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Abstract. The representation of the Earth’s magnetosphere as an MHD waveguide
has prompted much recent speculation. In particular, the signatures associated

with ULF pulsations sit well within the waveguide concept. We further explore the
appositeness of the waveguide model by simulating data that a spacecraft would see
when passing through a stimulated magnetospheric waveguide and by comparing

the results with those obtained from a real spacecraft. We find that the waveguide
results again compare favorably and can explain many features seen in the data. We
also find that the magnetometer signature of the fast mode in a waveguide (unlike a
cavity) does not have a regular oscillatory nature with constant period over a range

of L shells.
1. Introduction

Recently, Samson et al. [1992] suggested that the
dawn and dusk flanks of the magnetosphere may be
better described as a waveguide, rather than a cavity.
Subsequently, the waveguide model has been investi-
gated theoretically [Harrold and Samson, 1992] and ob-
servationally [ Walker et al., 1992]. A more recent study
by Rickard and Wright [1994] (hereinafter referred to as
RW) extended waveguide modeling by generating two-
dimensional (2-D) time-dependent solutions in an in-
homogeneous waveguide. There it was shown that the
robustness of the natural frequencies associated with
ULF pulsations could be explained within the waveg-
uide context. In particular, it was established that an
Alfvén resonance associated with the k, ~ 0 fast waveg-
uide modes evolved with little sensitivity on the initial
conditions (where the direction y is along the waveg-
uide).

The numerical simulations presented in RW were also
used to test the analysis given by Wright [1994], which
provided a theoretical framework for understanding the
dispersion of the fast waveguide modes and their reso-
nant coupling to Alfvén waves. Although the work by
Wright [1994] relied on a certain amount of approxima-
tion using WKB analysis, remarkably good agreement
was obtained with the numerical results presented in
RW.

While it is satisfying to have obtained a physical in-
terpretation for the signatures of ULF pulsations, and
to have this backed up by theoretical considerations,
the comparison with real satellite data remains open.
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For example, it is commonly presumed that an almost
monochromatic cavity or waveguide mode excites dis-
crete pulsations. However, there is little evidence in
certain satellite magnetometer data sets that they ex-
ist (W. J. Hughes, private communication, 1993; M.
J. Engebretson, private communication, 1994). More-
over, M. J. Engebretson finds little evidence for spatially
localised ULF pulsations, despite the ease with which
they are observed in ground-based radar data [Walker
et al., 1992]. Tt is the gap between theory and obser-
vation that we wish to bridge in this paper. In doing
so, we have to ask what are the significant features seen
in the data that need explaining. The numerical sim-
ulations are necessarily limited in the parameter range
that can be modeled; we do not pretend that “realistic”
magnetospheric conditions can be met. It is therefore
necessary to focus on important features in the data and
then argue that the simulation results exhibit generic
features of ULF pulsations in magnetospheric waveg-
uides.

The layout of the paper is as follows. In section 2
we detail the specific data that we focus on. The data
then motivate the simulations. The numerical methods
are presented in section 3, followed by the simulation
results in section 4. We then finish with a discussion
and the conclusions.

2. Observational Data

ULF pulsations have formed the basis of many obser-
vational studies, both from ground-based sites and from
in situ measurements by satellites. For the purpose of
this study we decided to focus on a specific set of data,
namely that of Lin et al. [1992]. Pulsations, thought to
be excited by the solar wind as suggested by ground ob-
servations, were diagnosed by the spacecraft DE 1 with
a trajectory that took it across L shells ranging from
L~13to L~4.
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The data set of most relevance to us is Figure 3b
of Lin et al. [1992], here reproduced as Figure 1. It
shows the three orthogonal magnetic field components
observed by the satellite along its trajectory. We note
that in our coordinate system (see later) we have the
magnetic field components (b, by, b,) which correspond
to Lin et al’s (b,,bg, b,) in Figure 1. The magnetic pul-
sations are most clearly represented in the by data be-
tween 1630 UT and 1820 UT as four wave packets, with
the wave periods clearly decreasing as the spacecraft de-
scended through the L shells from ~400s at 1630 UT
to ~150s at 1820 UT.
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The precursors to the pulsations are thought to be
represented in the b, and b, components at earlier
times. In particular Lin et al. [1992] note that be-
fore 1715 UT, b, contained compressional oscillations
of a decaying amplitude and with nonconstant periods
(ranging from ~700s at L ~ 13.3 to ~450s at L ~ 7.5).
They also note a 110 s poloidal wave associated with b,
before 1620 UT.

