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Abstract We present Cluster measurements of large amplitude electric fields correlated with intense
downward field-aligned currents, observed during a nightside crossing of the auroral zone. The data are
reproduced by a simple model of magnetosphere-ionosphere coupling which, under different conditions,
can also produce a divergent electric field signature in the downward current region, or correlation
between the electric and perturbed magnetic fields. We conclude that strong electric field associated
with intense downward field-aligned current, such as this observation, is a signature of ionospheric
plasma depletion caused by the downward current. It is also shown that the electric field in the downward
current region correlates with downward current density if a background field is present, e.g., due to
magnetospheric convection.

1. Introduction

The coupling of the magnetosphere and ionosphere is mediated, in large part, through a global current
circuit that links the two regions via field-aligned currents. The role of the ionosphere is often represented
simply as a boundary condition through height-integrated conductivities with fixed values, which can
be a good approximation when current systems do not significantly alter the conductivities. The focus of
this paper is to demonstrate that in other circumstances the ionospheric conductivity can be dramatically
altered and lead to a modification of the global current circuit as well as the magnetospheric electric and
magnetic fields that carry these currents. This is most likely to occur on the nightside where ionosphere
plasma density and conductivities are relatively low.

Doe et al. [1993] reported observations of F region density cavities at the base of downward field-aligned
currents. These cavities were adjacent to E region aurora (at the base of upward field-aligned currents)
suggesting the complete system comprised a pair of field-aligned currents closing in the ionosphere via a
Pedersen current. They interpreted the cavity as being formed by ionospheric electrons being removed to
supply the downward current. The observations presented by Aikio et al. [2004] support a similar picture to
that of Doe et al. [1993], but the cavity was seen to form in the E region. Aikio et al. [2004] also noted that
the depleted cavity was associated with an enhanced electric field, which Aikio et al. [1993] and later Blixt
and Brekke [1996] suggested was necessary to drive the required Pedersen current through the region of
reduced conductivity. Ionospheric plasma heating from this electric field can affect recombination rates,
which can reduce the ionospheric plasma density further [Zettergren and Semeter, 2012].

Modeling of magnetosphere-ionosphere (MI) coupling relevant to the above observations has been
performed by several authors [e.g., Doe et al., 1995; Blixt and Brekke, 1996; Karlsson et al., 2005; Zettergren
and Semeter, 2012]. These studies generally represent the magnetosphere as a prescribed current or voltage
source to drive the ionosphere, meaning that the magetospheric solution cannot evolve as a result of the
development of the ionospheric cavity. However, these studies demonstrate convincingly that ionospheric
cavities can be produced by supplying downward field-aligned currents.

Observations of a strong downward current channel situated between two auroral arcs have been studied
by Michell et al. [2008] who identified it as a black stripe in optical data. They observed the width of the
stripe to increase in time, suggesting that the width of the downward current sheet mapping out into the
magnetosphere should also broaden. Cluster data analyzed by both Marklund et al. [2001] and Aikio et al.
[2004] indicate that the magnetospheric downward current sheet can indeed broaden with time for strong
currents and is consistent with ionospheric cavity formation. Hence, it is desirable to relax the assumption

RUSSELL ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9402
http://dx.doi.org/10.1002/2014JA020937


Journal of Geophysical Research: Space Physics 10.1002/2014JA020937

that the magnetosphere can be represented as a fixed voltage or current source and adopt a more dynamic
magnetospheric solution in response to the evolving ionosphere.

Attempts to model MI coupling in such a way that the magnetosphere can respond to changes in iono-
spheric conductivity have been developed by adopting an Alfvén wave model. Streltsov and Lotko [2004],
Cran-McGreehin et al. [2007], and Russell et al. [2010] represent the magnetospheric current via a sum of two
Alfvén waves: One from the magnetosphere that is incident upon the ionosphere, and one that is reflected
from the ionosphere back to the magnetosphere. The reflected wave is affected by the presence of an iono-
spheric density cavity and so allows for a total magnetospheric current that is determined self-consistently
with the ionospheric conductivity. These models all assume a sheet ionosphere represented through
height-integrated conductivities and are able to demonstrate the nonlinear evolution of the coupled system
to form density cavities and also to broaden in width for strong downward currents, as seen in the data.
The formation of small scales can mean that electron inertial effects are important in the reflected wave
[Russell et al., 2013], causing the magnetospheric downward current to exhibit a filamentary structure which
can be mapped from low-altitude satellites (FAST) to higher altitudes (Cluster) [Wright et al., 2008]. Recently,
the Alfvén wave model has been reformulated as a boundary condition that can be used in models which
resolve the vertical structure of the ionosphere but have traditionally used a current or voltage source
boundary condition [Wright and Russell, 2014].

