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Excitation of resonant Alfvén waves in the
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magnetopause
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Abstract. The instability of the magnetopause caused by the resonant interaction
of a negative energy surface wave with Alfvén waves localized in the vicinity of
the resonant magnetic surface is considered. The most important property of this
instability is that it takes place for flow velocities in the magnetosheath below the
Kelvin-Helmholtz (KH) threshold velocity, i.e., when there is no KH instability
of the magnetopause. The magnetopause is modeled by an MHD tangential
discontinuity with a magnetic-free plasma on the magnetosheath side and cold
plasma on the magnetospheric side. It is shown that one of the two surface waves
that propagate along the discontinuity when the shear velocity is smaller than
the KH threshold velocity is a negative energy wave when the shear velocity is
larger than a critical velocity. This negative energy wave propagates tailward in the
magnetospheric frame, although it propagates sunward in the magnetosheath frame.
When, in addition, a resonant condition is satisfied, the negative energy surface
wave resonantly interacts with localized Alfvén waves. This interaction results in
growth of both the surface wave and the Alfvén waves. The resonant condition can
only be satisfied when the plasma density increases and, consequently, the Alfvén
velocity decreases in the direction toward the magnetopause in its vicinity. The
increment of the resonant instability is calculated under the assumption that the
plasma density changes only in a slab in the vicinity of the magnetopause with the
thickness much smaller than the wavelength. The possible observational signatures

of the resonant instability are discussed.

. 1. Introduction

The fast-flowing magnetosheath provides the energy
required for global magnetospheric convection and a
range of ULF waves in the magnetosphere. Energy
must be communicated across the magnetopause and
a variety of mechanisms have been studied: McKen-
zie [1970] considered the transmission of MHD waves
across the magnetopause; the displacement of the mag-
netopause due to pressure pulses [Southwood and Kivel-
son, 1990] or random magnetosheath buffeting has also
been investigated [ Wright and Rickard, 1995]; the mag-
netopause may also be unstable to a Kelvin-Helmholtz
surface wave [Dungey, 1955; Pu and Kivelson, 1983,
and references therein].

The Kelvin-Helmholtz instability on the flanks of the
magnetopause (at dawn/dusk, and in the tail) has re-
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ceived much attention. These studies show that at dawn
and dusk in the equatorial plane, where the magneto-
spheric field and sheath flow are approximately perpen-
dicular, the boundary is particularly unstable. In the
tail, where the flow is antisunward and the field gen-
erally parallel/antiparallel to the flow, the boundary is
much more stable owing to magnetic tension. In this
case there exists a critical velocity Ugyg that must be
exceeded before instability occurs. We present a new
instability in this paper which can occur for sheath flow
speeds below the critical velocity and is based upon the
concept of negative energy waves.

The concept of negative energy waves turned out to
be very fruitful when studying stability. In general,
we talk about negative energy waves whenever we deal
with a situation where waves become unstable and grow
in presence of dissipation while they are neutrally sta-
ble in an ideal medium. An excellent review of the
theory of negative energy waves in hydrodynamics is
given by Ostrovskii et al. [1986]. Recently, Ruderman
and Goossens [1995] studied negative energy waves on
an MHD tangential discontinuity in an incompressible
plasma. These authors showed that one of two sur-
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face waves propagating along the discontinuity when the
shear velocity U is smaller than the Kelvin-Helmholtz
(KH) threshold Uxp is a negative energy wave when
U. < U < Uxu, where U, is the critical velocity de-
termined by the values of the equilibrium density and
magnetic field at both sides of the discontinuity. When
viscosity is present at one side of the discontinuity, the
negative energy wave becomes unstable and grows.

In this paper we extend the analysis by Ruderman
and Goossens [1995] to a more realistic situation. We
consider a tangential MHD discontinuity with a magnetic-
free plasma on one side and a cold magnetized plasma
on the other. This configuration can be used as an ap-
proximate model in the vicinity of the magnetopause.
We then use the interaction of a surface wave propagat-
ing along the discontinuity with Alfvén waves at the res-
onant position in the magnetosphere as a sink of energy
causing instability of the negative energy wave. The
details of the resonant fast/Alfvén wave coupling are
similar to the calculations presented by Tamao [1965],
Southwood [1974], and Chen and Hasegawa [1974], ex-
cept that they considered standing waves; whereas our
waves propagate along the magnetic field.

The paper is organized as follows. The next section
gives a physical overview of the processes we study in
the paper. Section 3 considers the KH instability of the
discontinuity. In section 4 we consider negative energy
surface waves. In section 5 the instability of the neg-
ative energy surface wave caused by resonant absorp-
tion in the magnetosphere is investigated. Section 6
discusses the main simplifying assumptions used in our
study and the implications of our results, and section 7
contains our conclusions.

2. Physical Overview

In this section we give a physical overview of our cal-
culations before providing mathematical details of our
model in the remainder of the paper. The equilibrium
we consider (see Figure 1) is a first approximation to the
magnetotail, which is surrounded by a high-beta, anti-
sunward flowing magnetosheath plasma and has low-
beta tail lobes that contain magnetic field aligned with
the sunward/antisunward directions. Thus the field and
flow are parallel/antiparallel for the southern/northen
tail lobes. In section 3 we discuss the Kelvin-Helmholtz
instability of this configuration and find it to be stable
for sheath slow speed U below a threshold value Ukg
(approximately equal to the lobe Alfvén speed). When
U < Ukn, the stabilizing effect of magnetic tension pre-
vents the instability from growing.