In their summary, Lin et al. [1992] put together a
plausible scenario for the observations. Magnetic shells
in the magnetosphere resonate at their natural frequen-
cies as a result of solar wind variations. As L decreases,
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Figure 1. Magnetic field data taken from the spacecraft DE 1 (reproduced by kind permission

from Figure 3b of Lin et al. [1992]).
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so do the azimuthal field line oscillation periods with
the period changes occurring on “closely adjacent field
lines.” Furthermore, decaying compressional waves are
seen in the outer magnetosphere before the onset of
toroidal oscillations. Lin et al. [1992, p.14,874] con-
clude that “compressional waves might have coupled
with the transverse oscillations, transferring the energy
to the resonating field lines”. It is this particular sce-
nario that we wish to explore with our numerical model
of a waveguide magnetosphere. As we noted earlier it is
not the actual numbers we wish to reproduce, rather it
is the generic features highlighted by Lin et al. [1992].

3. Numerical Model

The hydromagnetic box model of Kivelson and South-
wood [1986] forms the basis of our magnetospheric waveg-
uide. It has a uniform magnetic field B = Bz, X repre-
sents the radial direction, and y is a coordinate around
the Earth. Infinite length in y allows us to model a
waveguide rather than a cavity. The (z,y) coordinates
are then the distances across the waveguide and around
the flanks and on into the magnetotail, respectively (see
Figure 2). The density p is solely a function of z. Our
dimensionless units are obtained by normalizing mag-
netic fields by B, density by p(z) at z = 0, and length by
the width of the waveguide z,,, say. Our characteristic
speed is the Alfvén speed at z = 0 (V(z = 0)), with the
corresponding characteristic time being z,,/V(z = 0).
From now on we shall refer to variables in terms of these
dimensionless units.

We retain exactly the same geometry as in RW and
restrict our attention to a single Fourier mode in z, so
that all dependent variables are functions of z, y, and
time ¢ only. The wavenumber in z (k) is taken to be
real, so our model ionosphere is perfectly reflecting. In
reality, the ionosphere will dissipate pulsations. For
high Pedersen conductivities, damping may be small
over a wave period, and our model should approximate
this situation well for ¢ less than the decay timescale.
We solve for the velocities u; and Uy, and the three per-
turbed components of the magnetic field b, b,, and b,.
Perfectly reflecting conditions are used at each end in z,
apart from very early times where we consider external
driving on the outer boundary (see later). Symmetry
conditions at y = 0 along the Sun-Earth line are used,
while, as before, the other y boundary is taken to be
open.
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Figure 2. Geometry of the magnetospheric waveguide.
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The method for numerical solution of the linearized
cold MHD equations is given in RW. Suffice to say, the
algorithm is second-order accurate in both space and
time. As before, we use different (constant) grid spac-
ings in z and y. The shortest spatial structure that
will ultimately develop is as a result of phase mixing
in the # direction, hence the use of a finer grid in z.
To enable us to run waveguide simulations, we start on
a not too large grid in y and run until a “significant”
wave amplitude has reached the end of this box (typi-
cally ~ 10~* relative to our normalized system of order
1). The run is stopped, and a new section of grid in y
is added on. In this way we model a waveguide accu-
rately (but perhaps not overly efficiently). We monitor
the energy and the magnetic field divergence through-
out to ensure that they are significantly well conserved.
Outgoing wave boundary conditions were investigated
(see for example, Vanajakshi et al. [1989] and Hu and
Wu [1984]), but these all produced significant ( 2 10% )
reflection, and were not employed.

