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Abstract. Magnetic pulsations are a robust feature of the Earth’s magnetosphere.
It has been suggested recently that the magnetosphere is sometimes better modeled
as a waveguide rather than a cavity. This paper presents numerical simulations of
linear magnetohydrodynamic (MHD) waves in an inhomogeneous, low-3 waveguide.
Several features predicted by recent theoretical studies are confirmed in our

simulations, notably that Alfvén resonances are driven at frequencies corresponding

to the natural frequency of the fast waveguide modes with V, = 0 (k, = 0).

1. Introduction

A characteristic signature of the Earth’s magneto-
sphere is that provided by so-called magnetic pulsa-
tions. This paper concentrates upon the type of pul-
sations commonly referred to as toroidal or azimuthal
Alfvén pulsations. Over a wide range of magnetospheric
conditions it is observed that the natural frequencies as-
sociated with these pulsations remain largely unaltered.
This result is surprising, given the rich variety of pos-
sible wave structures that a three-dimensional magne-
tosphere can produce. The challenge is to provide an
explanantion for these results.

The resonant coupling of fast and Alfvén waves in
a magnetospheric context dates back to the studies
of Southwood [1974] and Chen and Hasegawa [1974].
More recently, the “cavity mode model” of Aivelson and
Southwood [1985] has enjoyed much success in explain-
ing observations and features of numerical solutions [Al-
lan et al., 1986, Inhester, 1987, Lee and Lysak, 1989].

Plasmaspheric pulsations may be considered as ex-
isting in an approximately axisymmetric cavity. Az-
imuthal and field aligned wave numbers together with
radial boundary conditions determine a discrete set of
fast mode eigenfrequencies. These fast cavity modes
may drive a discrete set of Alfvén resonances (pulsa-
tions).

Pulsations in the middle and outer magnetosphere
(L 2 5) cannot be thought of as existing in a cavity;
this region of the magnetosphere is not axisymmetric
and has an open-ended magnetotail. Recent studies by
Samson et al. [1992] and Walker et al. [1992] sugggest
that we treat this part of the magnetosphere as an in-
homogeneous waveguide rather than a cavity.

The idea of a waveguide in magnetospheric and so-
lar plasmas is not new. The geomagnetic tail has been
described as a waveguide for over a quarter of a cen-
tury [McClay and Radoski, 1967, Hopcraft and Smath,
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1986, Edwin et al., 1986]. The propagation and dis-
persive properties of the fast wave in an MHD waveg-
uide have also been developed for solar coronal appli-
cations using identical equations to those previously in-
vestigated in the context of ducted seismic and oceano-
graphic waves [see Roberts et al [1984], and references
therein]. However, it is only recently that the notion
of a waveguide has been applied to the dawn and dusk
flanks of the magnetosphere [ Walker et al., 1992]. The
flanks produce a waveguide in which the equilibrium
field is directed across the the guide, in contrast to the
tail waveguide which has the field along the guide. The
characteristic dispersion in these two models is quite
different [Edwin et al., 1986, Wright, 1994].

One important difference between a waveguide and a
cavity is that the absence of boundaries along the guide
allows the wave number in that direction to adopt a
continuous range of values. Thus the natural frequen-
cies of the fast waveguide modes do not have a discrete
spectrum as in the cavity model, and it is not obvious
why Alfvén resonances (pulsations) should be excited at
particular frequencies. Harrold and Samson [1992] cir-
cumvented this problem by considering solutions with
a single value of ky, thus producing a discrete set of
fast eigenfrequencies. Both Walker et al [1992] and
Wright [1994] have proposed mechanisms that should
excite pulsations at the k, = 0 fast eigenfrequencies. In
this paper we investigate the mechanisms suggested by
Wright [1994].

The waveguide theory developed to date provides
qualitative rather than quantitative results concerning
the magnetosphere. In an attempt to redress the bal-
ance this paper presents numerical simulations of MIID
wave propagation in a waveguide. The simulations form
a half-way house towards a “complete” description in
that the qualitative theory can be readily tested but
that true magnetospheric parameters still remain out
of reach. However, we believe the behavior found in
the present waveguide simulations to be generic of in-
homogeneous waveguides and should be a useful guide
to predicting and interpreting features of more realistic
waveguides.
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Numerical simulations have of course been applied to
the cavity model in the past [Allan et al., 1986, Inhester,
1987, Lee and Lysak, 1989]. To our knowledge, this is
the first time that an open-ended waveguide (as opposed
to a cavity) has been modeled. The open waveguide is
not conceptually difficult to simulate, although it can
consume large amounts of computer time.

