as kyd —» oo, and hence
it increasingly represents a surface type mode which is
confined close to the magnetopause in this limit. This
explains why the mode asymptotically behaves like a
KH surface mode in an unbounded medium.

We consider this further in Figure 8, where we show
the modulus of the reflection coefficient (introduced in
section 3) |R| as a function of kyd for the same modes as
in Figure 7. Each mode, except the second harmonic,

displays a peak in |R| at finite kyd, the second har-
monic displaying [R| —+ o¢ as kyd — co. These peaks
in [R| match up excellently with the peaks in w; shown
in Figure 7. Hence variations in the waves’ reflection
coefficient (i.e., the extent of overrefiection) can explain
the existence of a maximum growth rate at finite kyd.

4.4. Transition From Surface to Body Modes

In a recent paper, Fujita et al. [1996] (in a similar
study to ours) considered the excitation of KH surface
waves in a nonuniform magnetosphere bounded from
a semi-infinite flowing magnetosheath by a free sheet
magnetopause. They found that for sufficiently large
flow speeds (~ 3 — 4 times the Alfvén speed at the
magnetopause), the KH surface modes became spatially
oscillatory and adopted a global character in the mag-
netosphere. At the same time these spatially oscilla-
tory (body) modes displayed a maximum growth rate
at finite azimuthal wavenumber, and Fujita et al. [1996]
attributed this behavior to the nonuniformity of their
magnetospheric Alfvén speed profile.

In Figure 9 we show the (normalized) phase velocity
Q, of KH surface waves in our model for § = 0.4, and a
range of M, as a function of kyd. The KH modes have
Q, which increases with kyd for low ky,d, and asymp-
totes to constant ), at large kyd. In general, the modes
with asymptotic phase speeds less than ¢4 display the
usual unbounded KH surface wave behavior with their
growth rate increasing without limit as kyd — oc. In-
terestingly, once the flow speed is sufficiently super-
Alfvénic, this behavior changes and the waves become
spatially oscillatory global modes (body waves) which
exist throughout the magnetosphere. Moreover, in this
case the waves display a meximum growth rate at fi-
nite kyd. Since our model magnetosphere is uniform,
the suggestion of Fujita et al. [1996] that 2 nonuniform
Alfvén speed is required for this azimuthal wavenum-
ber selection need not be satisfied. The introduction
of finite depth via an inner magnetospheric boundary,
and flow speeds which are sufficiently fast so the unsta-
ble modes become spatially oscillatory, are all that is
required.

To illustrate the features of these two types of mode,
and the transition from dominantly surface to dom-
inantly body mode behavior, in Figure 10 we show
W= Wy tiw;, ky = kpr+tky;, and K = K,.+ik; a8 a func-
tion of kyd for § = 0.4 at two flow speeds. The solid line
represents the behavior for M = 1 (le., lw; = oo as
kyd — oc) and relates to the left-hand side y axis scale
in each panel. The dot-dashed lines represent the case
M = 2 (ie., kyd selection) and relate to the scales on
the right-hand side of each panel (note that the transi-
tion in behavior occurs between M = 1.6 and M = 1.7).
While the (low U) mode with a monotonically increas-
ing growth rate has |kz-d|, [kz:d], |k-d], and |k;d] all
— oc as kyd = oo (i.e., it is trapped close to the mag-
netopause), the mode with & maximum growth rate at
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Figure 7. The first four (normalized) waveguide mode harmonic frequencies (w = w, + iw;),
magnetospheric wavenumbers (k; = ks +ikz;), and magnetosheath wavenumbers (k = &, + 1K;)
as a function of kyd for § = 0.4 and M = 2 {only the stable and overrefiected branches are shown

for clarity).

finite kyd displays the features that |k,.d| is bounded
as kyd — 00, |kzid] — 0, |kidl — 0, while [k,d] still
-+ oo (i.e., it is a dominantly body type mode in the
magnetosphere). The fact that the k,d selection mode
has k;~d — /2 means that this mode approaches an
antinode at the magnetopause and is hence a quarter
wavelength body type mode as kyd — oc. Moreover,
we note that at the kyd values of the fastest growing
modes, k.,d is even less than =/2.

In a similar manner to the overreflected body waveg-
uide modes, we can examine the existence of the az-
imuthal wavenumber selection by considering the be-
havior of the reflection coefficient R of the M = 2
mode. In Figure 11 we show the modulus (left-hand y
axis scale, solid line) and the phase (right-hand y axis,
dot-dashed line) of R as a function of kyd for the k,d
selection case in Figure 10 (i.e., § = 0.4 and M = 2).
This figure shows that |R| = 1 at k,d = 0, and increases
to a reasonably broad maximum at kyd & 2.5, before
decaying as kyd — cc. The position of the peak in |R)|
matches up excellently with the position of the peak
in w; shown in Figure 10. Across the peak in |R], the

phase of R changes by #. This suggests that the peak
in w; represents the resonance of the magnetosphere in
response to the magnetosheath fow.