It is quite possible that there will be extended inter-
vals when U < Uxn (Ukn is typically 600 km/s), and
so it is natural to ask if there are other instabilities that
may appear during these periods. The rest of the paper
addresses this issue and begins by introducing the con-
cept of negative energy waves. The energy density of
a wave is dependent upon the frame of reference from
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Figure 1. Sketch of the unperturbed state. The solid
piecewise linear line in the lower part shows the depen-
dence of the Alfvén velocity v4 on the distance from
the heliopause, z. See text for variable descriptions.

which it is viewed, as is its frequency. We postpone the
discussion of this dependence until section 5. In this
section we use the reference frame where the magne-
tospheric plasma is at rest. In this reference frame the
wave energy and frequency are determined by the veloc-
ity of the magnetosheath plasma. For example, when
U = 0 the equilibrium in Figure 1 supports two surface
waves propagating toward and away from Earth. If a
small antisunward flow is included, the picture is modi-
fied slightly and the wave propagation is swept antisun-
ward a little by the flow. Both waves still have a positive
energy. Increasing the flow still further, we eventually
reach a speed U, at which the earthward propagating
surface wave attains a negative energy density, when
viewed from the magnetospheric frame. The flow speed
U. corresponds to the sheath flow speed which is suf-
ficient to sweep back the earthward propagating wave,
and for U > U, this mode actually propagates anti-
sunward, as it is dominated by the sheath flow. The
other surface mode continues to propagate away from
Earth, but at even greater speeds than when U = 0.
The critical speed U, for negative energy waves to ex-
ist is of the order of the magnetosheath sound speed
(approximately 100 km/s), so it is very easy to satisfy
U>U.. .

A normal (positive energy) wave responds to the pres-
ence of dissipation by decaying in time. In contrast, a
negative energy wave grows when there is dissipation or
a sink of energy at rest relative to the observer. Thus
inclusion of a magnetospheric sink of energy will damp
the positive energy wave but cause the negative enrgy
wave to become unstable. All this is posssible when
U. < U < Ukg, so that there is no Kelvin-Helmholtz
instability. When U > Uxwn, the negative energy wave
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becomes a zero-energy KH unstable wave. By “zero en-
ergy” we refer to the property that the energy density
per unit area of the surface of discontinuity is identically
Zero.

In section 5 we consider a suitable sink of energy as-
sociated with the transition from tail lobe to magne-
tosheath. The surface wave may couple resonantly to
Alfvén waves in this layer and will represent a sink of
energy as far as the surface waves are considered. The
possible observational signatures of the negative energy
wave instability are discussed in section 7. These in-
clude the growth of unstable antisunward propagating
magnetopause surface wave and the growth of the asso-
ciated Alfvén resonance in the mantle (which also prop-
agates antisunward).

3. The Study of KH instability

The KH instability of MHD tangential discontinu-
ities has been intensively studied for a few decades. Sy-
rovatskii [1957] and Chandrasekhar [1961] studied the
stability of the MHD tangential discontinuity in ideal
incompressible plasmas. They showed that there is a
critical value of the jump in the equilibrium velocity,
termed the KH threshold. The discontinuity is stable
when the jump in the equilibrium velocity is below the
KH threshold and unstable otherwise.

Fejer [1964] derived the dispersion equation deter-
mining the stability of the MHD tangential disconti-
nuity in compressible plasmas and studied the particu-
lar case of slightly compressible plasma. Subsequently,
many other particular cases were studied [e.g., Gerwin,
1968; Duhau and Gratton, 1973; Gonzales and Gratton,
1994a, b]. Application to the stability of the magne-
topause was given, e.g., by Sen [1965], Southwood [1968],
McKenzie [1970], Kiyohumi and Saito [1980], and Pu
and Kivelson [1983].

We use the same equilibrium state as McKenzie [1970]
(see Figure 1). The unperturbed MHD tangential dis-
continuity coincides with the zy plane in the Cartesian
coordinates z, y, z. The half-space z > 0 is occupied
by the magnetic-free plasma with the density p; and
the pressure p. The half-space z < 0 is occupied by
the cold plasma with the density p_, permeated by a
homogeneous magnetic field parallel to the x axis. The
plasma in the upper half-space moves with the constant
velocity U in the positive z direction, while the plasma
in the lower half-space is at rest. The equilibrium quan-
tities satisfy the condition of the total pressure balance
at the discontinuity

2
=, 1)
m

where p is the magnetic permeability of vacuum. For
this particular type of equilibrium configuration the dis-
persion equation derived by Fejer [1964] is reduced to

(2)

p
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with my and m_ given by

r\271/2 2\ 1/2
- kﬂ_(“’_“#)_] m_ = (kﬁ_:’_z)
S A
(3)
Here w and k = (kg,ky,0) are the (complex) fre-
quency and the (real) wave vector of perturbations,
respectively, which are taken to be proportional to
exp(ik - r — iw), with r = (z,y,2). The squares of the
sound speed in the magnetic-free plasma and the Alfvén
speed in the cold magnetic plasma are determined by
¢k = yp/p+ and v3 = B?/up_, with v the adiabatic
exponent. The surface wave decays as z — +00, so the
quantities m, and m_ satisfy the restriction

R(my) >0, 4)

where ® indicates the real part of a quantity. The tan-
gential discontinuity is unstable when there is a root to
(2) with a positive imaginary part.

Evidently, (3) are just the fast wave dispersion re-
lations for the flowing field-free magnetosheath plasma
and the steady cold magnetospheric plasma. Condition
(4) implies that the fast waves are evanescent. Hence
the surface waves are evanescent fast waves at both sides
of the discontinuity.

Let us introduce the dimensionless quantities

w U c2
Q = —, = —, = —S, 5
kvy vy A ()

and the angle ¢ between the vector k and the z direc-
tion. Here M is the Alfvénic Mach number. In the new
notation, (2) is rewritten as

(R — M cos ¢)?
[8— (@ — M cosp)?]/2

2612(Q? — cos? ) —0
(1 -Q2)1/2 -
(6)

When deriving this equation we have used the formula
p-/p+ = 283/v that follows from (1). Squaring (6), we
obtain

72(Q? — 1)(Q — M cos p)*
= 4B(Q* - cos’ p)*[(2 — M cos ¢)* — f]. (7)

This is a sixth-order polynomial equation with respect
to Q. It contains three parameters (v can be considered
as fixed), and it is a difficult problem to study the de-
pendence of roots of this equation on the parameters.
The additional complication is related to the possibility
that some roots of (7) are spurious and do not satisfy
the original equation (6). Instead, these spurious roots
satisfy the equation obtained from (6) by substitution
of a minus sign for the plus sign on the left-hand side.