The layout of the paper is as follows. In section 2
we present the basic equations defining the waveguide
model. A brief review of the theoretical background
is also given, along with some predictions relevant to
our simulations. The numerical method is outlined is
outlined in section 3, followed by the results in section
4. We close with some conclusions and a discussion
concerning our results.

2. Theory

Our magnetospheric waveguide is based upon the
traditional hydromagnetic box model of Kivelson and
Southwood [1986], which has uniform magnetic field
B = Bz, X represents the radial direction, and y is a
coordinate around the Earth. In the waveguide model
we allow the box to have an infinite length in y. The
(z,y) coordinates are then better interpreted as dis-
tance across the waveguide and distance around the
flanks and on into the magnetotail, respectively (see
Figure 1). The density is solely a function of . The
boundaries at z = 0 and & = z,, are taken to be per-
fectly reflecting (€, = 0), as are the ionospheric bound-
aries represented by planes at constant z on which the
displacement £ vanishes.

For simplicity we assume the plasma to have a low
3, so our model approximates magnetospheric plasma
better than the magnetosheath plasma. Neglecting re-
sistivity the governing equations for the linear plasma
displacement (§) and the compressional magnetic field
(b,) perturbations are
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where V = B/,/jop is the local Alfvén speed and p the
plasma density.

Any disturbance in the waveguide may be written as
a sum over the normal modes of the guide. For each
mode we may prescribe wave numbers in the y and z
directions. Note that ionospheric boundary conditions
requiring & = 0 quantizes the wave number k,. Thus
a general disturbance would involve a Fourier sum over
all permissable k,. There are no boundary conditions
in y to quantize ky, and accordingly k, may take a con-
tinuous range of values. A general disturbance in y will
involve a Fourier integral over ky (which may be thought
of as the limit of a Fourier sum).
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Figure 1. Geometry of the magnetospheric waveguide.

Once ky and k; have been chosen we need to solve
for the variation in @ and the frequency w of the mode.
Seeking normal modes of the form b,(z) exp ijwt+k,y+
k. z], the governing equations (1)-(3) yield the following
familiar equation for b,:

d’b, w2dV~?/dz db,
dz?  W?/V?—k? da

w? 2 _ 12
+(V—,_,-—ky—kz) ., =0. (4)
This equation has a singularity at z,, where

w? = kVa,) (5)

and corresponds to the position where the local Alfvén
frequency matches the frequency of the waveguide mode.

In the lowest-order WKB analysis we may neglect
the second term in (4) and solve the following reduced
wave equation in the propagating region [Inhester, 1987,
Wright, 1994]:

d?b,
da?

+<‘;—;—k§—k3) b, = 0. (6)

We see that the effective local wave number in 2 is given

by
k2 (2, w) g (7)
Lé(x,w) = — k= k-
T ‘/’2(13) Y g
and note that k, is now an explicit function of 2 through
the nonuniformity of the Alfvén speed, V(z). Evidently,

k2 changes sign about the point z;, where
w? = V(xy)(k2 + k2). (8)

The position z; is referred to as the turning point. The
value of b, changes from being oscillatory to evanescent
in « on crossing x;. The Bohr-Sommerfeld (or phase
integral) condition which the wave must satisfy is

Lm
/ ky(z)dz = (n + a)m; n=1,2.. (9)
Ty

The phase factor « is determined by the boundary con-
ditions in z. For example, if the mode is reflected off
both boundaries at z = 0, z,,, then @ = 0, whereas
if the mode has a turning point then a = —1/4. The
value of a is actually a weak function of ky: changing
ky for a given mode may actually introduce or remove
a turning point from the solution. However, unless z; is
close to z = 0 (zkz(z¢,w) S O(1)), o varies very slowly
with k, and may be taken as a constant [Walker et al.,
1992, Wright, 1994].
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For the model waveguide used in the present study
(see section 4 for a definition) we have calculated wy(ky)

for the first two modes in x that have a fundamental
field-aligned dependence by solving (9). The solutions
are shown in Figure 2. The n = 1 mode (the fundamen-
tal mode in z) always has a turning point, even when
ky = 0. The n = 2 mode (second harmonic structure
in z) has a turning point appear in its solution around
kyzm &~ 2. On the interval 1 < kyz, < 3 the fac-
tor a changes essentially from 0 to —1/4 for n = 2.
Rather than calculate the complicated function a(ky),
we simply interpolated the curve over this interval for
the second harmonic.