Satellite observations of magnetospheric perpendicular electric and magnetic fields associated with
large-scale field-aligned currents generally satisfy the relation

ΔB∕(𝜇0ΔE) = ΣP, (1)

where ΣP is the height-integrated Pedersen conductivity and ΔB and ΔE are mutually perpendicular. In situ-
ations where ΣP is fairly uniform, this leads to a strong correlation between ΔB and ΔE [e.g., Ishii et al., 1992].
However, in a downward current channel with a cavity, we can expect low ΣP leading to an enhanced elec-
tric field [Streltsov and Marklund, 2006]. From the wave viewpoint the enhanced electric field is associated
with the reflection of an Alfvén wave off a low-conductivity cavity (reflection from an insulator doubles the
incident electric field).

Streltsov and Marklund [2006] showed how an isolated up-down upward current system with a downward
current cavity could be used to explain localized divergent electric fields sitting in the center of the down-
ward current channel. In the present paper we present a new correlation seen in satellite data between the
downward current density and the perpendicular electric field. Observations are summarized in section 2;
section 3 presents a simple Alfvén wave model; section 4 presents simulation results and explains how
the unusual correlation can be produced and what this tells us about the magnetosphere and ionosphere.
Finally, section 5 summarizes our main results.

2. Observations

We present here data from the Electric Fields and Waves (EFW) instrument [Gustafsson et al., 1997] and
Fluxgate Magnetometer (FGM) [Balogh et al., 2001] instruments on the four Cluster spacecraft. The Cluster
spacecraft were launched in 2000 in a polar orbit with an apogee of 19.8 RE and a perigee of 4.0 RE , in
geocentric distance. The data are available from the Cluster Science Archive.

Figure 1 shows data from an auroral zone crossing in the Northern Hemisphere on 25 December 2003.
Ephemeris data are given in the figure, taking C3 as the reference spacecraft. The four panels show the Z
component of the residual magnetic field (ΔBZ,MEE) and the Y component of the electric field (EY,MEE) for
the four Cluster spacecraft C1–C4, with the electric field indicated by the blue curve, and the magnetic
field by the red one. The coordinate system used is the magnetic-field-model, east, equatorward (MEE)
system, where the X component is along a model geomagnetic field, Y is directed toward magnetic east,
and Z is directed equatorward. The residual magnetic field is obtained by subtracting a background
magnetic field determined by smoothing the original measurement with a sliding window with a width of
400 s. The satellite separation at this time was of the order of 200 km.

It is clear from Figure 1 that there is a substantial correlation between these two mutually orthogonal com-
ponents of the electric and magnetic fields over the whole auroral zone crossing and for all four spacecraft.
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Figure 1. Electric and magnetic field data from Cluster for an auroral zone crossing on 25 December 2003 (C1 to C4
shown from top to bottom, respectively). Substantial correlation between BZ,MEE (red) and EY,MEE (blue) at large scales is
readily apparent. Ephemeris data are for C3.

Although this correlation breaks down on the smallest scales, and at some localized regions, we regard it as
a clear indication of ionospheric conditions associated with a relative uniform conductivity.

In Figure 2 data are shown from another auroral zone crossing, in a similar format, although this time we
show both perpendicular components of the electric and magnetic fields. The auroral crossing took place
on 18 February 2004.

The main feature of the data is the crossing of three sheets of field-aligned current, first, a relatively smooth
sheet of upward current approximately 800 km wide, a thinner sheet of downward current (≈250 km), and
finally, a wider sheet of predominantly upward currents (∼1000 km wide). This current system is oriented
with ΔB in the east-west direction, and it remains essentially stationary in space for the whole 200 s period
between the crossings of the central current sheet by C1 and C4. It is apparent that there is no similar
correlation between E and B, as in Figure 1. Instead, there is a local enhancement of the electric field,
associated with the region of positive slope of the residual magnetic field. This is true for all four spacecraft.
If we use the infinite current sheet approximation to estimate the field-aligned current density we get the
results shown in Figure 3, where the field-aligned current is shown in red, together with EZ,MEE. Here we see
that instead the electric field magnitude is very well correlated with the downward field-aligned current.
The fact that the largest electric fields are seen in the region of downward current, and not in the regions
of upward current, is clear indication that the magnetosphere-ionosphere interaction is very different in
these two regions. In particular, we will discuss the difference in modification of ionospheric conductivities
in these two regions.