McKenzie [1970] managed to study the dispersion
equation in two particular cases only. In both cases the
polynomial on the left-hand side of (7) is reduced to the
product of a quadratic and a quartic. The first case cor-
responds to perturbations propagating along the equi-
librium magnetic field (¢ = 0), while the second case
corresponds to perturbations propagating at the angle
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¢ = arcsin 7. However, we cannot restrict the study
of stability of the MHD tangential discontinuity to par-
ticular directions of propagation of disturbances. To
calculate the KH threshold velocity Uxyg we have to
consider all possible disturbances.

To make analytical progress, we assume that the
quantity p_/p4 is small or, equivalently, 8 < 1. This
assumption is fairly well satisfied, at least for part of the
tail’s magnetopause. Note that a similar assumption
was made by Ruderman and Fahr [1993, 1995] when
studying the stability of the heliopause, which is the
tangential discontinuity separating the solar wind com-
pressed at the inner shock from the interstellar plasma
compressed at the outer shock. The viable assumption
that the density of the solar wind is much smaller than
the density of the interstellar plasma enabled these au-
thors to carry out a complete analytical study of the
heliopause stability. The analysis in this section is quite
similar to that by Ruderman and Fahr [1993, 1995].

Since § < 1, the roots of (7) are close to those for
B = 0, i.e., either to +1 or to M cosy, which is the
multiple root. The two roots close to £1 are obviously
real and not interesting for studying stability. Let us
consider the four roots close to M cose. They can be
looked for in the form Q = M cos ¢ + 62, where |6Q| <
1. Substitution of this expression into (7) yields the
leading order approximation

Y2 (M2 cos? p — 1)(6Q)* — 4B8(M? — 1)2(6Q)% cos® ¢
+ 48%(M? = 1)2cos* p = 0. (8)

It is straightforward to see that this equation has two

real and two purely imaginary complex conjugated roots

when M?cos? ¢ < 1, and all of these four roots are of
the order /2. Hence (7) has four real roots and two
complex conjugated roots of the form

Q = M cos o + ikB/? (9)
with kK > 0, kK ~ 1. As mentioned previously, any root
of (7) satisfies either (6) or the equation obtained from
(6) by substituting a minus sign for the plus sign. The
direct substitution of (9) into (6) shows that the real
parts of the two terms on the left-hand side of (6) have
the same signs when M < 1, while they have the oppo-
site signs when M > 1. This implies that roots given
by (9) satisfy (6) when 1 < M < 1/cos¢p, while they
are spurious when M < 1. Hence (6) has only real roots
when M < 1, while it has a complex root with positive
imaginary part when 1 < M < 1/cos¢. This analysis
leads us to the conclusion that the discontinuity is sta-
ble when M < 1 and unstable when M > 1, so that we
obtain for the Kelvin-Helmholtz threshold Mgy = 1.
Note that this result coincides with that obtained by
McKenzie [1970] for perturbations propagating parallel
to the background magnetic field. However, this result
is approximate since we used S as a small parameter.
Therefore we only conclude that Mgy is close to 1. This
conclusion is sufficient for what follows.
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4. Negative Energy Surface Waves

The concept of negative energy waves was used in
plasma physics long ago [see, e.g., Briggs, 1964; Bekefi,
1966; Coppi et al., 1969; Davidson, 1972]. Later, this
consept was applied to hydrodynamic waves, in partic-
ular, to waves on the surface of two fluids [see, e.g.,
Cairns, 1979; Craik, 1985; Ostrovskii et al., 1986].
Ryutova [1988] developed a theory of negative energy
waves in magnetically structured plasmas, and Joarder
et al. [1997] applied this theory to waves in the solar
atmosphere. Ruderman and Goossens [1995] studied
instability of a tangential MHD discontinuity in an in-
compressible plasma related to the presence of a neg-
ative energy surface wave. In magnetospheric physics,
McKenzie [1970] used the concept of negative energy
waves when studying overreflection of waves coming
from the magnetosheath from the magnetopause. How-
ever, to the best of our knowledge, this concept was not
used when studying the magnetopause stability. Since
the concept of negative energy waves is relatively new
for the magnetospheric community, we give a short in-
troduction to the theory of negative energy waves, with
particular emphasis on surface waves on magnetic in-
terfaces.

A wave has negative energy if its growth from an un-
perturbed state requires that energy be extracted from
the system rather than fed into it; that is, exciting the
wave decreases the system energy. Let us derive the
expression for the energy of a surface wave on a sta-
ble tangential MHD discontinuity. In what follows we
exploit the modified procedure used by Cairns [1979]
for deriving the energy of a wave on an interface be-
tween two incompressible fluids. As before we consider
a plane MHD tangential discontinuity with a cold mag-
netic plasma at one side and a magnetic-free plasma at
the other side. The linear MHD equations for a cold
plasma can be reduced to the set of two equations for
the z component of the velocity u and the perturbation
of the magnetic pressure P’ = ByB./u

S o002 .2 12
& — lw(;‘) UAOkQ) P/, (10)
dz ™ povhe(@? — &)

dP"  ipo(w? — w?

—d7 = ——PO( " A)u. (11)
Here perturbations of all quantities are taken to be pro-
portional to exp(ik-r —iw), and the prime indicates the
perturbation of a quantity. The square of the Alfvén ve-
locity is given by v%,(z) = B?/upo(z), and the Alfvén
frequency is given by wa = va0(2)ks = vao(2)k cosp,
where po(z) is the unperturbed density. In this section,
po(z) = p~ and vao = vga, although (10) and (11) for
the description of plasma motions in an inhomogeneous
plasma have taken the dependence of the unperturbed
density on z into account when deriving them.

The motions of the magnetic-free plasma occupying

the region z > 0 is described by
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z(w — Uk cosp)? — c%k?
dz p+ci(w — Uk cos p)
dP'
v (13)
where now P’ is the perturbation of the plasma pres-
sure.