4.5. Description of Azimuthal Wavenumber
Selection '

Of interest is the question of what determines whether
an overreflected mode will display azimuthal wavenum-
ber selection. Further inspection of the wave behavior
shows that at the fow speed where the KH surface mode
adopts kyd selection, the fundamental body mode no
longer has a fastest growing mode at finite kyd, that is,
it displays the behavior of |R| — o as kyd — oc. Phys-
ically, the suface mode changes into a body mode, while
the fundamental body mode changes into a surface type
mode as kyd — oc. As U increases further, the funda-
mental mode regains kyd selection and becomes a body
type mode, while the second harmonic waveguide mode
changes to become a surface mode as kyd — oo and
adopts a monotonically increasing growth rate (this is
the case for M = 2 and § = 0.4, shown in Figures 7
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Figure 8. Modulus of the reflection coefficient R as a
function of kyd for the first four waveguide mode har-
monics, for M = 2 and § = 0.4. As in Figure 7, only
the stable and overreflected branches are shown.

and 10). Increasing the flow speeds still further allows
each harmonic in turn to change from a body mode, to
a surface mode, and back to a body mode so that it
loses and then regains a peak in w; at finite kyd as U
increases. For any given set of overreflecting conditions,
only one growing mode has the characteristic |R} — o0,
the remaining modes having values of k,,.d which are
given by the harmonic series in (23). For example, when
6 = 0.4 and M = 2 the three kyd selecting waveguide
modes, along with the k,d selecting mode from Figure
10 which also exists at this flow speed, all have asymp-
totic k;-d given by (23) with n given by n = 0,1,2,3.
While the phase change associated with the k,d select-
ing mode from Figure 10 -'mply changes by = across the
peak in | R (Figure 11), the phase variation of R for the
kyd selecting body modes is slightly more complicated.
However, the basic feature of a peak in |R] at finite k,d
(the position increasing with harmonic number) is very
similar. All these k,d selecting modes have dominantly
body mode behavior in the magnetosphere as kyd — oc.

Since the value of the flow speed can change the char-
acter of the modes from surface to body type, and vice
versa, it is difficult to unambiguously define the char-
acteristics of a particular mode for all values of U and
kyd as they change with variations in these parameters.
We originally discussed the character of the modes in
terms of their behavior for small U, the modes being
easily classifiable in terms of a surface or body type
wave for all ky, their characteristics as kyd — oo being
used to determine the mode type. As discussed above,
the characteristics of the modes can change as U in-
creases, so that modes which are asymptotically (in kyd)
body type modes for low U can become surface modes,

and vice versa. For nonzero U the surface mode (which
behaves like the unbounded KH surface mode) need not
necessarily be the lowest frequency mode. However, it
is only the body type modes which display azimuthal
wavenumber selection. These body modes are also the
only modes which will have frequencies determined by
the natural frequencies of the magnetospheric cavity,
and which can most easily drive monochromatic FLRs
deep in the magnetosphere.

For an unbounded medium (where wavenumbers and
frequencies are not constrained by the quantization
imposed by the inner magnetospheric boundary) it is
still possible for (R - oo at finite k,d. Consider-
ing propagating modes, with w, k;, and x all real,
IR is infinite when the denominator of R is zero, that
8, kgrpe(wr — Uky)? = krpow?. This represents the
situation where magnetosound is spontaneously emit-
ted from the boundary of the moving medium le.g.,
Landau and Lifshitz, 1987]. Formally (in the linear
case) the boundary can emit waves even in the limit
that the amplitude of the incident wave tends to zero
[Landau and Lifshitz, 1987]. When the form of R is
written in terms of the angle of incidence 6;, where
0; = ky/ks = kycaf/w = Q7*, R can be shown to be
dependent only upon §;, being independent of w. For
overreflected waves in a bounded medium, where w, k;,
and & are all complex, |R| never becomes infinite at -
nite k£, d; however, the existence of the maximum in |R)]
represents the bounded media manifestation of the un-
bounded spontaneous magnetosound emission. In fact,
the value of §; which defines the maximum in R defines
a fixed value of ky/k,. Indeed, reexamining Figures 7
and 10 shows that the first and third waveguide modes
(Figure 7) and the k,d selecting mode from Figure 10
(all of which select k,) have approximately the same
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values of 8;, that is, the phase velocities of the fastest
growing body mode harmonics will all be approximately
the same, as expected based on the above analysis.