3. Model

The modeling in this paper implements a two-way electrodynamic coupling between the magnetosphere
and ionosphere, following the approach of Cran-McGreehin et al. [2007] and Russell et al. [2010]. For sim-
plicity of illustration, we consider a one-dimensional system, which is sufficient to produce the effects of
interest. The coordinate system used for the modeling sets z as vertically upward, y as poleward, and x as
the remaining (east-west) coordinate. This is different to the MEE coordinate system used in section 2, but
it maintains consistency with previous modeling work. The geomagnetic field close to the ionosphere is
approximated as uniform and vertical with B0 =B0ẑ (B0 <0 in the Northern Hemisphere) and invariance is
assumed in the x direction.
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Figure 2. Electric and magnetic field data from Cluster for an auroral zone crossing on 18 February 2004. Black = C1,
red = C2, green = C3, and blue = C4. Ephemeris data are for C3. The dominant feature is system of field-aligned current
with magnetic perturbations oriented east-west and no correlation between E and B. Instead, E is enhanced in the region
of positive slope of residual B.
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Figure 3. Perpendicular electric field from the 18 February 2004 auroral crossing (blue) and the field-aligned current
obtained under the infinite current sheet approximation (red). These are very well correlated in the region of downward
current. C1 to C4 are shown from top to bottom, respectively, and ephemeris data are for C3.
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The magnetospheric part of the model is governed by ideal magnetohydrodynamics. Far from the iono-
sphere, an electric field is generated that propagates downward as an incident Alfvén wave. The electric and
magnetic field perturbations of this incident wave are Ei = Eiŷ and bi = bix̂, with

Ei = vAbi, (2)

where vA = B∕
√
𝜇0𝜌 is the Alfvén speed [Walén, 1944]. When the incident wave reaches the ionosphere it is

partially reflected, thereby producing an upgoing wave with Er = Erŷ, br = brx̂, and

Er = −vAbr. (3)

The total electric and perpendicular magnetic fields are given by the sum of the incident and reflected wave
fields, which at the MI interface is

ET
y = Ei + Er = Ei(1 + r),

bT
x = bi + br = bi(1 − r), (4)

where r = Er∕Ei defines the electric field reflection coefficient for the ionosphere and br∕bi = −r follows from
equations (2) and (3). Viewing the system in this way, the electric and magnetic fields in the magnetosphere
are determined both by processes far out in the magnetosphere, which determine Ei, and also the state
of the ionosphere, which determines the reflection coefficient r. The incident and reflected Alfvén wave
fields are, in general, functions of y and t. For simplicity we assume that the incident fields are independent
of time; however, the reflected field changes with time as electric currents (due to the waves) modify the
ionospheric reflectivity. It is through this time dependence that we have a magnetospheric solution that
actively responds to the state of the ionosphere.

The ionosphere is represented using a sheet ionosphere approximation. Throughout the ionosphere,

jy = 1
𝜇0

𝜕bx

𝜕z
= 𝜎PEy , (5)

where 𝜎P is the Pedersen conductivity. The Hall conductivity does not appear in this formula because we
have assumed invariance in the x direction and that all electric field in the ionosphere is associated with
Alfvén waves; hence, Ex = 0. Integrating over the thickness of the ionosphere (z from 0 to h) and noting that
jz|z=0 = 0 ⇒ bx|z=0 = 0 for a system of finite horizontal extent,

bx|z=h = 𝜇0∫
h

0
𝜎PEy dz = 𝜇0ΣPEy|z=h. (6)

Here ΣP is the Pedersen conductance of the sheet ionosphere. When Ey maps well across the thickness of

the ionosphere, equation (6) holds with ΣP =∫ h
0 𝜎P dz. This is usually a good approximation for horizontal

length scales greater than 2 km. In situations where Ey is noticeably evanescent in the ionosphere, the same
equation (6) holds with a modification to ΣP that depends on the horizontal wavelength of the electric field
[Wright and Russell, 2014; Lysak, 1991]. This paper considers horizontal scales ≳10km in the ionosphere,
hence the large-scale (low-frequency) limit of ΣP is appropriate and ionospheric reflectivity becomes
independent of the incident wave.