The phase velocity of any mode is simply w/k, and
may be estimated directly from the dispersion diagram
(Figure 2). The group velocity along y of a mode is
given by 8w/0k, and so is the gradient of the disper-
sion diagram. A WKB estimate of the group velocity
may be derived. Following Walker et al. [1992] and
Wright [1994], we substitute (7) into (9) and differenti-
ating with respect to ky, assuming « to be a constant,
we find the group velocity in y

0w ky 9y
Vg - 5—]\,"—3; R <V ) ’ (10)
where
T T
(V_2>=/ v-'-’lcgldm// krlde.  (11)
Tt Tt

The resultant group velocity curves are shown in Fig-
ure 3. (Note that we have again interpolated the n = 2
curve over 1 < kyz, < 3 to allow for the fact that o
is a function of k,.) For very large k, we see that all
the group velocities asymptote to the horizontal dashed
line, which represents the Alfvén speed at z = z,, (see
Wright [1994] for a discussion of the form of the group
velocities and a physical interpretation). It is evident
from the group velocity diagram that different k, com-
ponents of the wave will propagate information along
the waveguide at different speeds, and result in disper-
sive behavior of the fast mode.
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Figure 2. The fast mode dispersion diagiram for the
first two eigenmodes n = 1 and n = 2 in the waveguide
(k, = ).
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Figure 3. Group velocity V; against ky for the disper-
sion diagram in Figure 2. The horizontal dashed line
denotes the asymptotic group velocity of 0.231 for large
ky. The dashed-dotted curves represent the amplitude
of the Fourier k, spectrum of the initial disturbance in
y plotted in arbitrary units for different Ay, values (see
section 4).

Wright [1994] has argued that a general source of
fast mode waves in the waveguide may subsequently
excite Alfvén resonances at the natural frequencies of
the ky, =~ 0 fast waveguide modes. Moreover, these
resonances should grow close to the initial fast mode
source. These predictions are based upon the fact that
for a resonance to grow, the resonant field line must
be excited for at least a few cycles with a temporally
coherent driver. The resonant Alfvén wave will man-
ifest itself as &, and from (2) it is apparent that the
magnetic pressure gradient in y (ox 9b, /Jy) acts as the
driver.

It is also suggested by Wright [1994] that natural
waveguide dispersion will select modes with &k, ~ 0 as
the most suitable drivers. The two main reasons be-
ing that (1) the natural fast frequency is approximately
independent of k, for small k, (so the driver has a co-
herent time dependence), and (2) the ky, ~ 0 modes do
not propagate along the waveguide, so they may drive a
particular field line for several cycles and thereby allow
a resonance to develop.

The numerical experiments in the succeeding sec-
tions place a disturbance in the waveguide and study
the subsequent wave propagation and coupling. We do
not address the origin of the initial perturbation. (For
example, pressure pulses from the solar wind could hit
the magnetopause and propagate a localized fast mode
into the magnetospheric waveguide.)

3. Numerical Model

Data shows that the most readily observed pulsations
are fundamental along B. Accordingly, we shall restrict
our attention to a single Fourier mode in z, so that
all dependent variables are then functions of z, y, and
time ¢ only. Perfectly reflecting conditions are used at
each end in z, representing, perhaps, the magnetopause
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and plasmapause boundaries. Symmetry conditions at
y = 0 along the Sun-Earth line are used, while, in keep-
ing with our waveguide model, the other y boundary is
taken to be open.

We normalize magnetic field by B, density by p(x) at
z = 0 the plasmapause, and length by the width of the
waveguide z,,, say. The characteristic speed is taken
to be the Alfvén speed at & = 0 (V(z = 0)), giving a
characteristic time in terms of the Alfvén transit time
across the domain, 2,,/V (2 = 0). In this geometry the
governing dimensionless equations reduce to

ou
& =¥, (12)
where
Uy —(k:by +0,,2) /p
Uy = (k:by +0,,9) /p
U= b;,; y F= kzuzv
by kuy
b, = (g, T + Uy, Y)

where k, = 2w/A,. Here, in the usual notation, b,,z
means partial differentiation of b, with respect to x. It
is clear that we have now expressed the governing set
as five first-order partial differential equations (pdes) by
introducing u; = &;,t and uy = &,,t rather than the
three original second-order pdes.

This system is integrated forward in time using the
leapfrog-trapezoidal algorithm [Zalesak, 1979]. Assum-
ing we know U at times ¢ and t — At, where At is the
time step, then

Ut = U2 4 2A¢FY, (13)
1

F* = -2-(F’ +F), (14)

U'tAt = Ut + AtF*. (15)

The operations in (14) and (15) are used to damp the
computational mode inherent in the leapfrog step equa-
tion (13); (14) and (15) represent the “trapezoidal” part
of the algorithm. The spatial operators in F are resolved
using centered finite differences. Putting these together
results in an algorithm that is second-order accurate in
both space and time.