Mathematically, the difference between the behavior
of modes which select fastest growing waves at finite
kyd (body modes amplified by overreflection) and the
modes with {w;| — oo as kyd — oo (surface modes) can
be explained by examining the complex form of R. By
substituting for w? and (w—Uk,)? from (1) and (2), we
can rewrite R as

1+f
1-f

where f = kpoc} (k2 +k2)/kepeci(x® + k2). Asymptot-
ically, as kyd — oc, at most k2 and % are ~ O(kZ).
Hence, (k2 + k2)/(k* + k2) ~ O(1), so that f ~ &/k,.
As we have seen previcusly, for the surface modes with
lwi] — oo, both & and k, are ~ O(ky) as kyd — o0,
and hence f — 1. Consequently, the denominator of
R tends to zero, and asymptotically [Rl — oo. The
growing body modes, however, have bounded k,,d, with
kzi, £ — 0 and &, — ¢ as kyd — oc. In this case,
f — o0, and R} = 1 as kyd — oo. Between kyd = 0

R= (24)

and M = 2 (dot-dashed line, right-hand y axis

and kyd — oc, |R] displays a peak near the value of kyd
corresponding to the fastest growing mode.

A requirement for k;.d to be bounded (~ O(1)) as
kyd — oc requires that k2 = k2(Q% — 1) be ~ O(1).
Hence (9% — 1) must be O(1/k;), that is, O ~ 1+
O(1/k2), in order for the modes to display a maximum
growth rate at finite k,d. Reexamining the modes in
Figure 9 shows that only the M = 2 case (which se-
lects kyd) has Q, — 1 decaying ~ O(1/kZ), so that it
can develop into a body mode. All the other modes
shown in this figure (with w; — oo as kyd — o0)
show , increasing with kyd, asymptoting toward a con-
stant, and never decreasing ~ O(1/ kg) as is required
to keep k,.d bounded. Similar behavior can seen for
the waves in Figure 6. The second harmonic mode
(which has jw;| — o¢ as kyd — oo} displays a positive
gradient d€2,/dk, for large k,d and hence cannot keep
kyrd ~ O(1), and develops into a surface mode. The
first, third, and fourth harmonics, however, all have
dQr/dky negative and allow k.d to remain finite as
kyd — oo, and remain body type modes.

Physically, the k,d selection which has been demon-
strated above can be understood as follows. Waves
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Figure 11. Modulus (solid line, left-hand y scale) and
phase {dot-dashed line, right-hand scale} of the KH
wave reflection coefficient R as a function of k,d for
§=04and M =2.

wkich are incident upon the magnetopause from within
the magnetosphere are reflected with increased ampli-
tude (i.e., they are overreflected). Remember that over-
reflected waves have a magnetosheath phase velocity
which propagates toward the magnetopause in a sta-
tionary frame. Consequently, the T wave in Figure 1
adds to the amplitude I (= 1) of the incident wave
to generate reflected waves with B > 1. Since k,,.d
is bounded for the k,d selecting body modes, at some
finite value of kyd (for fixed § and M) there is a res-
onance between the incident magnetosheath wave and
the waves propagating with a global scale within the
magnetosphere (i.e., oscillating with the natural fre-
quency of the cavity). In contrast, the surface modes
which do not select a fastest growing finite kyd have
both k, and k which increase in a similar fashion with-
out limit as kyd — oc. In this case, since |k, is large,
the waves remain confined close to the magnetopause
and represent surface modes. For these surface waves
there can be no resonance between global ringing oscil-
lations of the magnetospheric cavity and the waves in
the magnetosheath, since they are relatively unaffected
by the existence of the inner magnetospheric boundary
and hence display behavior similar to unbounded KH
surface waves.

The behavior of the growing body modes (kyd select-
ing modes) is analogous to the situation which occurs
if one blows (sufficiently hard) across the top of a bot-
tle: The air in the bottle resonantly oscillates at the
natural frequencies of the bottle (harmonics of the cav-
ity inside the bottle), and the amplitude of the waves
grows in response to the driver. Note that waves in the
boitie would be likely to have a near antinodal bound-
ary condition at the opening (like waves in an organ
pipe). Clearly, this situation is analogous to our results
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which show that the magnetopause often imposes a near
antinodal boundary condition on the global scale body
waves which are excited within the magnetosphere.