Consider now a perturbation displacement of the tan-
gential discontinuity in the form

(12)

= ipy(w — Uk cos p)u,

R[nexp(ik - r — iwt)], (14)

where 7 is a real quantity. Perturbations of all quanti-
ties are taken in the form f = R[f(z) exp(ik - r — iwt)].
It is straightforward to obtain

z=1t,z,y) =

2 _ 2
Pi = D—(W,k)ni %—_—UJ'A—)W)

(15)

‘ w — Uk cos ¢)?
P-I}-=D+(w,k)n-=—_p+( SD) R
my

(16)

where Py = P'(z = £0). When deriving these equa-
tions, we have used the kinematic boundary conditions

u_ = —iwn, uy =i(kU cosp —w). (17)

Then the condition of total pressure balance results in
the dispersion equation

D(w,k) = Dy (w,k) — D_(w,k) =0, (18)

which coincides with (2).

Now suppose that for a wavenumber kq there exists
a real solution wq to (18). Let us impose a surface force
to the surface of the discontinuity that makes the ini-
tial perturbation in form (14) exponentially grow, so
that the wave amplitude is ne”’t with real positive w’.
This surface force can be maintained by, e.g., exciting
an additional surface current on the surface of the dis-
continuity. We assume that initially the amplitude of
the perturbation 7 is so small that the energy of the
perturbation can be neglected. Now w = wg + ', and,
for the sake of simplicity, we assume that the surface
force is small, so that w’ < |wo|. Equations (15) and
(16) are still valid, however, owing to the presence of
the surface force P, # P} and D(w,ko) # 0, so that
the exponentially growing perturbation is not an eigen-
mode.

Let us now consider the process where the external
force is being imposed for a finite time interval T' and
calculate the energy of a perturbation created by this
force. This perturbation is once again a normal mode
with the wavenumber ko and frequency wg, however,
with the amplitude gy = ne*'T. To calculate the energy
of the perturbation, we calculate the work done on the
plasma by the external force. The unit vector of the
normal to the surface of the discontinuity isn = —V7j+
Zo, where zg is the unit vector in the z direction and
we have neglected nonlinear terms. The projection of
the velocity on the normal is 44 — Ud7/0z = 87j/0t.
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The rate at which the work is done on the upper plasma
per unit area in the z, y plane is P’ 87j/8t. The similar
calculation gives for the work done on the lower plasma,
—P}87/0t. Then the rate at which the total work is
done by the external force on the plasma per unit area
in the z,y plane is

677 D! D/
B;(P— _P+)- (19)

We use (14)—(16), (18), and the approximation

0D+

Dy (w,ko) 7 Di(wo,ko) 4w == (20)
6&20

to obtain

o1, ~ ~ 6D )
_PI_P/= 277 12wt 2 e .
Bt( _ — PL)=wo B e sin (k-r—wg). (21)
When deriving this expression, we have neglected w’ in
comparison with wg. The energy of the perturbation
averaged over the wavelength in the z and y direction
is W,

1 0D
— _wow/e2w t 772'
6&)0

(22)

Integrating this equation and taking into account that
W(0) ~ 0, we obtain

0D
W(T) = fwog 1. (23)
Hence the wave is a negative energy wave if
0D
wob—-— <0, (24)

and a positive energy wave otherwise.

Let us now assume that dissipation is present. Then
the wave amplitude and energy are changing and W (%)
is given by (23) with 7(t) substituted for ny. Owing to
the presence of dissipation, the wave energy is decreas-
ing, dW/dt < 0. For a positive energy wave it results in
the wave damping, dn/dt < 0. However, for a negative
energy wave the decrease of the wave energy means that
its absolute value grows. As a result, the wave ampli-
tude grows, dn/dt > 0. Note also that negative energy
waves possess the peculiar property that their energy
flux is antiparallel to the group velocity.

Now we apply the obtained results to surface waves
on the magnetopause. To ensure that the discontinuity
is stable, we assume that M < Mygy, where Mgy is
close to 1. Then, in accordance with the results of sec-
tion 3, (7) has two complex conjugated roots and four
real roots. The complex roots are spurious in the sense
that they do not satisfy the original dispersion equation
(6). The real roots are given by

Q=1+ 0(,3), Q, =

-1+ 0(B), (25)

+ = (M £ /%¢) cos p + O(B), (26)
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2(1 — M?)
2 _ 2 2
£ = P20~ M cos? go){(M 1) cos“ ¢

+ [(1 = M?)?cos? o+ v*(1 — M2 cos® )]*/?}. (27)

It is straightforward to show that the roots given by
(25) are spurious, while those given by (26) are not
spurious and satisfy dispersion equation (6). Note that
€2 cos? ¢ < 1. It follows from this inequality and the
condition M < 1 that my and m_ are real, so that
the roots given by (26) correspond to two surface waves
propagating along the tangential discontinuity in the
opposite directions in the coordinate system moving to-
gether with the upper (magnetosheath) plasma.

We see that (18) has exactly two real roots, wy =
kvaQy, for any fixed k. The function D(w,k) is real
when

kU —kcs < w < kU + kes. (28)
We have used the condition M < Mgy < 1 when de-
riving these inequalities. Since the roots w4 correspond
to surface waves with real m., they are in the interyal,
determined by inequalities (28). It is straightforward to
show that D(w,k) — oo when w — k,U % kcs. Hence
D(w, k) is positive for w < w_ and for w > w,, while it
is negative for w_ < w < wy. These facts imply that

oD
"6;' > 0.

w-——w+

0D

80) W=w

<0, (29)

Since wy > 0, it follows from (24) and (29) that the
surface wave with the frequency wy is always a positive
energy wave. The surface wave with the frequency w_
is a positive energy wave when w_ < 0 and a negative
energy wave when w_ > 0. Hence the wave propagating
backward with respect to the upper plasma is a negative
energy wave when it propagates forward with respect to
the lower plasma. Using (26) and (27), it is straightfor-
ward to show that w_ > 0 when M > M., where the
critical Mach number is given by

Me = 2857 +o0st )/ —cos” ]} /2 0(9). (30)

We can use another approach to calculate M.. We sim-
ply substitute Q = 0 into dispersion equation (7) and
immediately obtain the equation determining M.. From
this equation we find that (30) for M, is actually exact
and does not contain a correction O(S).

Summarizing the present discussion, we state that the
surface wave propagating backward with respect to the
magnetosheath plasma is either a positive or negative
energy wave depending on whether the Mach number is
smaller or larger than M, or, in other words, whether
the shear velocity U is smaller or larger than the critical
velocity U, = M,va. It follows from (30) that M. =
O(B?), so that U, is of the order ¢s. Hence for almost
all values of the shear velocity U, except values from the
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small range from 0 to a value of the order cg, there is a
negative energy wave propagating on the discontinuity.