The advantage of this algorithm is its simplicity, and
boundary conditions are easily incorporated. Its main
weaknesses lie in the three-level nature of the scheme.
At any instant we need to know U at two time levels.
This means increased storage, as well as the complica-
tion of requiring a different time stepping algorithm to
start. At present we use a series of small explicit steps
with typically a time step of At/10 to find our first
new level. Thereafter, the leapfrog-trapezoidal scheme
is used. This procedure seems to give accurate results
and does not appear to result in any numerical insta-
bilities.

Since we are dealing with a linear system, the fastest
propagation speed is known a priori. We simply set
our fixed time step to be a fraction of the shortest grid
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transit time. Diagnostic checks on the energy and on
the magnetic field divergence reveal that these are con-
served to at least six decimal places relative to our of
order one normalized system of units. The code so-
lutions also compare favorably with other independent
calculations (I.R. Mann and A.N. Wright personal com-
munication, 1994) and converge correctly when using
reduced time steps and mesh spacings.

We use different (constant) grids spacings in z and
y. One of the shortest spatial structures will ultimately
develop as a result of phase mixing in the z direction,
hence the use of a finer grid in . As we shall see we im-
pose an initial perturbation that has a given wavelength
in y. Our choice for the grid spacing in y is such as to
resolve that initial wavelength with the same number of
points.

A final issue is the total length of grid to use in the
y direction since we are interested in modelling an open
waveguide. There are methods for absorbing outgoing
waves in an MHD system; however, these are complex to
implement and produce some reflection. Since our lin-
ear system is so readily updated, we chose the simplest
method, namely using a long enough box such that wave
reflection would not be a problem. In general, we start
with a spatially localized perturbation, and allow the
system to evolve for five or six wave characteristic wave
periods associated with the resonant field lines. This
then sets a total time, which then relates to a total dis-
tance given the fast wave speeds in y. This defines the
maximum waveguide length. However, as the system
evolves, the domain is only completely filled at the very
end of the run. This wastes a lot of computing time up-
dating the far end of the waveguide before information
has arrived. We therefore start on a shorter grid and
run until a “significant” wave amplitude (about 10~° of
the initial amplitude) has reached the end of this box.
The run is stopped, and a new section of grid in y is
added on. We continue this process in gradual steps
until the time that we start to underresolve the phase
mixing in z. (This time is determined by the size of the
grid in z as we shall see later.)

As noted previously, we impose perfectly reflecting
boundary conditions in . For our system of equations
this requires that g, by, and 9b,/dz be zero at & = 0
and ¢ = x,,,. For a symmetric pulse centered at y = 0
we require uy, by, Ou./dy, 0b, /0y, and 0b,/dy to be
zero. Moreover, we need only solve in the half space y >
0. We use these same latter conditions at y = y,, (the
far end of the waveguide) for convenience, even though,
by the previous discussion on our open conditions, they
will have little impact.

Since we are interested in the wave propagation prop-
erties of the waveguide, we do not seek to model how an
initial perturbation enters the box. We therefore start
with a perturbation of the form

1
uy(z,y,t=0)= §sin(k;,,a:)[1 + cos(my/Ayo)],  (16)

0 <y < Ayo, ug(z,y,t = 0) = 0 otherwise, and k; =
27 /Ar. For the cases we shall examine both A, and A,
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are set to 2. In y this perturbation is a maximum at
and symmetric about y = 0, falls to zero at y = Ay,
and is zero everywhere else in y. In « the perturbation
is simply one half of a sine cycle. The values of A, that
we shall detail are 1, 1/4, and 1/8, all normalized by z,,,,
of course. We consider several width initial conditions
to see how robust the resonant coupling to Alfvén waves
is.

4. Results

As mentioned previously, a limit on the time we
can run the simulation for is provided by the phase
mixing length. Phase mixing refers to the process
where neighboring field lities drift out of phase as a re-
sult of their natural frequency depending on z namely
wa = £k, V(z). Defining the phase mixing length in z
(Lph, say) as the length over which the phase of neigh-
boring Alfvén waves differ by 27, we find

Lpp = 27 /(tdw /di), 17
and Ly decreases with time. To have an accurate simu-
latlon we must always resolve the phase mlxmg length
To follow the results furtlier in time becomes increas-
ingly demanding on computer time since a smaller grid
size in z (to resolve L) requires an accordingly re-
duced time step.