5. Discussion

5.1. Trapping and Excitation of Waveguide
Modes

Most studies of magnetospheric waveguide modes con-
sider the magnetopause to act as a perfect reflector e.g.,
Wright, 1994]. We have shown that if the fast magne-
toacoustic speed just inside the magnetopause is greater
than that just outside it in the magnetosheath, which
is typical, (fe., ¢ < 1 in our simpiified model), then
near the subsolar point where the magnetosheath flow
speeds are small it is impossible for waveguide modes
to be fully trapped inside the magnetopause. In cases
where R < 1, then the leakage may only be small;
however, when R is smaller {which is probably typical
rear the nose), the leakage rates will be much higher.
In this case, large amounts of wave energy will be lost
across the magnetopause, and hence the subsolar mag-
netosphere cannot act as a high-quality (@) factor res-
onator for compressional Pc5 waves. This suggests that
trapped waveguide mode theory is inapplicable to re-
gions near the subsolar point, and that the development
of well-defined resonances there may be significantly less
likely than at locations where the magnetosheath fow
is faster.

Under conditions of low to moderate solar wind speed,
overreflection will not occur anywhere along the mag-
netopause, even on the flanks. In this case the subso-
lar magnetopause will be leaky and will hence act as a
low- cavity. Since U increases from zero at the stag-
nation point at the magnetospheric nose and increases
around the flanks le.g., Spreiter and Stahara, 1980], at
some point the magnetosheath flow speed should be suf-
ficiently fast (U > ¢4 — ¢;) so that the magnetopause
becomes perfectly reflecting. At local times after this
point, the waveguide can act as a high-Q cavity which
will support narrow frequency band waveguide modes
which can drive latitudinally narrow FLRs. The energy
for these waveguide modes will not, however, come di-
rectly from magnetosheath flows but may be provided,
for example, by solar wind impuises.

Under conditions of fast solar wind speed, waves
might become overrefiected on the flanks i U > ¢4+ ¢
there. Of crucial importance to our theory is the gues-
tion of whether this overreflection is possible. Using
the magnetic flelds and densities observed just inside
the magnetopause by Fastman et al. (1985 produces
ca = 200, 500, 1500, and 400 km s~ (see their Fig-
ures 2, 3. 8, and @ respectively and the discussion of
these observations by Fujite et al. [1996]). Typically,
according to the observations discussed by McKenzie
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[1970] ¢y ~ 120 km s, and ¢4 ~ 500 km s™* on the
flanks. Assuming that ¢4 ~ 400 — 500 km s~ gives the
condition for wave overrefiection as U 2 500-600 km
s~%, which could easily be satisfied for fast solar wind
speeds. {Note that on the flanks the magnetosheath
flow speed approaches the upstream solar wind speed
[see Spreiter and Stahara, 1980].) Moreover, this cri-
terion for wave overreflection is in excellent agreement

7ith the observations of Kokubun et al. {1989} and En-
gebretson et al. [1998] that Pc5 azimuthal waves (FLRs)
have significantly increased power when vew > 600 km
s and vew > 500 km s™%, respectively. In this high-
vy case, the waveguide modes are energized on the
flanks by magnetosheath flows. The energization occurs
due to local wave overreflection at the magnetopause,
and results in the transport of energy from the magne-
tosheath into the magnetosphere.

This variation of the likelihood of wave trapping and
overrefiection around the magnetopause is very interest-
ing. Pcd FLRs are most often observed on the flanks,
preferentially on the dawnside; the occurrence rate for
fundamental mode dawnside FLRs has a lower bound of
~ 80%, that is, they are essentially continuously present
there [Anderson et al., 1990]. Hence the observational
distribution of fundamental mode Pcb FLRs is in excel-
lent agreement with the variation of both the wave trap-
ping and overreflection conditions from the nose to the
flanks of the magnetosphere. Whether the impulsive or
overrefiection excitation mechanisms are operative will
depend upon the ambient solar wind conditions, and we
discuss this further below.

A longstanding question in FLR theory is why there
is such a large dawn/dusk asymmetry in FLR occur-
rence rates. Morning sector Pcd waves are predom-
inantly fundamental mode toroidal oscillations [e.g.,
Kokubun et al., 1989; Anderson et al., 1990]. These
waves have a tendency toward oscillations with a pre-
ferred set of frequencies {around 0.8, 1.3, 1.9, 2.7, 3.3
mHz) [Ruohoniemi et al., 1991; Semson et al., 19971;
Walker et al., 1992, which are believed t0 represent a
discrete set of compressional waveguide mode harmon-
ics which subsequently excite FLRs. Afternconside Pcb
waves, however, are observed to have dominantly ra-
dial and compressional components by satellites le.g.,
Kokubun et al., 1989; Anderson et al., 1990}, radars
le.g., Chisham et al., 1995], and ground-based magne-
tometers [Rostoker and Sullivan, 1987, with much less
evidence of the waves coupling to FLRs.