The wave energy depends on the choice of a moving
coordinate system, so that a wave can be a negative
energy wave in one coordinate system and a positive
energy wave in another. To illustrate this statement,
let us consider the same surface waves, however, now
in a coordinate system where the magnetic-free plasma
is at rest and the magnetic plasma moves in the z di-
rection with the velocity —U. Owing to the Doppler
shift, the frequency of the background wave in this co-
ordinate system is w_ — Uk, = —kvag€cosp < 0, so
that this wave is always a positive energy wave. How-
ever, the wave stability is, of course, independent of the
coordinate system. A very throrough discussion of this
problem is given, e.g., by Ostrovskii et al. [1986], so here
we do not embark on a long discussion of it. We only
note that, in accordance with Ostrovskii et al. [1986),
in the case where dissipation takes place at one side of
the discontinuity only, a surface wave is unstable if it is
a negative energy wave in the coordinate system where
the dissipative plasma is immovable.

The best way to explain the physical meaning of U,
is to consider the situation where the magnetospheric
plasma is dissipative while the magnetosheath plasma
is ideal. In this case the surface wave propagating back-
ward with respect to the magnetosheath plasma is sta-
ble when U < U, and unstable otherwise (recall that we
consider U < Ugpg, so that the surface wave is neutrally
stable in an ideal plasma). When U > U,, the surface
wave extracts energy from the shear flow. The inter-
action between the shear flow and the surface wave is
provided by dissipation in the magnetospheric plasma.

5. Resonant Instability of Surface Waves

Let us now consider the equilibrium state where the
plasma density is not constant in the magnetosphere
but varies in the layer —a < z < 0. The density is pg(z)
in the interval [—a,0], and it is p_ for z < —a. The
density is continuous for z < 0, so that po(—a) = p_.
In what follows we only consider surface waves with a
wavelength much larger than the thickness of the inho-
mogeneous layer, ak < 1. Then the analysis in the pre-
vious sections 3 and 4 is approximately valid. The vari-
ation in the density in the inhomogeneous layer leads
to the variation in the Alfvén velocity. As a result, the
Alfvén resonant condition can be satisfied in the inho-
mogeneous layer for some values of the phase velocity of
the surface wave. When this condition is satisfied, res-
onant absorption of the wave energy takes place. Res-
onant absorption provides the energy sink in the mag-
netosphere and leads to growth of the amplitude of the
negative energy wave. In this section we study this pro-
cess in detail.

In what follows we assume that pp(z) is monotonic.
Then the Alfvén velocity vao(z) = Blupo(2)]"*/? in
the inhomogeneous layer varies from v4 = B(up_)~1/2
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at z = —a to va; = Blupo(0)]~1/? at z = 0. A surface
wave is in resonance with the local Alfvén oscillations at
a position z = z, if its frequency coincides with the lo-
cal Alfvén frequency, wa(za) = vao(za)kcos . Hence
the resonant condition takes the form Q = V(z4) cos ¢,
where V(z) = vgo0(2)/va. We are only interested in
Alfvén resonance for negative energy waves, so that we
take 2 = Q_ and assume that M, < M < Mgu. Then
with the use of (26) we rewrite the resonant condition
as

V(za) = M — g*2%¢. (31)
As shown in section 2, Mgy is close to unity, so that
we have to take M < 1. Then it follows from (31) that
the Alfvén resonant condition can be satisfied only if
vao(z) is monotonically decreasing and, consequently,
po(z) is monotonically increasing. In addition, the con-
dition vg1 < v4(M — ,31/25) has to be satisfied.

Here we have to make one note. The magnetospheric
community is more used to considering resonant oscil-
lations of closed magnetic field lines in the magneto-
sphere. In this case every magnetic line has its own
eigenfrequency. Its oscillations are resonantly excited
by a periodic external or internal energy source if the
frequency spectrum of this source contains a frequency
that matches a natural frequency of the magnetic field
line. However, resonant oscillations can be also excited
in an unbounded plasma [see, e.g., Goossens, 1991; Al-
lan and Wright, 1998]. In this case there are no eigen-
frequencies of the magnetic field lines and it is more
convenient to discuss the Alfvén resonance in terms of
the phase velocity. To be more specific, we consider the
excitation of the Alfvén resonance by a surface wave
propagating on the magnetopause. In this case the
Alfvén resonance takes place at a magnetic field line
where the phase velocity of the surface wave matches
the local Alfvén velocity. Varying the wavelength of
the surface wave, we can obtain resonant oscillations
with any frequency. Hence the only difference between
Alfvén resonances in bounded and unbounded plasmas
is that in bounded plasmas, resonant frequencies of a
specific magnetic line are quantized while in unbounded
plasmas they are continuous.

Let us now calculate the instability increment of the
negative energy wave under the assumption that the
resonant condition (31) is satisfied. Linear ideal MHD
predicts that the wave amplitude is infinite at the res-
onant position, z = z4. Dissipation removes the singu-
larity from the linear MHD equations. However, when
dissipation is weak, it is only important in a thin dissi-
pative layer embracing the ideal resonant position. The
wave motion in the dissipative layer is still character-
ized by very large amplitudes. Outside the dissipative
layer, the wave motion can be described by the linear
ideal MHD equations. This observation led Sakura: et
al. [1991] to devise a method for obtaining the solu-
tions describing resonant waves that does not require
solving the full set of dissipative MHD equations in the
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whole volume occupied by a plasma [see also Goossens
et al., 1995; Goossens and Ruderman, 1995]. In ac-
cordance with this method the ideal MHD equations
on each side of the dissipative layer and the dissipative
MHD equations in the dissipative layer are solved sep-
arately. Then the dissipative layer is considered as a
surface of discontinuity, and the dissipative solution is
used to obtain connection formulas, which are expres-
sions for the jumps across the dissipative layer in the
normal components of the velocity and in the pertur-
bation of the total pressure. These connection formulas
are then used to connect the ideal solutions on each side
of the dissipative layer.