Equation (6) acts as an ionospheric boundary condition for the magnetosphere and determines the
ionospheric reflectivity. Combining it with equations (2)–(4),

r =
1 − ΣP∕ΣA

1 + ΣP∕ΣA
, (7)

where ΣA =1∕(𝜇0vA) is the Alfvén conductance at the base of the magnetosphere. The ionosphere acts as
a good conductor when ΣP ≫ΣA: in this case, the electric fields in the incident and reflected waves cancel
to leave only a small residual total electric field, while the magnetic fields of the waves add together
constructively. In the opposite limit, ΣP ≪ΣA, the ionosphere acts as an insulator: the electric fields of the
waves add constructively and it is the magnetic fields that cancel. Variations of ΣP∕ΣA over position and
between events, and their impact on the magnetospheric fields, are central to the explanation we propose
for the occurrence of different j||-E⊥ relationships.

RUSSELL ET AL. ©2015. American Geophysical Union. All Rights Reserved. 5



Journal of Geophysical Research: Space Physics 10.1002/2014JA020937

The equations given in this section so far provide sufficient information to calculate ET
y and bT

x from known
Ei(y), ΣA, and ΣP(y); however, self-consistency requires that the ionospheric response to ET

y and bT
x is also

considered. Field-aligned currents in the magnetosphere are carried predominantly by the motion of
electrons along the magnetic field. Thus, where upward (downward) magnetospheric currents meet the
ionosphere, electrons will be added (removed) from the ionosphere, changing the electron density from its
value in the absence of this additional source (sink). Equivalently, one may consider the Pedersen current
that closes the current system in the ionosphere. This is carried by horizontal ion drifts in the direction of
the electric field (made possible by ion-neutral collisions) that modify the ion density. Changes to electron
and ion density occur in step, as required by quasi-neutrality, and they lead to temporal and spatial
variations of ΣP .

In the model, plasma density is followed using the electron continuity equation:

𝜕n
𝜕t

= 1
e

𝜕jz

𝜕z
− 𝛼(z)n2 + s(z), (8)

where n is the plasma number density, e the fundamental charge, jz the vertical current density, 𝛼(z) the
(height-dependent) recombination rate, and s(z) a source term. The terms on the right-hand side represent,
from left to right: addition (removal) of charge by electric currents, recombination, and production by a
background ionization source, e.g., sunlight, starlight, or cosmic rays. Integrating equation (8) from z=0 to
h and using jz|z=0, the height-integrated plasma density obeys

𝜕N
𝜕t

=
jz|z=h

e
− ∫

h

0
𝛼n2 dz + S, (9)

where S is the height-integrated production rate. In the sheet ionosphere approximation, the recombination
term is assumed proportional to N2 and can therefore be rewritten as SN2∕N2

0, where N0 is the steady state
height-integrated plasma density when currents are absent. It is also informative to note that the magnitude
of the strongest downward current that can be drawn from the ionosphere in a steady state is

jc = eS, (10)

which places a limit on steady state jz , which is approached when downward current has evacuated the
ionosphere and made recombination negligible. It follows that equation (9) becomes

𝜕N
𝜕t

=
jz

e
+

jc

e

(
1 − N2

N2
0

)
. (11)

The model is completed by assuming that ΣP for the sheet ionosphere is proportional to N, i.e.,

ΣP =
ΣP0

N0
N. (12)

Summarizing, the impact of electric and magnetic fields on ionospheric reflectivity is encapsulated by
equations (11), (12), and (7), while the effect of ionospheric reflectivity on the electric and magnetic fields is
described by equation (4). This constitutes two-way electrodynamic feedback between the magnetosphere
and ionosphere. In practice, the model system can be reduced to a single governing equation by combining
equations (2), (4), (7), (9), and (12) with the z component of Ampère’s law,

jz = − 1
𝜇0

𝜕bx

𝜕y
, (13)

to give

𝜕N
𝜕t

=
jc

e

(
1 − N2

N2
0

)
−

2ΣP0

e𝜇0ΣA

𝜕

𝜕y

(
bi(N∕N0)