One possible explanation for this involves the rela-
tive stability of KH waves on the dawn versus dusk
flanks [Lee and Olson, 1980; Miura, 1992]. The KH
instability requires a seed perturbation in order to de-
velop to a significant amplitude. According to Miure
71992], the turbulence which occurs downstream of the
quasi-parallel bow shock on the dawnside may provide
such a seed, whereas on the duskside, downstream of
the quasi-perpendicular shock, suitable seed turbulence
is likely to be much rarer. Similarly, Lee and Olson
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[1980] point out that because of the Parker spiral angle
of the IMF at the Earth, stronger KH stabilizing mag-
netic fleld tension exists on average at dusk compared
to dawn. A decrease in the likelihood of magnetopause
instability on the duskside, due to either or both these
mechanisms, could explain the reduced FLR occurrence
there. In our model, both the KH and the overreflected
waveguide modes would require a seed perturbation to
allow the waves on the magnetopause to grow to sig-
nificant amplitudes, and may be stabilized by magnetic
field tension. Consequently, if the muitiple harmonic
FLRs in the morningside magnetosphere are driven by
overreflected waveguide modes, the absence of FLRs on
the duskside could be the result of the relative rarity of
the necessary seed perturbations or of excessive stabiliz-
ing magnetic tension in the afternoon magnetosheath.

Statistically, the occurrence rates of dawnside ver-
sus duskside Pc3 FLRs will result from a summation of
waves driven either impulsively or by overrefiection. As-
suming that the duskside flank is relatively stable with
respect 10 magnetopause instability and hence to over-
reflection, waves observed there will predominantly be
impulsively excited modes, while modes on the dawn-
side could be excited both impulisively and by overrefiec-
tion. Presumably, wave overreflection during fast solar
wind conditions will provide a more efficient excitation
mechanism than solar wind impulses. This would ob-
viously explain the dawnside correlation between Pcd
wave power and high vsw.

The observations of the afternoonside waves are con-
sistent with the characteristics of compressional waveg-
uide mode harmonics, and they appear to possibly dis-
play preferred discrete frequencies in accord with this
hypothesis [Chisham and Orr, 1997.. Ground-based
observations le.g., Ziesolleck and MeDiarmid, 1994 do
show an amplitude maximum around L ~ 7 {where L
is the McIlwain parameter), but do not display the po-
larization reversal characteristic of a resonance. Again,
a possible explanation for this is that the afternoonside
waves are driven by sudden impulses in the solar wind,
rather than through wave overreflection. Significantly,
the ground-based observations of afternoon Pc5 waves
by Rostoker and Sullivan [1987) showed that the waves
correlated with solar wind pressure variations, the mag-
netic signatures of the solar wind impulses being observ-
able down to near equatorial latitudes in 75% of cases.
Interestingly, these authors also observed a iransition
from Pcb waves with no clear FLR signatures from local
noon up to ~ 1600 MLT to Pcb waves which displayed
more ciassical FLR amplitude enhancements and polar-
ization reversals after 1600 MLT. This is entirely con-
sistent with afternoonside waves being dominantly im-
pulsively driven, and with the existence of a transition
from a low-Q to a high-@Q cavity around the afternoon
flank. Olson and Rostoker [1978] reported similar char-
acteristics to Rostoker and Sullivan {1987 in their af-
ternoonside Pcd waves. Their waves displayed reduced
amplitudes near noon {consistent with & leaky magn
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topause), and on the afternoonside had more complex
and irregular (nonsinusoidal) signatures (both in terms
of their waveform and envelope variations) than waves
observed near dawn. All of these observations point to
a distinction between impulsively excited afternoonside
and dominantly overrefiected dawnside Pc5 waves, and
suggest that the subsolar magnetopause acts locally as
a low-Q leaky waveguide.

Since it is unlikely that the subsolar magnetopause
can act as a high-Q cavity, waves which are impulsively
driven near the subsolar point in this (leaky) waveg-
uide will necessarily have a broad frequency bandwidth
and will be unlikely to able to excite a narrow FLR
response. Interestingly, recent observations using mul-
tiple satellites and ground-based magretometers have
demonstrated the downtail propagation of an impul-
sively driven compressional waveguide mode for the first
time [Mann et al., 1998]. Indeed, the ground-based
magnetometers in this study (near local noon) did not
show any FLR characteristics, although as stated by
these authors, FLRs might have been driven at local
times displaced from their observations. In fact, Mann
et al. [1998] observed a decrease in waveguide mode
power of ~ 38% between their observation with Active
Magnetospheric Particle Tracer Explorers (AMPTE)
CCE near local noon and AMPTE UKS/IRM 6.2Rg
away on the morning flank. Assuming that the waveg-
uide mode did not drive any strong FLRs between
these two observations, this is consistent with waveg-
uide mode energy leaking out of the cavity (note, how-
ever, that energy can also leak out of the polar cap as
well as out through a leaky magnetopause boundary).
The combination of both the magnetopause stability
and the low @ of impulsively driven waveguide modes
could explain the lack of any significant FLR signatures
in the afternoon. Of course, we expect field line reso-
nance signatures near the dawn flank to be dominated
by overreflected waves. At times when overrefiection is
operative, these field lines could be nearly continually
driven. This would, of course, allow dawnside Pc5 waves
to develop FLR characteristics at the same frequencies
as the compressional waveguide mode harmonics.