Sakurai et al. [1991] and Goossens et al. [1995] ob-
tained connection formulas for Alfvén dissipative layers
in one-dimensional axisymmetric equilibria. Their ap-
proach was to solve the dissipative equations across the
resonance layer and determine the asymptotic changes
in wave quantities across this layer for small dissipative
coefficients. It is straightforward to rewrite their con-
nection formulas for one-dimensional planar equilibria
and obtain

Twk?P’sin? ¢
pald]

where A = dw? /dz calculated at z = 24, pa = po(za),
and the brackets indicate the jump in a quantity across
the dissipative layer. Note that the right-hand side of
the second equation (32) is of the order ak. Tradi-
tionally, the magnetospheric community has used the
Landau-damping recipe for calculating the jump in the
solution; for the present equations this requires adding
a small imaginary part to the frequency, causing the so-
lutions to grow in time. Equations (10) and (11) may
then be integrated directly along the real z axis past
the singularity, and the limit of vanishing imaginary fre-
quency can be taken. This is described in more detail
elsewhere, e.g., Thompson and Wright [1993, section 4],
and we note that this procedure and their equation (41)
reproduces the jump conditions above.

Connection formulas similar to (32) were obtained
by Sakurai et al. [1991] and Goossens et al. [1995] for
plasmas where the only dissipative process is resistivity.
However, it is not difficult to repeat their derivation
for plasmas with other dissipative processes, e.g., with
dissipation provided by Pedersen conductivity in the
ionosphere [Wright and Allan, 1996]. It is a general
principle that the connection formulas in linear MHD do
not depend on particular types of dissipative processes
operating in the dissipative layer.

The motions of the magnetic plasma are described by
(10) and (11). We eliminate u from these equations to
arrive at

d 1 dpP’ w? — %, k?

dz po(w? —w?) dz  poviy(w? —w?)
The ratio of the second term in (33) to the first one is of
the order (ak)?. Since we consider the long-wavelength

] = (32)

P'=0. (33)
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approximation and assume ak < 1, we can neglect the
second term and obtain

P' =P} + A/Oz po(2)[w? — wi(2)) dz, (34)

where P} and A are constant. Equations (10) and (11)
are only valid outside the dissipative layer, so that, in
general, P} and A take different values in the regions
—a < z < z4 and z4 < z < 0. However, the first
connection formula (32) ensures that A and Py take the
same values in the whole region, —a < z < 0.

We use (10) to get in the region —a < z <0

( w(-a) + /z iwlw? — k2% (2)]P'(Z) dZ

—a Po(B)05o(2)w? — Wi (D]
z2< z4,

o(0) — 0 jwlw? — k203, (2)|P'(2) dz
© / po(2)vho(2)w? —wi(2)]
\ Z>ZzZA.

(35)

Then it is straightforward to obtain

[u] = u(0) - u(—a)

O (w? — k) dz
—a PoVR (WP —wh)
where P indicates the Cauchy principal part of an in-
tegral. When deriving this equation, we have used the
estimate that the second term on the right-hand side

of (34) is of the order ak. Comparison of the second
equation (32) and (36) yields

— wP{P + O(k%a?), (36)

0 (w? - k%%,)dz
—a povﬁo(wz - w?l)
Twk? P sin? ¢ 2 2
pala] O
To derive the dispersion equation determining the de-
pendence of w on k, we need to express u(0) and u(—a)
in terms of Pj. The plasma motion in the magneto-
sphere outside the inhomogeneous layer (z < —a) is de-
termined by (10) and (11) with p_, v, and vakcose
substituted for po, v40, and wya. It is straightforward to
obtain the solution to this set of equations vanishing as
z — —oo. We then use this solution and the continuity
of u and P’ at z = —a to obtain

u(0) — u(—a) = wPyP

37)

iwm_ P}
p—(w? —vik2cos? @)

u(—a) = — (38)

The motion of the magnetic-free plasma is described
by the set of linear gasdynamic equations (12) and (13).
Once again, it is straightforward to obtain the solution
to this set of equations now vanishing as z — co. With

the use of this solution, the continuity of P’ at z = 0,
and the boundary conditions (17), we get

twmy P§

u(0) (39)

- pi(w — Uk cosp)?’
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Substitution of (38) and (39) into (37) yields
my m_
p+(w — Uk cos p)? +p_ (w? — vik2 cos? )
O (W? = k%%,)dz
—a POV (w? — w})

mik?sin? ¢
+ O(k%a?).
o] Ok

(40)

The ratio of the right-hand side of (40) to the left-hand
side is of the order ak < 1. This fact enables us to use
the regular perturbation method to solve this equation.
In accordance with this method we look for the solution
in the form w = @ + w’, where |w’| € |@|. In the
first-order approximation we take w = @ and neglect
the right-hand side of (40). As a result, we arrive at
dispersion equation (2) for surface waves on an MHD
discontinuity. We take the solution w = Q_wvak to this
equation. In the next approximation we calculate the
correction w’ to order A'/2(ak)

o Tp— k*v5v2€8 sin? p cos® p
1AM~ & st 9)

y (1 — M2 cos? p)'/?

1— M2 )

S‘(w’) = ,81/

(41)

We see that S(w’) > 0, so that, in complete agreement
with the general theory, the negative energy wave be-
comes unstable in presence of the energy sink owing to
resonant absorption. Let us recall that (41) was de-
rived under the assumption that the resonant condition
(31) is satisfied, i.e., that there is resonance between the
negative energy surface wave and the local Alfvén oscil-
lations at a position z = z4. The S(w’) = 0 when either
¢ = 0 or p = m/2, so that only obliquely propagating
waves are unstable.

Note that similar problems were studied by Hollweg
et al. [1990], Yang and Hollweg [1991], and Tirry et
al. [1998]. Hollweg et al. [1990] investigated resonant
instability of surface waves in the presence of a shear
flow in incompressible plasmas, and Yang and Hollweg
[1991] explored it in cold plasmas. These authors did
not use the concept of negative energy waves; however,
it is straightforward to show that the instability found
by them is related to the presence of negative energy
waves. Tirry et al. [1998] studied the resonant insta-
bility of the tangential MHD discontinuity numerically.
The main difference of their paper from ours is that they
had constant mangetic field and finite beta plasmas at
both sides of the discontinuity.