Two significant changes have been made to the model
in RW. The first relates to the density profile p(z). In
RW the profile was chosen to allow only a single reso-
nance in the domain so we could focus in detail on the
fast mode dispersion and its coupling to Alfvén waves.
Here however, we wish to examine data that contain
many field line resonances; to that end, it is necessary
to steepen the profile to allow two possible field line
resonances. We favor a linear Alfvén speed profile over
most of the domain since this yields a uniform phase-
mixing length. However, steepening a linear profile to
accommodate two resonances results in very small den-
sity scale lengths at x = 1. To avoid resolution problems
here, we flatten p(z) by fitting a quadratic profile for
p(z) above a critical value z., say, as shown in Figure
3. The solid line in Figure 3 is our resultant density
profile, the dashed vertical line marks z., and the re-
maining dashed line is the original unflattened density
profile with its diminishing scale length close to z = 1.
The quadratic fit we have chosen gives us continuity
of p(z) up to the first derivative with respect to z at
z = x., while giving us zero gradient of p(z) at z = 1.
We now need only resolve the density scale length at z.
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Figure 3. Density profiles p(x) across the waveguide.
The vertical dashed line marks z. (see text), the solid
line is the actual p(z) used in the simulations, while the
remaining dashed line is the p(z) that would have been
used above z. without any smoothing.
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rather then # = 1. This flattening impacts only very
weakly on the wave propagation and coupling, while
significantly easing spatial resolution and run times.
 The second change from RW is in the initial con-
ditions. In RW we assumed that a perturbation was
already present in the waveguide. We made no effort
to detail its origin. Here however, we take a step closer
to reality by imposing a displacement &, to the outer
boundary at x = 1 for a fixed time 7, say, over a fixed
length in y. Over this time interval we imagine the
boundary being pushed in a certain distance, then being
returned to its original position by ¢ = 7. Thereafter,
the boundary conditions revert to those in RW (namely,
perfectly reflecting). These conditions are intended to
mimic external disturbances such as solar wind pres-
sure pulses buffeting the outer boundary (the magne-
topause). This extra condition involves relatively mi-
nor code modifications and consumes little computing
time. Furthermore, the presence of resonances in our
results does demonstrate that such driving conditions
could indeed be a source of ULF pulsations.

Finally, we have to include our own “satellite.” It
travels along a specified trajectory from our outer bound-
ary at # = 1 toward z = 0 traversing ever-reducing nat-
ural field line frequencies in the same way that DE 1
did. Time histories of all the dependent variables sam-
pled by the satellite along its flight path then produce
data in the vein of Figure 1. At any specified instant the
satellite position is known, and the dependent variables
at the satellite are obtained from the numerical grid
by linear interpolation. The sampling rate is set high
enough to resolve the highest anticipated frequencies.
The satellite can be dispatched at various times and
positions across the domain in order to see how a sin-
gle event involving waveguide dispersion and resonance
growth manifests itself in the data.

4. Results

A critical scale in the simulations is determined by
the phase-mixing length L,;(z,t), say, at position z
and time ¢, where Lyp(z,t) = 27/(wyt). Here v’y =
dwa/de, and wa(z) = k,V(z), the natural field line
Alfvén frequency. In the present experiments, k, = 7.
We employ a uniform grid in z, and the grid size in
z is chosen to resolve the smallest Ly, (z,t). However,
this may result in inefficient gross overresolution where
Lon(z,t) is greater than the minimum L,j(z,t). To
avoid such inefficiency, the medium is chosen to have
Lpn(z,t) independent of x over most of the domain.
This is achieved by a density profile producing the fol-
lowing Alfvén speed variation:

V(x):(l——f—), 0<z<z, (1)
and
V(z) =1/Va+ bz + cz?, r.<zx<1l (2

Here we wish to excite two Alfvén resonances. This
was achieved by setting z, = 1.0 and z, = 0.8 in our
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dimensionless units. From our previous considerations
we also obtain a = —575.0, b = 1250.0, and ¢ = —625.0.
This results in an Alfvén speed that is 1 at z = 0 and
falls linearly to 0.2 at « = z.. Thereafter, V(z) tails
off less steeply to a minimum value of 0.1414 at z = 1.
Since V(z) is less steep in this latter range, Lyp() is
always greater than that in the linear portion; hence
our grid spacing in z is still determined by the linear
V(z). The natural Alfvén waves resulting from this
V(z) have frequencies ranging from 3.142 at z = 0 to
0.445 at z = 1.

Following the analyses presented by Walker et al.
[1992] and Wright [1994], we have produced the disper-
sion diagram for the first three fast eigenmodes shown
in Figure 4. The conclusion of Wright [1994] (and con-
firmed in RW) is that the modes with small group ve-
locities along the waveguide (& & 0 in this case) are the
best drivers of resonances, since they have both a rela-
tively coherent time dependence, and they do not prop-
agate along the waveguide. For our chosen waveguide
parameters we see that the k, &~ 0 fast modes should
drive resonances at z =~ 0.24 and z &~ 0.564, where the
natural Alfvén waves (wyq & 2.39 and 1.37) have time
periods of approximately 2.63 and 4.59, respectively.
These are associated with the first two eigenmodes.
However, the n = 3 eigenmode’s frequency for ky, = 0 is
= 3.4, and hence lies outside the Alfvén continuum of
our waveguide. (We have checked these WKB eigenfre-
quency estimates against a shooting method that can
be used for ky, = 0 and find that we get agreement to
within = 3%.)

For future reference we also plot the group velocity
along the waveguide Vj, say, against k, for these eigen-
modes in Figure 5, where V; = 0w/0k,. The horizontal
dashed line is the asymptotic group velocity (0.1414)
to which all eigenmodes eventually tend in the limit of
large ky, i.e., ky/ky — oo [see Wright, 1994].

For the initial perturbation we force u, to satisfy
F@)[1 + cos(my/Ayo)]/2 at © = 1 for 0 <t < 7, where
0 <y < Ayo, ug(z = 1,y,t) = 0 otherwise, and

f(t) = =[1 — cos(4nt/7)]/2, 0<t< /4
f(t) = —sin(27t/7), T/4<t<37/4
f(@) = [1 — cos(4nt/7)]/2, 3r/d<t<T

For the particular case of interest to us here we use
7 = 2.35 and Ay, = 0.2 (which would scale to a dis-
tance of about 3Rg in the magnetosphere). The choice
for f(t) gives both u; and Ouy/0t zero at ¢ = 0 and
t = 7. The boundary is imagined to start from rest. It
is then pushed inward until ¢ = 7/2 and thereafter is
returned to its original position at £ = 1. The choice for
7 was decided by the structure in y of the first two fast
eigenmodes. The perturbations at ¢ = 7 produce signif-
icant overlaps with both of the eigenfunctions. Hence,
in this case we anticipate that both eigenmodes will be
significantly excited. This is motivated by Figure 1,
which appears to show four relatively equally excited
wave packets in by.

Our numerical simulations run for a total time of
t = 40. This allows significant time for the resonances
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Figure 4. The fast mode dispersion diagram for the
first three eigenmodes n = 1, n = 2, and n = 3 in the
waveguide (k, = m). The curves have been obtained
from a WKB analysis. This results in small errors in
the frequency estimates, particularly for n = 2, as op-
posed to frequencies obtained via a shooting method
(see text).