5.2. Azimuthal Wavenumber Selection

Observations of FLRs, believed to be driven by com-
pressional waveguide modes harmonics, generally show
the dominance of a particular azimuthal wavenumber
(m, equivalent to kyd); m tends to increase with wave
frequency and hence, by implication, with waveguide
harmonic. Ziesolleck and McDiarmid [1994] analyzed
the azimuthal phase speed of multiple dawnside FLRs
on different days. They found that in general w,/k,
was the same for all the FLR harmonics observed si-
multaneously (i.e., the phase velocity was independent
of frequency; see also Olson and Rostoker [1978]); how-
ever, this (constant) phase speed varied from day to
day.

In general, cavity mode theories consider m to be
2 free parameter. Our model shows how the cou-
pling of the magnetosheath to the magnetosphere via
a free magnetopause boundary can generate m selec-
tion, in accord with the m selection for global KH modes
demonstrated by Fujita et al. [1996]. As is clearly shown
by our results, the dominant azimuthal wavenumber in-
creases with waveguide mode frequencies, so that our
model is consistent with the observed dependence of m
on frequency.

Waveguide models (with a perfectly reflecting mag-
netopause) allow the excitation of modes with a range
of m values, theory predicting that the lowest m modes
will have the lowest downtail group speed and hence
be most likely to act as long-lived and coherent drivers
for FLRs in the near Earth waveguide [e.g., Wright,
1994; Rickard and Wright, 1994]. Wright and Rickard
[1995b], using their perfectly reflecting magnetopause
waveguide model, found that stimulating a tailward
running pulse on the magnetopause drove FLR har-
monics whose phase velocities were constant for a given
magnetopause wave propagation speed, whereas FLRs
driven by impulses near the nose excited waveguide
modes with different phase velocities for different har-
monics. This provides a possible diagnostic to dis-
tinguish between impulsively and overreflection driven
waves. As we discussed in section 4, the phase velocities
of the fastest growing components of the overrefiected
waveguide mode harmonics all have approximately the
same phase velocity, and will be similar to the running
pulse driver considered by Wright and Rickard [19952].
Consequently, we suggest that the waves observed by
Ziesolleck and McDiarmid [1994] are in fact driven by
overreflected waveguide modes. If this is the case, the
phase velocities should be correlated with U, larger U
generating larger azimuthal phase velocities. It would
be interesting to know whether such a correlation ex-
ists experimentally, and whether the largest FLR phase
velocities observed by Ziesolleck and McDiarmid [1994]
were observed during the times of fastest solar wind
speed.

Our model also predicts that the lowest waveguide
mode harmonics will be the easiest to excite, since they
become trapped or overreflected at lower solar wind
speeds. Ground-based magnetometer studies at both
high [Ziesolleck and McDiarmid, 1995] and low [Ziesol-
leck and Chamalaun, 1993] latitudes have found a ten-
dency for higher frequency FLRs to be driven with en-
hanced power during more active magnetospheric con-
ditions (they considered correlations with K,). This
is also in accord with our model, since higher magne-
tosheath speeds allow higher waveguide mode harmon-
ics to lose their leaky behavior and become trapped or
energized by overreflection on the flanks. Hence these
higher harmonic waveguide modes will be more likely
to be able to drive FLRs in the magnetosphere dur-
ing more active (presumably higher solar wind speed)
conditions (note that although magnetic activity corre-
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lates with the southward component of the IMF, it also
has a dependence on solar wind speed). The particu-
lar FLR harmonic which displays dominant power ir
the magnetosphere will depend not only on solar wind
speed {whkich will determine which modes can become
overreflected and what their relative growth rates will
be), but also upon the relative coupling strengths of
the waveguide modes to Alfvén resonances whick are a
function of their m value le.g., Kivelson and Southwood,
1986..