Harrold et al. [1990] studied resonant absorption of
surface waves propagating on the magnetopause in the
plasma sheet boundary layer of the magnetotail. The
main difference of the study by Harrold et al. [1990]
from ours is that they did not investigate the magne-
topause instability caused by the resonant absorption.
Instead, they assumed that there is a marginally stable
surface wave propagating along the magnetopause and
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studied the heating of the plasma sheet boundary layer
due to resonant absorption.

The instability considered in this section is a typical
example of instability related to the resonant interac-
tion of the negative and positive energy waves. As we
have seen, the backward wave is a negative energy wave
in the coordinate system where the magnetic plasma is
at rest. 'The dispersion equation for the localized Alfvén
waves is

Dp(w, k) = w? - Q2 v3k% =0,

so that, in accordance with (23), they are positive en-
ergy waves. If we once again consider the new moving
coordinate system where the magnetic-free plasma is at
rest, then the backward surface wave is a positive en-
ergy wave, while the Alfvén waves are negative energy
waves. The result of their interaction is, of course, the
same as previously, namely, the growth of both positive
and negative energy. waves.

6. Discussion

In this paper we use a very crude model of the magne-
topause. Therefore we need to discuss how our results
would be changed if we use more realistic model.

1. We assume that the magnetosheath plasma is mag-

netic free. In reality, there is usually a magnetic field on
the magnetosheath side. Tirry et al. [1998] numerically
studied the other extreme case where there is the same
constant magnetic field on both sides of the discontinu-
ity. These authors obtained results that qualitatively
coincide with ours. Comparison of our results with re-
sults obtained by Tirry et al. [1998] indicates that inclu-
sion of the magnetic field in the magnetosheath can only
quantitatively change our results, i.e., the exact expres-
sions for U, and for the instability increment. However,
it does not change our results qualitatively.

2. We used the assumption that the magnetospheric
plasma is cold, which is not satisfied, at least in the
mantle. Once again, we refer to Tirry et al. [1998], who
considered the finite beta plasma at the both sides of
the discontinuity. Comparison of their results with ours
shows that the account of the finite temperature of the
magnetospheric plasma does not qualitatively change
our results.

3. We model the magnetopause by an infinitely thin
MHD discontinuity, which is definitely an idealization.
Then the question arises: how will our results change
if we take the finite thickness of the magnetopause into

account? To answer this question, we refer to Hollweg .

et al. [1990] and Yang and Hollweg [1991]. These au-
thors considered the resonant instability of MHD shear
flows with the velocity varying in a finite layer with
thickness d. They then used the long-wavelength ap-
proximation; that is, they assumed that kd < 1. As a
result, they obtained the expression for the critical ve-
locity U, independent of d and the instability increment
proportional to kd. Hollweg et al. [1990] and Yang and
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Hollweg [1991] assumed that the characteristic scales of
variation of the shear velocity and the Alfvén speed are
the same and equal d. In a more general case they are
different, the first one being d and the second one be-
ing a. The case considered in our paper corresponds
to a > d. Since a is the thickness of the mantle and
d is the thickness of the magnetopause, this estimate
seems to be reasonable. If we take the finite thickness
of the magnetopause into account, we obtain, in the
long-wavelength approximation (ka < 1), corrections
of the order d/a to the instability increment and of the
order kd < d/a to U,. Obviously, these corrections are
not important.

4. The other important question that is related to
modeling the magnetopause by a current/vortex sheet
is, what is the wavelength of the most unstable per-
turbation? It is well known that in the case where an

- MHD discontinuity separates two homogeneous plasmas

the criterion of the KH instability is independent of the
perturbation wavelength. The instability increment is
proportional to the wavenumber, so that the shorter a
perturbation is, the faster it grows. This unphysical

-behavior of the unstable perturbations, especially the

property of the instability increment to tend to infin-
ity when the wavelength is increased, inspired Lerche
[1966] to claim that modeling the magnetopause by an
MHD tangential discontinuity is inadequate.

Walker [1981) addressed the effect of a finite width ve-
locity shear on magnetopause stability. He found that
the most unstable perturbations are those with wave-
lengths of the order of the transitional layer thickness.
Perturbations with wavelengths much smaller than the
transitional layer thickness are stable. However, it is
interesting to note that for perturbations with wave-
lengths much larger than the transitional layer thickness
the growth rate is the same as that in the case of MHD
discontinuity. Walker [1981] assumed that the regions
on either side of the vortex layer were homogeneous.

In the case where the two plasmas are once again sep-
arated by an MHD tangential discontinuity, however, at
least one of these plasmas is inhomogeneous in the direc-
tion perpendicular to the discontinuity, so the situation
is essentially the same as in the case where the both
plasmas are homogeneous. The reason is that the am-
plitudes of unstable surface waves exponentially decay
with distance from the discontinuity. The characteristic
scale .of this decay is the surface wave wavelength. As
a result, the inhomogeneity does not affect perturba-
tions with wavelengths much smaller than the charac-
teristic scale of the inhomogeneity. The stability of an
MHD tangential discontinuity with an inhomogeneous
plasma at one side of it was studied by Fujita et al.
[1996]. These authors studied the stability of the mag-
netopause, modeling it by an MHD tangential discon-
tinuity and assuming that the magnetosheath plasma
is homogeneous while the magnetospheric plasma is in-
homogeneous, with the Alfvén speed growing with the
distance from the magnetopause. Their numerical re-
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sults show that for not very large values of the Alfvén
Mach number of the magnetosheath flow the growth
rate of perturbations increases when the wavenumber &
is increased. This result is in agreement with the theo-
retical prediction that for large k the growth rate is pro-
portional to k. However, for large values of the Alfvén
Mach number the growth rate first increases when & is
increased, reaches its maximum value, and then slowly
decreases. The difference arises from the fact that Fujita
et al. [1996] have a finite-sized magnetosphere. When
the Alfvén Mach number is large enough, KH unsta-
ble waves are not exponentially decaying surface waves
in the magnetosphere but, rather, standing oscillatory
waves trapped between the magnetopause and the lower
boundary of the magnetosphere. It is natural that the
growth rate of such waves depends on the size of the
magnetosphere and of its inhomogeneity. In particular,
it can be anticipated that the largest growth rate will
be for a perturbation with the wavelength of the order
of the magnetosphere size, and the numerical results by
Fujita et al. [1996] support this.