1 + (ΣP0∕ΣA)(N∕N0)

)
. (14)

For this paper, N is evolved numerically from an initial state, N=N0, to a steady state for a specified bi, by
solving equation (14). Details of the numerical scheme are given by Russell [2010]. Once the steady state is
obtained, Ey , jz , and ΣP (which are all consistent with one another) are readily evaluated and compared.
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Figure 4. Magnetic field perturbation of the incident wave
used to drive the simulation (blue) and the corresponding
field-aligned current density, ji =(𝜕bi∕𝜕y)∕𝜇0 (red). The driver
is plotted for bfac =45 nT, s=75 km, and 𝛼=20 in the presence
of a background incident wave with bbg∕bfac =1.5. Dotted
lines indicate the width of the downward current in the
incident wave.

4. Results

Our main goal is to show how the correlated
E⊥-j|| signature observed by Cluster (Figure 3)
can result from self-consistent MI coupling. To
do so, simulations were driven with an incident
wave designed to produce a magnetic field
similar to the observation (Figure 2, first panel),
using a geometrical factor of 10 to approxi-
mately map observed length scales and field
values to ionospheric altitude. The main feature
is a field-aligned current system comprising
a narrow region of downward current sand-
wiched between two much broader (hence
much weaker) upward currents. A uniform
background component was also permitted
to include situations where the observed

current system is embedded in a larger-scale system, such as one associated with a wider auroral arc or due
to global convection. Given these requirements, the driver used was

bi = bfac exp

(
−
(y − y0)2

2s2

)
erf

(
𝛼
(y − y0)√

2s

)
+ bbg, (15)

and the simulated total magnetic field matched the mapped observation well for bfac =45 nT, s=75 km,
and 𝛼=20. Figure 4 plots bi for these parameters and the corresponding current structure, ji =(𝜕bi∕𝜕y)∕𝜇0.
Note that the functional form of bi corresponds to a simple pattern of two oppositely directed flows
superimposed on the background convection.

The other important parameters are the conductance ratio ΣP0∕ΣA, the strength of downward current
density compared to the maximum that can be drawn from the ionosphere in a steady state, quantified as
2|ji|∕jc where 𝜇0|ji|=min(−𝜕bi∕𝜕y), and the strength of the background incident wave compared to the
amplitude of the incident wave associated with the field-aligned currents, bbg∕bfac. These quantities were
not constrained by the available observations, so they were varied within bounds appropriate to the time
and location of the ionospheric foot point and typical large-scale auroral electric fields to determine a set of
realistic values that reproduce the observation.

Figure 5 presents results from a simulation that produces the desired signature, showing a clear correlation
between total E⊥ and j|| in the downward current region, of the type observed by Cluster (Figure 3). The

Figure 5. Simulation results reproducing the observed correla-
tion between j|| and E⊥ . For this run, ΣP0∕ΣA =50, 2|ji|∕jc =1.2,
and bbg∕bfac =1.5. Dotted lines indicate the width of the
downward current in the incident wave.

amplitudes of the normal electric field and cur-
rent density also closely match the observed
values mapped to the top of the ionosphere.
The location of the correlation corresponds to
a significant conductivity depletion in the iono-
sphere, produced by the downward current,
and we suggest that magnetospheric mea-
surements like those presented in Figures 2
and 3 should be interpreted as signatures of
ionospheric density cavities.

The parameters used to obtain the corre-
lated signature in Figure 5 were ΣA =0.1 mho,
ΣP0 =5 mho, 2|ji|∕jc =1.2, and bbg∕bfac =1.5.
Three considerations explain the success
of these values and will be discussed
momentarily. The discussion is aided if we
notice that the steady state limit of (11) gives

N = N0

√
1 −

jz

jc
, (16)

RUSSELL ET AL. ©2015. American Geophysical Union. All Rights Reserved. 7
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Figure 6. Simulation results showing correlation of perpen-
dicular electric and magnetic fields. For this run, ΣP0∕ΣA =50,
2|ji|∕jc =0.1, and bbg∕bfac =0. Diamonds show b⊥∕(𝜇0ΣP0),
which matches E⊥ extremely well because of the small extent of
the conductivity depletion.

which can be combined with equations (4) and
(7), to obtain the steady state equation

ET
y =

2Ei

1 + (ΣP0∕ΣA)
√

1 + jz∕jc

. (17)

The conductance ratio ΣP0∕ΣA =50≫1 means
that the ionosphere acts as a good conductor
outside the downward current region. Hence,
the incident and reflected electric fields cancel
there, leaving a reasonably small value which is
tens of mV in our simulation. This is confirmed
by noting that equation (17) gives ET

y ≪2Ei in
upward or zero current regions for ΣP0 ≫ΣA.