Implicit in our model, because we have used an in-
finitesimal magnetopause, is the assumption that wave
scale lengths are much larger than the width of the ve-
locity shear (i.e., the width of the low latitude boundary
layer (LLBL)). Once the finite thickness of the velocity
shear is included, the higher k, modes become stabi-
lized [Ong and Roderick, 1972; Walker, 1981]. Indeed,
Walker {1981 found that the peak KHI growth rate oc-
curred when kA ~ 0.8, where A is the half width of the
velocity shear layer, which is ~ 0.5Rp on the flanks [ Yu-
moto and Saito, 1980]. Considering a magnetospheric
depth of ~ 15Rp on the fanks (ie., d = 15Rg), then
the peak in k,d which would occur in our model due to
a finite LLBL width would occur at kyd ~ 18. Con-
sequently, our results for wave growth rates will de-
crease above kyd ~ 18 due to the existence of the finite
width of the LLBL. Clearly, however, the feature of kyd
value selection for the low waveguide mode harmonics
will remain, the values of the dimensionless azimuthal
wavenumbers k,d being in good agreement with the
range of observed flank FLR m values, typically m £ 10.

Since the KH surface mode can have a growth rate
which is larger than the overrefiected body modes {es-
pecailly at lower flow speeds), it is important to con-
sider why kyd ~ 18 KH waves do not dominate the
waves observed in the magnetosphere {remember, how-
ever, that once the magnetosheath flow is sufficient for
the body waveguide modes to grow via overreflection,
the growth rate of the KH surface modes drastically
reduced; see Figures 4 and 3). One reason may be
that the large m (or k,d) KH surface waves are con-
fined to a velocity boundary layer {VBL) region close
to the magnetopause. These disturbances may be swept
downstream, or they may saturate nonlinearly, produc-
ing a turbulent boundary layer of finite thickness. The
penetration distance for KH surface waves into the mag-

netosphere is given by Iy sp = 1/Tky (1 — Q2)3] [Miura,

1992, equation {19)}; this result is verified by Miura’s
simulations which show that the majority of the KH
surface waves’ energy density is confined in a VBL of
this width [see Miura, 1992). Typically for KH sur-
face modes, O, ~ 0.7 — 0.8 for the fastest growing
mode {taking M ~ 1.0 — 1.3 from Figure 9) so that
losp~ 14~ 1.7k7" = 1.2~ 1.4Rp. Indeed, the VBL in
Miura’s simulations typically has a full width of ~ 3A
(i.e., ~ 1.5Rp on the flanks) (see, for example, Figure 6
of Miura [1990]), in good agreement with the scale size
of the fastest growing linear KH surface mode discussed
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above. Since the thickness of the VBL is small com-
pared to the wavelength of the lowest harmonic waveg-
uide modes, the shear layer may be approximated as a
iiscontinuity, and the analysis in this paper should be
appiicable.

5.3. Waveguide Mode Eigenfrequencies

An outstanding problem in magnetospheric waveg-
uide theory is why the eigenfrequencies of the mag-
netospheric cavity are so low (i.e., a few millihertz).
The theoretical waveguide eigenfrequencies can be cal-
culated by considering the natural frequencies of the 2-
D (radial and field aligned) cavities whick make up cross
sections of the waveguide. In fact, allowing the waveg-
uide modes to have finite (low) values of k, has little ef-
fect on the natural frequencies of the waveguide modes,
since for fast waves in a dipole geometry Ly, > L, and
L.. Hence ky, variation only infroduces a small addi-
tional frequency bandwidth into the waveguide modes
le.g., Lee, 1996..

A simplified 1-D WKB model [Samson et al., 1991,
1992] was able to generate discrete waveguide mode fre-
guencies in accordance with the discrete FLR frequen-
cies observed with HF radar discussed above, with the
exception of the lowest (0.8 mHz) frequency. As dis-
cussed by Walker et al. [1992], it is very difficult to
reconcile this lowest frequency with the eigenfreguency
of a perfectly reflecting cavity of sensible dimensions
and realistic plasma density. However, the calculations
of Samson et al. (1991, 1992] required a rather large
central plasma sheet density of 2 25 my/cm® to ob-
tain eigenfrequencies which matched a harmonic series
of FLRs with a fundamental mode frequency of 1.3
mHz (see the discussion of Harrold and Samson [1992]).
Moreover the 1-D model of Semson et al. {1991, 1992]
generates field lines which have lengths which decrease
with increasing L shell, so that this model is not & good
approximation to reality [Allan and McDiarmid, 1993].