In practice, a uniform grid is employed in z, and
so the grid size in x is chosen to resolve the smallest
L,n(x), which may result in inefficient gross overresolu-
tion where Lpj(z) is greater than the minimum Ly, (z).
To avoid such inefficiency, we choose a medium that has
a phase mixing length which is independent of z. This
is achieved by a density profile producing the following
Alfvén speed variation:

Viz)=(1- ).

Lo

(18)

In general, several Alfvén resonances may be excited.
In order to study the coupling process more clearly we
chose the medium to have only one resonance. This
was achieved by setting 2, = 1.3 in our dimension-
less units. This results in an Alfvén speed that is 1
at z = 0 and falls linearly to 3/13 (0.231) at the outer
boundary x = 1. For these parameters the k, ~ 0 fast
mode should drive a resonance at ¢ ~ 0.357, where the
natural Alfvén wave (wsq = 2.28) has a time period of
approximately 2.76.

Waveguide Dispersion

From the description of fast mode dispersion in sec-
tion 2 we anticipate that the b, (fast mode) distur-
bance which remains at y = 0 should be composed
of fast waveguide modes with k£, = 0. A time his-
tory of b,(z = 0.75,y = 0,%) is shown in Figure 4. A
Fourier transform reveals four significant frequencies at
wy = 2.28, wa = 3.77, wg = 5.18, and w4 = 6.91. These
compare favourably with the first four eigenfrequencies
obtained from an evaluation of the phase integral (9)
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Figure 4. A plot of b, against time at 2 = 0.75, y = 0
for Ay, = 1.0.

yielding 2.19, 3.77, 5.26, and 6.83, respectively. The
ﬁrst two eigenfrequencies may be read off Figure 2 at
=0.

On Figure 3 we have also plotted (in arbitrary umts)
the magnitude of the Fourier ky spectrum of the ini-
tial disturbance, which is calcualted as fo ug(z,y,t =
O)COS(Lyy)dy We see that for Ay, = 1 only low val-
ues of ky ( < 6) are significant. The spatial dispersion
of these ky components can be seen in Figure 5 which
shows aslice of b, in y at x = 0.75 and time ¢ = 25. The
leading edge around y = 11 corresponds to a wave num-
ber in y of 4.5 obtained by direct measurement from the
figure. From the WKB group velocity diagram (Figure
3) we find that this wave number is indeed close to the
fastest velocities. For ky, = 4.5 we can estimate the fre-
quency and group velocity of the modes from Figures
2 and 3, respectively. The first, second, and third (not
shown in the figures) elgenmodes have group velocities
and eigenfrequencies of 0.27,0.33,0.29 and 3.0, 4.4,5.91,
respectively for ky, = 4.5. The second harmonic in z
has the greatest group velocity, so we would expect the
disturbance in the leading edge at y &~ 11 to be pre-
dominantly second harmonic.

The above assertion is supported by Figure 6, which
shows b, as a function of time for x = 0.75 and y =
5.625. We see no signal until approximately ¢t = 8.

0.1

0.1F

-0.2¢ ‘ .
0 5 10

15
y

Figure 5. A plot of b, against y at @ = 0.75, t = 25
for Ay, = 1.0.
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Figure 6. A plot of b, against time at x = 0.75, y =
5.625 for Ay, = 1.0.

Thereafter an oscillatory signal grows and eventually
saturates. At early times in the signal a period of about
1.43 is found (from direct measurement off Figure 6),
giving a frequency of 4.4, which is an excellent match
to the frequency of the second eigenmode given above.
Furthermore, cross sections in z (not presented here)
in the leading edge have a structure corresponding to
the second eigenmode. Figure 6 also reveals a small
but significant frequency decrease with time (of about
10 percent), a result of the tendency to be left with
the small wave number, lower-frequency components at
later times (see Wright [1994] for a detailed discussion
of spatial and temporal dispersion).