Having limited the electric field outside the
downward current, correlation of E⊥ and j||
requires that the total electric field is large
in the downward current compared to the
modest values outside it. This is the role of the
density cavity. If the downward current density

is strong enough to deplete ionospheric density and create a cavity, then the ionosphere can locally become
electrically insulating. In this location, incident and reflected waves do not cancel, so the perpendicular
electric field can be much stronger than that seen outside the density cavity. For the simulation shown in
Figure 5, E⊥ in the downward current region reaches 140 mV/m in this way.

Reconciling this qualitative description with the steady state equations, equation (16) shows that the
downward current density cannot exceed −jc in the steady state (otherwise N would become imaginary).
Furthermore, a strong density cavity (N≪N0) corresponds to jz approaching −jc, which implies by
equation (17) that ET

y approaches its largest possible value of 2Ei. This also helps to identify what constitutes
strong downward current density. Seeking jz in the steady state similar to −jc and noting that jz is weaker
than 2|ji|, the j||-E⊥ correlation is expected in simulations for which 2|ji|> jc. (The ratio 2|ji|∕jc has previously
been shown to play an important role in determining the nature of the steady state [Russell et al., 2010]
and whether or not the downward current broadens [Cran-McGreehin et al., 2007; Russell et al., 2013]).
Parameter studies confirm this: setting 2|ji|∕jc ≲1 weakens both the depletion and the correlation. Indeed,
for the limit jz ≪ jc, ionospheric reflectivity remains reasonably uniform and the simulations readily produce
the long-recognized E⊥ ∝ 𝛿B shown in the observation in Figure 1. A simulation example is presented in

Figure 7. Simulation results showing an E⊥-j|| correlation that
is distorted due to strong broadening of the downward current
region and associated flattening of the downward current. For
this run, ΣP0∕ΣA = 50, 2|ji|∕jc = 2.0, and bbg∕bfac = 1.5.

Figure 6, where 2|ji|∕jc =0.1 leads to a steady
state in which b⊥≈𝜇0ΣP0E⊥, consistent with the
discussion in section 1.

There are also limits to how large 2|ji|∕jc can
be and still produce a clean E⊥-j|| correlation
like the one observed by Cluster in Figure 3.
This is because values 2|ji|∕jc ≳ 2 cause sig-
nificant broadening of the downward current,
which results in steady state profiles where
jz ≈−jc over a significant portion of the down-
ward channel while Ey retains a peaked profile.
This is demonstrated in Figure 7, which shows
results from a simulation that has 2|ji|∕jc =2
but otherwise is performed with driving and
parameters identical to the one presented
in Figure 5.

The last requirement is that Ei (equivalently bi)
should not change sign in the downward
current region, otherwise ET

y would change

RUSSELL ET AL. ©2015. American Geophysical Union. All Rights Reserved. 8
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Figure 8. Simulation results showing a divergent electric field
in the downward current region. For this run, ΣP0∕ΣA = 50,
2|ji|∕jc = 1.2, and bbg∕bfac = 0.

sign, breaking the observed correlation in
Figure 3 (it is readily seen from equation (17)
that sign(ET

y )=sign(Ei)). For our model and
driver, this condition requires a background
electric field strong enough to ensure
Ebg∕Efac =bbg∕bfac >1. Exploring this aspect
further, Figure 8 presents results from a simu-
lation with no background electric field, with
driving and parameters otherwise identical to
the simulation that produced the correlated
E⊥-j|| signature shown in Figure 5. The electric
field signature is again dominated by the
strong field in the downward current region,
but this time it has a divergent character and
the electric field amplitude is considerably
lower because of the electric field node. This
limit recovers the signature analyzed in detail
by Streltsov and Marklund [2006]. Like them,
we find that this signature is associated with

ionospheric density cavities. The distinction between this signature and the correlated E⊥-j|| signature
(Figures 3 and 5) is the absence or presence of a background convection electric field.