Using more realistic 2-D cavity models, such as a
dipole, will produce higher waveguide eigenfrequencies
by including the fleld-aligned variation of the com-
pressional waveguide modes more self-consistently {Lee,
1996]. Combining this with more realistic plasma densi-
ties will increase the frequencies of the eigenmodes even
further. To try to circumvent some of these problems,
Harrold and Samson 1992 proposed an extension of
the trapping cavity out to the bow shock rather than
just to the magnetopause. In their model, the reflectiv-
ity of the magnetopause was low, and because of both
the extension of the dimensions of the cavity and the
low sound and Alfvén speeds in the magnetosheath it
was able to significantly lower the eigenfrequencies of
the waveguide modes. All these studies assume that
the outer boundary {(usually the magnetopause, but also
the bow shock) acts as a perfect reflector, so that the
waveguide modes possess a nodal boundary condition
there.
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In contrast, our results show that the overrefiected
cavity modes, which we propose are the drivers of the
observed discrete FLRs, more closely adopt an antin-
odal boundary condition at the magnetopause, the ra-
dial (z) wavenumbers k., (equation (23)) in our uni-
form magnetospheric model forming a harmonic series
of near quarter-wavelength modes. Allowing the mag-
netopause to impose a near antinodal boundary condi-
tion can significantly lower the eigenfrequencies of the
overrefiected modes which are supported by the waveg-
uide bounded by the magnetopause. Models which in-
corporate this boundary condition in a realistic simula-
tion may be able to produce approximately millihertz
eigenfrequencies between the magnetopause and an in-
ner wave turning point without having to resort to the
adoption of unusually high values for magnetospheric
plasma density.

6. Conclusions

We have presented a model for the excitation of mag-
netospheric waveguide modes by considering a bounded
magnetosphere coupled to a semi-infinite flowing mag-
netosheath by a sheet magnetopause. This model can
explain a number of features of Pc5 FLRs, which are
believed to be driven by the compressional modes sup-
ported by the waveguide:

1. Body type waveguide modes, with phase speeds
greater than the fast magnetoacoustic speed, have fre-
quencies which are determined by the natural frequen-
cies of the waveguide. In contrast to models which pre-
viously assumed that these modes could be trapped in-
side a perfectly reflecting magnetopause, we ind that
near the subsoler point they are usually leaky, wave
trapping only being possible further toward the flanks
where the magnetosheath flow speed is sufficiently fast
so that U + ¢; > ¢4, where ¢, is the sound speed in
the magnetosheath, and ¢4 is the Alfvén speed just in-
side the magnetopause and U is the magnetosheath flow
speed.

2. For conditions of fast solar wind speed, so that the
condition U > ¢; + ¢4 can be satisfied on the flanks,
flank waveguide modes can become overreflected, grow
in time, and be energized by the transport of energy
across the magnetopause into the magnetosphere.

3. Both the wave trapping and overreflection condi-
tions are more easily satisfled on the flanks of the mage-
tosphere, at the locations where Pc5 FLRs are most
often observed.

4. Observations show a correlation between increased
Pc5 wave power and solar wind speeds which exceed ~
500-600 km s~*. This threshold for significant Pc5 wave
power fits excellently with the criterion that energiza-
tion via overreflection is only possible once U > ¢s+cy4.

5. Overreflected waveguide modes display azimuthal
wavenumber selection, higher harmonics having higher
dominant azimuthal wavenumbers in accordance with
observations.
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6. The overreflected waves are subject to a near
antinodal boundary condition at the magnetopause,
and represent quarter-wavelength radial harmonics.

7. Adopting this antinodal magnetopause boundary
condition, rather than the usually assumed nodal con-
dition, can considerably lower the eigenfrequencies in
a given model waveguide. Hence this modified bound-
ary condition may be able to explain the generation
of millihertz frequency waveguide mode harmonics in a
realistic model without resorting to unreasonably high
magnetospheric plasma densities.

8. Understanding the local time distributions of the
locations of wave trapping and overreflection can help
to distinguish between different possible Pc3 FLR wave
sources, and may provide an explanation for the long
observed dawn/dusk asymmetry in the occurrence of
FLRs. Future studies should examine realistic varia-
tions of the Alfvén, sound, and flow speeds around the
magnetopause and determine at which locations it is
possible for waves to be either trapped or overreflected.
Near the subsolar point the magnetopause is leaky, so
that the magnetosphere is unable to act as a high-Q res-
onant cavity for compressional Pc5 waveguide modes
there. Moreover, since U is low near the nose, it is
very unlikely that overreflected waveguide modes will
be excited there. As we discussed above, however, on
the flanks where the magnetosheath flow speed is in-
creased, waves are much more likely to be trapped and
can be overreflected under conditions of fast solar wind
speed. The general observational distributions of Pc3
wave power mirror the local time distributions of the
likely regions of waveguide mode overreflection, espe-
cially if the duskside magnetopause is stable with re-
spect to overreflection, so that the waveguide modes
needed to drive FLRs cannot grow there.
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