In the case of resonant instability studied in this pa-
per the situation is more complicated than in the case
of KH instability. A negative energy wave propagating
on the magnetopause is unstable only when the condi-
tion of resonance between this wave and local Alfvén
oscillations is satisfied at a resonant position in the in-
homogeneous region. The growth rate of the negative
energy surface wave is proportional to the efficiency of
the resonant coupling. The amplitude of the surface
wave exponentially decays with the distance from the
magnetopause with the characteristic scale k=1. This
implies that the amplitudes of short surface waves are
exponentially small at the resonant position (which only
depends on the phase velocity of the surface wave but
not explicitly on its wavelength) and the efficiency of
the resonant coupling is very small. As a result, the
growth rate of the negative energy surface wave tends
to zero when k tends to infinity.

Still, in general, the growth rate takes its maximum
value for ka of the order unity (recall that a is the thick-
ness of the inhomogeneous layer). So the main reason
why we used the long-wavelength approximation when
studying the resonant instability of the magnetopause
is mathematical tractability. When ka is of the order
unity, only numerical analysis is possible.

However, it turns out that for some unperturbed
states, only long negative energy surface waves are un-
stable, so that the long-wavelength approximation is not
so artificial as it seems from first sight. Let us give an
example of such an unperturbed state. The resonant
position z4 is determined by the condition that at this
position the phase velocity of a negative energy surface
wave coincides with the local Alfvén speed. The phase
velocity of the surface wave depends on ka. We con-
sider the situation where for ka — 0 this phase velocity
is close to the minimum value of v49(%#) in the interval
[—a,0], v40(0). This implies that the resonant condition
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is satisfied at z4 satisfying |z4]| < a. When studying
dispersion equation (40) using the regular perturbation
method, we concentrated on the second term on the
right-hand side because it determines the instability in-
crement. However, there is also the first term on the
right-hand side. This term provides the dispersion, so
that the approximate solution to (40) corresponding to
the negative energy wave is

w = kva(M — BY%€) cos p + kak|k| + iS(w’), (42)

where S(w’) is given by (41). The dispersion coeffi-
cient k can be written in terms of equilibrium quantities;
however, here we do not do this. We only note that the
important property is that, depending on equilibrium
quantities, k can be either positive or negative. Let us
assume that k < 0. Then the phase velocity of the neg-
ative energy wave decreases when k is increased. The
resonance between the surface wave and local Alfvén
waves is only possible when this phase phase velocity is
in the interval [v40(0), v4]. Since for ak — 0 the phase
velocity is only slighly larger than v40(0), the resonant
condition can be satisfied only when the dispersion cor-
rection kak|k| in (42) is small in comparison with the
first term on the right-hand side. Hence the resonant
instability takes place only for ka < 1.

5. It is interesting that the resonant instability has
not been found in earlier numerical studies of the mag-
netopause stability. The reason is that in the majority
of numerical works the stability of the equatorial re-
gions of the magnetopause was studied. Consequently,
the equilibrium magnetic field is perpendicular to the
flow [e.g., Fujita et al., 1996]. Such configurations are
KH unstable for any values of the shear velocity, so that
there is no KH threshold velocity at all. Since negative
energy surface waves can exist only for flow velocities
below the KH threshold velocity, there are no negative
energy waves and, consequently, no resonant instability
in such configurations.

On the other hand, in numerical modeling of the
instability of the magnetospheric boundary where the
magnetic field and shear velocity were taken to be non-
perpendicular, usually only the shear velocity larger
than the KH threshold ‘was considered [e.g., Miura,
1992]. Hence, once again, the necessary condition for
the existence of negative energy surface waves was not
satisfied.

7. Conclusions

In this paper we have considered the instability of the
magnetopause caused by the resonant interaction of a
negative energy surface wave with Alfvén waves local-
ized in the vicinity of the resonant magnetic surface. We
have assumed that the magnetosheath plasma is mag-
netic free and the magnetospheric plasma is cold. In
addition, we have made an assumption that the sound
speed cg in the magnetosheath is much smaller than the
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Alfvén speed v, in the magnetosphere and used the ra-
tio ¢s/va as a small parameter. This assumption is vi-
able, at least for the near magnetotail. We have shown
that the threshold for the Kelvin-Helmholtz (KH) in-
stability is close to v4. Then we considered the surface
waves propagating on the magnetopause when the shear
velocity is lower than the KH threshold. These waves
are the forward wave propagating in the direction of
the shear velocity with respect to the magnetosheath
plasma and the backward wave propagating in the op-
posite direction. We have shown that the backward
wave is a negative energy wave when its phase veloc-
ity is in the direction of the shear velocity with respect
to the magnetospheric plasma. This happens when the
shear velocity U is larger than the critical velocity Uy,
which is of the order cs. Hence one of the two surface
waves is a negative energy wave when U, < U < Ukuy,
U./Uxn being of the order cs/v4 < 1.

When the negative energy surface wave is in reso-
nance with the local Alfvén waves at a resonant surface
inside the magnetosphere, it becomes unstable. We
study this instability under the assumption that the
density grows in the direction toward the magnetopause
and, consequently, the Alfvén velocity decreases in a
slab with the thickness much smaller than the wave-
length. The resonance is only possible when the phase
velocity of the negative energy surface wave is larger
than the phase velocity of Alfvén waves at the mag-
netopause. The instability increment is zero when the
negative energy surface wave propagates either parallel
or perpendicular to the direction of the shear velocity,
so that only obliquely propagating surface waves are
unstable. The important property of the considered in-
stability is that the amplitudes of Alfvén oscillations in
the vicinity of the resonant magnetic surface grow si-
multaneously with the amplitude of the surface waves.

The manifestation of the resonant instability of the mag-
netopause can be the correlated growth of the perturbation
of the magnetospheric boundary and the Alfvén waves
propagating in the magnetotail in the vicinity of the
magnetopause and away from Earth.
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