To emphasize the dispersive properties of the waveg-
uide, we now consider the narrowest initial condition
Ayo = 0.125. From Figure 3 we see that this condition
contains significant k, components beyond the maxi-
mum group velocity. The dispersive structure of this
initial fast mode will be quite different to the Ay, = 1
condition which only contained significant k, compo-
nents below the group velocity maximum. Figure 7a
shows b,(0.75,y,25). The leading edge (y ~ 13) is
quasi-sinusoidal since it corresponds to the fastest prop-
agating mode (i.e., a single ky value). Behind the lead-
ing edge (e.g., 7 X y S 12) we see fluctuations corre-
sponding to modes with velocities slightly lower than
the maximum. For example, the n = 2 modes with
ky =3 and 20 both have group speeds of the order of
0.3, thus a combination of large and small scale lengths
are observed simultaneously in this interval. For our
waveguide the asymptotic group velocity for large &, is
0.231. Modes traveling at this speed will reach y ~ 5.9
by t = 25. This position is marked by the vertical
dashed line in Figure 7a. This line clearly separates the
smallest spatial scales immediately beyond y = 5.9 to
the longer wavelength features below y = 5.9. Below
y = 5.9 we see only large spatial scales corresponding
to the small k,( < 3), and the features are thus similar
to Figure 5. The WKB estimate for the group velocity
dependence of ky clearly matches this very well. All the
small spatial scales travel at least as fast as the asymp-
totic group velocity, while the long wavelengths go more
slowly than this particular speed. This is reinforced
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by Figure 7b which displays b,(0.75,4.125,¢). We see
high frequencies divided from low frequencies at time
t = 17.334, the time by which information tlavelmg at
the asymptotic group speed would reach y = 4.125.

In summary, we see that the features expected from
the WKB dispersion and group velocity diagrams agree
well with our simulations and are a useful, practical
method of discussing fast mode propagation in our
waveguide.

The Alfvén Resonance

We now move on to consider the features of the
Alfvén resonance itself in more detail. If our problem
had only an z dependence (k, = 0), then the fast and
Alfvén modes decouple exactly. The linear fast mode
energy density Ej, say, and the Alfvén mode energy
density E,, say, are

1, ., Y
E; = :2—(/)ur“ + b2+ 0,2,

1 2
E, = E(puf +0,7).
Although this split is not exact when k, # 0, it remains
a fairly good diagnostic as to tlie energy partition in the
system.
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Figure 7. Plots of b, as a function of( Jyatz=0. 7
and t = 25, and (b) time at z = 0.75 and y = 4.125,
both for Ay, = 0.125.
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Figure 8 plots the integral of E; and E, over the
(z,y) plane against time. All the energy of the pertur-
bation initially resides in E;. As is clear, with increas-
ing time there is a transfer of energy from the fast mode
to the Alfvén resonance.

The characteristic development of an Alfvén reso-
nance is shown by the slices of uy in z at y = 0.625
for the three times ¢t = 5, 15, and 25 in Figures 9a, 9b,
and 9c, 1espect1vely For this case the resonant position
for the first eigenmode (ky = 0) is marked by a vertical
dashed line at z = 0.357 in each figure. The growth of
the resonance in the vicinity of this line is quite evident.
Estimates of the phase mixing lengths (L, ) from (17)
at each time are marked by the horizontal lines. The
values are 0.58, 0.173, and 0.104 at increasing times.
These clearly match well the observed mixing lengths
that we see.

Figures 10a, 10b, and 10c are contours of the to-
tal energy density (E; + E,) at t = 25 plotted for the

Ayo values of 1.0, 0.25, and 0.125, respectively. Here
the horizontal dashed line marks the position of the
resonance associated with the k, = 0 first eigenmode,
while the vertical dashed line marks A,,, the furthest
extent of the initial perturbation in y. It is apparent
that the resonant position is insensitive to the initial
conditions. We also note that the resonant peaks tend
to lie slightly above the horizontal line. This results be-
cause the ky = 0 modes do not propagate beyond Ay,.
It is the modes with small but nonzero values of k, that
drive the resonances in the region y > Ay,. These modes
have slightly higher frequencies than k, = 0 modes and
hence tend to drive resonant Alfvén modes at slightly
lower values of £. We note that it is only the k, values
slightly displaced from ky = 0 that can drive a res-
onance. Only modes with these wave numbers linger
long enough (e.g. for a few cycles) to establish a res-
onance. The larger k, modes propagate more or less
down the waveguide in z, and hence cannot drive any
single field line coherently for a significant time.

In Figure 10a for the broadest initial condition the
resonance within Ay, is the dominant feature. There
is also a much weaker secondary resonance centered at
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Figure 8. Normalized time histories of the energies Ef
(solid curve) and E, (dashed curve) integrated over the
(z,y)-plane (see text) for Ay, = 1.
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Figure 9. Profiles in « of uy at y = 0.625 for the times:

a) 5, (b) 15, and (c) 25 for Ay, = 1.0. The vertical
dashed line locates the position of the resonance (based
upon the k, = 0 fundamental fast mode), while the
horizontal line indicates the characteristic phase mixing
length at that time.

y ~ 2.5. The other weak features (0.5 $ z £ 1.0) are the.
remnants of the fast mode energy. In Figure 10b there
is still a strong resonant peak within A,,. However we
now see two extra resonant peaks outside this region at
y ~ 0.75 and 2.5, with the furthest arising nearly ten
times Ay, down the waveguide.