to develop. In Figure 6 we plot total energy density
contours at ¢t = 20 and ¢ = 40. At ¢t = 20 the maximum
energy density is 8.795, while at ¢ = 40 it is 8.274. We
see that there are two significant features. The first is
a pair of contours lying across the vertical dashed line
at y = 0.6. At ¢t = 20 these features are not so well
defined, but by ¢ = 40 they have grown in amplitude.
In fact, between the two times the peak energy -density
in these features has approximately doubled from = 0.6
to & 1.2. As we shall see, these contours are due to the
growth of the Alfvén resonances. The second significant
feature lies farther down the waveguide. At ¢t = 20 it
lies between y~ 2and y ~ 3, and at ¢t = 40 between
y ~ 4 and y ~ 5. This is the fast mode energy which
has not coupled to the resonances. The bulk of this en-
ergy is traveling at a speed of about 0.13. Inspection
of Figure 5 reveals that this speed is a slight underes-
timate of the asymptotic group speed of 0.14 but gives
us some confidence in our interpretation of this feature.
An exact match would not in any case be expected since
the fast mode dispersion and group velocity diagrams
clearly show that both propagation and dispersion will
be occurring, and therefore the energy density picture
can only provide a relatively crude estimate in the first
instance (see RW for a more detailed analysis of fast
mode dispersion in a waveguide).
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Flgure 5. Group velocity V; against ky for the disper-

sion diagram in Figure 4. The horlzontal dashed line
denotes the asymptotic group velocity for large k
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Figure 6. Contours of the total energy density at (a)
t = 20 and (b) t = 40. The vertical dashed line is along
y = 0.6. The horizontal dashes on the z axis (y=0)
mark the anticipated posmons of the resonances. The
vertical dash on the line z = 1.0 denotes the spatial
extent in y of the initial perturbing pulse.

The growth of the resonances is demonstrated in Fig-
ure 7, which shows snapshots of b,(z) along y = 0.6 at
times ¢t = 10,20, and 40. We see the characteristic
resonance development, i.e., phase mixing across the
domain and preferential growth at specific locations.
This justifies our assertion above that indeed the en-
ergy density contours straddling the line y = 0.6 are
due to the resonances. As noted in RW, there is an ap-
proximate decoupling of the energy densxtles with either
the fast modes or the Alfvén resonances. Any signifi-
cant Alfvén resonances will be associated with struc-
tures in by; hence the plots shown in Figure 7. The
vertical dashed lines mark the theoretically anticipated
positions of the resonances (in good agreement with the
results). We also see that the phase-mixing length at
t = 40 is well resolved.

Figure 6 reconfirms the results of RW that indeed
Alfvén waves with natural frequencies coincident with
the ky ~ 0 fast mode frequencies are excited. The pre-
dicted locations of the resonances found previously are
marked on the z axis in Figure 6 with a horizontal
dash, showing close correspondence with the develop-
ment of significant energy density contours. The pres-
ence of more than one resonance does not appear to
alter the thesis presented in RW. We also observe that
the Alfvén waves that are excited lie close to the fast
mode source as predicted by Wright [1994] (where the
extent of the original perturbing source is marked with
a vertical dash on the line z = 1).

Of all the possible satellite trajectories we could have
chosen, let us consider the one shown in Figure 8. It is
launched at ¢ = 10 from the outer boundary z = 1 along
y = 0.5. In the course of the simulation it traverses
the width of the waveguide, arriving at z = 0 by ¢ =
40. The timing and the location of this satellite have
been chosen to allow it to pass through the expected
sites of the resonances at times when they will have
had sufficient time to develop into significant features.
For the motives we outlined in section 2, such a satellite
serves our purposes well and has a trajectory similar to
that of DE 1 for the period of the data shown in Figure
1.
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Figure 7. Profiles of b, at y = 0.6 at times ¢ of (a) 10,
(b) 20, and (c) 40. The vertical dashed lines locate the
expected positions of the resonances.