5. Summary

This paper has presented an observation recorded by the Cluster satellites of a large amplitude electric
field correlated with an intense downward field-aligned current and demonstrated that this signature is
reproduced by a self-consistent model of magnetosphere-ionosphere coupling. From the modeling, it has
been found that the conditions for a correlation between E⊥ and j|| in the downward current are ionospheric
depletion leading to an ionospheric density cavity and presence of a larger-scale background electric field,
e.g., due to magnetospheric convection.

The self-consistent MI coupling model we have employed is based on a dynamic wave picture in which
the ionosphere is driven by an incident Alfvén wave generated by processes in the magnetosphere. The
incident wave plus its reflection from the ionosphere provides the total wave fields that are observed in the
magnetosphere. For example, a uniform convection of magnetospheric plasma over the ionosphere can
be achieved by simply setting the incident Alfvén wave bi =bbg in equation (15) where bbg is a constant.
Here we have neglected the field-aligned current system in equation (15) by simply setting bfac =0. There
will also be a uniform background electric field in the incident Alfvén wave according to equation (2).
If this Alfvén wave reflects off a uniform highly conducting ionosphere (ΣP∕ΣA >1), then the reflected
wave acts to reduce the total ET

y to a fraction of the incident value, while producing a total magnetic
field bT

x ≈2bi. The fact that there is a significant magnetic field at the base of the magnetosphere means
there is Pedersen current associated with the background convection. However, because there is a highly
conducting ionosphere, only a small electric field is required to drive it as indicated by Ohm’s law and the
small value of ET

y . This is the self-consistent view of background magnetospheric convection from the Alfvén
wave perspective.

Field-aligned currents and magnetosphere-ionosphere coupling are often described in terms of electrical
current circuits and this provides a complementary interpretation. Figure 9 (left) shows a large-scale current
system, where magnetospheric convection produces broad upward and downward field-aligned currents,
which close as Pedersen current, JP , in the ionosphere. Note that JP is largest between the upward and
downward current regions. The horizontal electric field needed to drive the Pedersen current, given uniform
ΣP , is also sketched in the figure. More realistically, the field-aligned currents add or remove electrons from
the ionosphere and thereby modify the Pedersen conductivity, so ΣP is slightly enhanced in upward current
regions and decreased in downward current regions. However, for the relatively weak field-aligned current
densities associated with a large-scale system, the effect of the modified conductivities on the electric field
is not dramatic. If one looks locally at some small subregion near the center of the current system (i.e., near
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Figure 9. Current circuit cartoon of conditions giving the E⊥-j|| observed by Cluster and reproduced in our model. (left)
A large-scale current system in which broad upward and downward field-aligned currents close in the ionosphere as
Pedersen current. (right) Adding an intense downward field-aligned current locally depletes the ionosphere and makes it
more electrically insulating. In the cavity, a strong electric field is required to drive the Pedersen current associated with
the large-scale background current system.

to where JP is largest), then one finds significant background values of bx and Ey which vary little over the
scale of interest, consistent with the wave description of background convection outlined above.

If we now introduce a localized intense field-aligned current system by having bfac ≠0 in equation (15), how
does the system adjust? The effect of the new field-aligned currents is twofold. First, they too must close via
Pedersen current, although the contribution to JP will be small if the total current in the small-scale system
is small compared to the total current in the background system. Second, the intense field-aligned currents
also modify the Pedersen conductivity, only this time the impact of an intense downward current density on
ΣP may be substantial, creating an ionospheric density cavity. From the wave viewpoint a density cavity will
affect the reflection properties. In the highly conducting (upward current regions) the ET

y will remain small.
However, in the depleted downward current region ΣP may drop making it a poor conductor. Here ET

y will
be enhanced due to the incident and reflected Alfvén wave fields being in phase. Importantly, we find that
a large perpendicular ET

y may occur where ΣP is reduced, and this will occur in the downward current region.
This is the novel correlation seen in Figure 3 that we set out to explain. This scenario is also sketched as a
current circuit, in Figure 9 (right). If the small-scale downward current depletes ΣP while the local Pedersen
current is dominated by the large scale system, then Ohm’s law will require an electric field Ey = JP∕ΣP that
is locally enhanced to maintain current closure. This may be significantly larger than the Ey outside the
depletion; hence, the correlated signature is recovered.