In the limit Ay, — oo (ky, — 0) the initial distur-
bance (16) is entirely associated with the fast mode.
In the opposite limit Ay, — 0 (k, — o0) the initial
condition is purely Alfvénic, representing the decoupled
poloidal mode [Dungey, 1967]. For intermediate values
of Ay, our initial disturbance may be thought of as a
combination of fast and Alfvén waves. In Figure 10a
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Figure 10. Contours of the total energy density (E; + E,) at t = 25 for (a) Ay, = 1.0, (b)
Ayo = 0.25, and (c¢) Ay, = 0.125. The horizontal dashed line locates the expected resonance
positions, while the vertical dashed line indicates Ay, for each case.

(Ayo = 1) the initial condition is predominantly fast in
character, whereas in 10b (Ay, = 0.25) there is a sig-
nificant Alfvénic component. This manifests itself in
Figure 10b as the second peak within the initial distur-
bance (y < 0.25) near = 0.6. This peak represents
Alfvén energy left over from the original perturbation
and is not resonantly excited. This feature is even more
dramatic in Figure 10c for Ay, = 0.125. The resonance
within Ay, is now subsidiary to the excess Alfvén energy.
We also see that the secondary resonances appear at
similar positions down the waveguide, suggesting that
they may also be insensitive to the initial conditions.
In Figure 11 we emphasize the resonances by plot-
ting slices of E, along a line through the resonances
just on the = 0 side of the ky, = 0 resonant location
(z =~ 0.334) for the three cases in Figure 10. The ver-
tical line again marks Ay,. The resonance within the
initial disturbance (y < Ay,) is still the major feature.

However, especially for the higher wave number per-
turbations, the presence of the secondary resonances is
quite clear.

5. Conclusions

We have not attempted to employ realistic magneto-
spheric parameters in this preliminary study of MHD
waves in a nonuniform waveguide. Rather, we have
attempted to establish the basic processes that oper-
ate in such systems, namely dispersion and mode cou-
pling. The theoretical basis for our understanding is the
waveguide dispersion obtained from a WKB approxi-
mation. The WKB diagrams such as those in Figures 2
and 3 provide a reliable basis that may. be employed to
explain the behavior of the fast and Alfvén modes.

The numerical dispersive signatures of the fast mode
in both space and time agree well with the expectations
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Figure 11. Profiles of E, against y along z = 0.334
for the instances in Figures 10a-10c , respectively. The
vertical dashed line again marks the position of Ay,.

The energy densities have been separately normalised
in each case for convenience.

of the WKB theory. Indeed, identifying signatures like
those in Figure 7b in data could provide useful infor-
mation about the magnetosphere, such as the asymp-
totic group velocity (equal to V(z,,)). Whether or not
transitions like the one indicated by the dashed line in
Figure 7b are observed in data, constrains the initial
extent of the fast mode in y, and may shed some light
on the origin of the fast mode.

Probably the principal result established in this pa-
per is that an Alfvén resonance associated with the
ky = 0 fast waveguide modes evolves independent of the
initial conditions, as proposed by Wright [1994]. This
agrees with observations where the resonances (“pulsa-
tions”) are robust to a whole range of conditions.
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Although the approximate WKB theory has enabled
us to make sense of some of our results, it is by no’
means complete. There is clearly a measure of com-
plexity in even the modest nonuniformity considered
here, in particular the development of secondary res-
onances at apparently discrete locations further down
the waveguide. Furthermore, our Alfvén spectrum has
been deliberately chosen so as to allow the possibility
of only a single resonance within the waveguide. The
hidden complications in a more “realistic” configuration
will be reported in a future publication.

From a computational standpoint it transpires that
the modeling of an open system in the way we have done
is very intensive for both processing time and eventual
data storage. As we intimated earlier there are three
limiting factors. The first is the ultimate length of the
waveguide to allow the open-endedness to be dealt with
satisfactorily, since we do not feel that the absorption
of outgoing MHD waves by present methods are suf-
ficiently simple to implement or particularly efficient.
Significant computer time could be saved if a suitable
absorbing boundary condition at the end of the waveg-
uide could be devised. The second limitation is the
phase mixing lengths which, as we have seen, reduce
inversely with time. (This problem can be avoided
by the inclusion of dissipation in the magnetospheric
medium [Inhester, 1987], although ionospheric resistiv-
ity is probably the most important sink of energy.) The
third, and perhaps the most severe, is the resolution
of the fast mode eigenfunctions in z for a nonuniform
waveguide. The latter limitation worsens as the extent
in y of the initial disturbance Ay, is reduced, resulting
in underresolution of the eigenfunctions. In the simula-
tions this is seen as small but finite oscillations on the
scale size of the mesh. The cure i1s simply more points
in z (as we have verified), but the price is significantly
increased processing time and data storage.