The major results are presented in Figure 9, which
show the three magnetic field components sampled by
the spacecraft as a function of time along its trajec-
tory. For completeness the equivalent spacecraft loca-
tions “xsat” are also shown. Recalling the correspon-
dence (b,, bg, by) to (b, b,,bg) in Figure 1, we can make
some immediate observations. First, the general char-
acters of b, and b, match very well with b, and by,
respectively, apart from the interval 1600 UT to 1630
UT in bg. In particular, b, exhibits the same character-
istic decay in amplitude with time and also a reduction
in period while never showing any evidence of smooth
oscillations. Even more striking is b,, with the wave
packets associated with the resonances separated by low
amplitude oscillatory signals quite evident (in our case
two packets rather than four, of course). In further
agreement with Figure 1, b, is the main component in
the pulsations over most of the observed interval.

It is clear from the data and the simulations that
the Alfvén waves (by) are the dominant feature with re-
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Figure 8. Trajectory in z (xsat) as a function of time
for the satellite along y = 0.5.
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Figure 9. Magnetic fields (a) b, (b) b, and (c) by ob-
tained from the satellite with trajectory shown in Figure
8. The horizontal axis is labelled by both the time and
the equivalent satellite location xsat.

spect to the fast modes (b,) which are observed to decay
away from the outer boundary. The relatively small am-
plitude of the fast mode (b,) can be understood from
the following points; (a) the fast mode is evanescent
and thus not seen at small z; (b) as time increases the
large k, components of the fast mode propagate away
from the satellite down the waveguide, and so are no
longer observed; and (c) the small &, components are of
course responsible for driving the resonances, and hence
their decay in amplitude is reflected in the growth of the
Alfvén waves.

The present numerical experiment also confirms that
resonances can indeed be generated by a spatially lo-
calized perturbation impinging on the outer boundary.
Lin et al. [1992] do surmise that their pulsations result
from a spatially localized source at the magnetopause,
so this extra correspondence adds to the overall rele-
vance of our results.

Although we find excellent correlation between many
features in our simulations and real data, the agreement
is not complete. In particular, the signatures from the
interval 1600 UT to 1630 UT of Figure 1 are not evident
in our results. The discrepancy may be attributable to
our treating the magnetosphere as a cold plasma with a
stationary magnetopause, whereas in reality we would
expect a warm magnetosphere with a magnetopause ca-
pable of supporting surface waves.

5. Conclusions

We feel that through numerical experiments we have
given some credence to the scenario put forward by Lin
et al. [1992] to explain the magnetic pulsation data
observed by the satellite DE 1. "While we have only
presented one possible satellite’s eye view, it neverthe-
less corresponds very well in the overall features. There
are clearly more detailed discrepencies (in particular,
the nature of the data at times 1600 UT to 1630 UT).
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However, the character of the pulsations themselves is
well represented.

Our results also show that the apparent lack of any
clear fast mode signatures is not at odds with the MHD
waveguide view of the magnetosphere. The fast mode
components either disperse and decay in amplitude as
they propagate away from the souce region, or they
find themselves converted into Alfvén waves close to
where they were initially generated. On the basis of
our results (see Figure 6 for example) the best way to
observe the fast mode is to remain close to the mag-
netopause boundary and let the fast mode signature
pass over you, rather than flying inward across the L
shells to where the fast mode is evanescent. Indeed, RW
give examples of such data (their Figure 7b). However,
even this signal will decay in amplitude as it propa-
gates and disperses. Moreover, the satellite will not
observe a quasi-monochromatic b, signal, confounding
a straightforward search for waveguide modes. These
properties are quite different to cavity modes, where
a damped oscillatory fast mode is expected [Lee and
Lysak, 1989]. The absence of fast mode signatures in
data, which have a coherent oscillatory frequency and
extend across a wide range of L shells, are in no way
contradicted by the waveguide model (although it may
suggest some inadequacies in the cavity model).

In conclusion, we feel that the MHD waveguide view
of the Earth’s magnetosphere is able to accurately pre-
dict many of the subtle features seen in the data and
to explain apparent inconsistencies. We do not pretend
that we have yet reached anything approaching realistic
magnetospheric parameters. However, there is no rea-
son yet to suppose that the generic properties that we
detail will not be retained as the increases in comput-
ing power allow us to get closer to having a “working
magnetosphere” on our desk.
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