Of course, a fully self-consistent picture will need to recognize that a seriously evacuated ionosphere may
struggle to carry any current, so the original current would need to close elsewhere. Such self-consistency is
realized easily in the wave description as the maximum electric field that can be achieved is twice Ei . Hence,
an upper limit for the Pedersen current is JP =2EiΣP , and if the Pedersen current exceeds this then the system
will adjust by reducing the downward current by having the br largely cancel bi where the conductivity
is low,and hence limit the downward field-aligned current density. Other behavior identified in the wave
picture includes allowing the downward current region to broaden in space so that sufficient ionospheric
electrons may be accessed to feed j∥ [Cran-McGreehin et al., 2007; Russell et al., 2010].

If the Cluster data presented in Figures 2 and 3 is interpreted as the magnetospheric signature of
magnetosphere-ionosphere coupling, as we suggest, then several inferences can be made about conditions
during the event. First, the observed correlation between E⊥ and j∥ in the downward current region suggests
that the small-scale current system was embedded in a much larger system, which provided a significant
background Pedersen current in the ionosphere but is not readily apparent in the processed Cluster data.
Were this not the case, then we would expect the electric field to have a bipolar signature in the downward
current region, similar to that shown in Figure 8 and discussed previously by Streltsov and Marklund [2006],
or a hybrid signature in the case of a low background Pedersen current. The Regions 1 and 2 Birkeland
currents are a natural candidate for the background current system. Second, the cleanness of the signature
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suggests that the ionosphere was acting as a good conductor outside the downward current region, with
ΣP ≫ΣA giving a small electric field there, while the downward current density was strong enough to
significantly change the ionospheric reflectivity inside the corresponding density cavity.

The values and profiles of the downward current density also lead to some interesting remarks. The peak
value of j∥ measured by Cluster was between 0.16𝜇Am−2 (C1) and 0.08𝜇Am−2 (C4). Mapped geometrically to
the ionosphere and neglecting attenuation along the field line, this suggests that ionization sources in the
ionosphere were able to support downward currents of the order of 8 to 16𝜇Am−2. Furthermore, C4 was the
last spacecraft to pass through the downward current region, and it measured both the lowest peak current
density and the strongest peak electric field. There is also some suggestion in Figure 3 that the current
profile recorded by C4 is flatter than those recorded by the other spacecraft. This may suggest that the
system was not in a steady state throughout the entire 200 s duration of the encounter, but rather that the
density cavity was still evolving to its most depleted state, which the data from C4 indicates would be similar
to the simulation steady state shown in Figure 7. Spatial separation between the tracks of the four spacecraft
means some caution is needed in interpreting differences between the four spacecraft as time evolution.
However, if this interpretation were used, then a critical current density of about jc ≈8𝜇Am−2 would be
implied, with the initial downward current density comfortably exceeding this (jz ≳16𝜇Am−2 implied by
data from C1), i.e., ideal conditions for ionospheric depletion and current broadening [Cran-McGreehin et al.,
2007; Russell et al., 2010, 2013].

Finally, our modeling has demonstrated that self-consistent MI coupling can produce strong electric fields
in downward field-aligned currents, and the results appear to be consistent with the Cluster observations
presented in section 2; however, proving conclusively that the ionosphere played an important role
ultimately requires observations of the ionosphere at the magnetic foot point, which we do not have for the
18 February 2004 auroral crossing. The best case scenario would be to have conjugate data from incoherent
scatter radar, which could confirm (or rule out) the presence of a density cavity in the downward current
region. So far, we have been unable to find a similar event for which complementary observations are
available, but we suggest that acquisition of such data could form the basis of a valuable future campaign.
Additional evidence for an ionospheric role could also be obtained less directly by simultaneous observation
of field-aligned currents in conjugate hemispheres, or from the statistical occurrence of events displaying
j||-E⊥ correlations or the bipolar signature discussed by Streltsov and Marklund [2006]. The intention would
be to explore the relation between occurrence rate and ionospheric conditions since our modeling predicts
that strong electric fields appear in the downward current more commonly when the ionosphere is more
easily depleted.
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