On a final positive note we would say that despite the
possible pitfalls the simulations are relatively simple to
perform, and furthermore the WKB theory provides a
solid foundation on which to interpret any modeling.
All our efforts have been performed on workstations.

Acknowledgments. This work was carried out while
one of us (A.N.W.) was supported by a UK SERC Advanced
Fellowship.

The Editor thanks B.G.R. Harrold and another referee

for their assistance in evaluating this paper.

References

Allan, W., S. P. White, and E. M. Poulter, Impulse-
excited hydromagnetic cavity and field-line reso-
nances in the magnetosphere, Planet. Space Sci., 34,
371, 1986.

Chen, L., and A. Hasegawa, A theory of long-period
magnetic pulsations, 1, Steady state excitation of
field line resonance J. Geophys. Res., 79, 1024, 1974.

Dungey, J. W., Hydromagnetic waves, in Physics of
Geomagnetic Phenomena, vol. 2, edited by S. Mat-



13,464

sushita and W. H. Campbell, p. 913, Academic, San
Diego, Calif., 1967.

Edwin, P. M., B. Roberts, and W. J. Hughes, Dispersive
ducting of MHD waves in the plasma sheet: A source
of Pi2 wave bursts, Geophys. Res. Lett., 13, 373, 1986.

Harrold, B. G., and J. C. Samson, Standing ULF modes
of the magnetosphere: A theory, Geophys. Res. Lett.,
19, 1811, 1992.

Hopcraft, K. I., and P. R. Smith, Magnetohydrody-
namic waves in a neutral sheet, Planet. Space Sci.,
34, 1253, 1986.

Inhester, B., Numerical modeling of hydromagnetic
wave coupling in the magnetosphere, J. Geophys.
Res., 92, 4751, 1987.

Kivelson, M. G., and D. J. Southwood, Resonant ULF
waves: A new interpretation, Geophys. Res. Lett., 12,
49, 1985.

Kivelson, M. G., and D. J. Southwood, Coupling of
global magnetospheric MHD eigenmodes to field line
resonances, J. Geophys. Res., 91, 4345, 1986.

Lee, D. H., and R. L. Lysak, Magnetospheric ULF wave
coupling in the dipole model: The impulsive excita-
tion, J. Geophys. Res., 94, 17,097, 1989.

McClay, J. F., and H. R. Radoski, Hydromagnetic prop-
agation in a theta-model geomagnetic tail, J. Geo-
phys. Res., 72, 4525, 1967.

Roberts, B, P. M. Edwin, and A. O. Benz, On coronal
oscillations, Astrophys. J., 279, 857, 1984.

RICKARD AND WRIGHT: WAVE COUPLING IN THE MHD WAVEGUIDE

Samson, J. C., B. G. Harrold, J. M. Ruohoniemi, and.
A. D. M. Walker, Field line resonances associated
with MHD waveguides in the magnetosphere, Geo-
phys. Res. Lell., 19, 441, 1992.

Southwood, D. J., Some features of field line resonances
in the magnetosphere, Planet. Space Sci., 22, 483,
1974.

Walker, A. D. M., J. M. Ruohoniemi, K. B. Baker, and
R. A. Greenwald, Spatial and temporal behaviour of
ULF pulsations observed by the Goose Bay HF radar,
J. Geophys. Res., 97, 12,187, 1992.

Wright, A. N., Dispersion and Wave Coupling in Inho-
mogeneous MHD Waveguides, J. Geophys. Res., 99,
159, 1994.

Zalesak, S. T., Fully multidimensional flux-corrected .
transport algorithms for fluids, J. Comput. Phys., 31,
335, 1979.

G. J. Rickard and A. N. Wright, Department of
Mathematical and Computational Sciences, University of
St.  Andrews, St. Andrews, Fife KY16 9SS, Scotland,
U.K. (e-mail:grahamr@dcs.st-andrews.ac.uk; andy@dcs.st-
andrews.ac.uk)

(Received November 29, 1993; revised February 3, 1994;
accepted March 8, 1994.)



