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Self‐consistent ionospheric plasma density
modifications by field‐aligned currents: Steady state
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[1] The magnetosphere and ionosphere are coupled by field‐aligned currents that remove
or deposit E‐region electrons. Changes in electron number density modify ionospheric
reflectivity, hence altering the magnetospheric current. Thus, self‐consistent solutions are
nontrivial. In this paper, we present 1‐D steady states that self‐consistently model
modifications of ionospheric plasma density by field‐aligned currents. These are used to
investigate the width broadening and minimum plasma density of E‐region plasma density
cavities and the origin of small‐scale features observed in downward current channels.
A plasma density cavity forms and broadens if the maximum initial current density jk0
exceeds jc = ane

2he/(1 + 1/b), where a is the recombination coefficient, ne is the
equilibrium E‐region number density in the absence of currents, h is the E‐region
thickness, and b = �P0=�A is the initial ratio of Pedersen to magnetospheric Alfvén
conductivities. If a plasma density cavity forms, its final width increases monotonically
with W = 2B0/m0VAane

2he, where B0 is the background magnetic field strength and VA is
the magnetospheric Alfvén speed. The minimum E‐region number density, and the finest
length scale present in the steady state, both scale as 1/b. For typical ionospheric
parameters and jk0 = 5 mAm−2, the fine scale is comparable to or less than 6le for b ^ 2,
where le is the electron inertial length. This suggests that electron inertial effects may
become significant and introduce small‐scale features, following the production of a single
fine scale by depletion and broadening.
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1. Introduction

[2] Wherever field‐aligned currents close through the
ionosphere, the magnetosphere and ionosphere form a
strongly coupled system. This occurs, for example, in the
auroral regions, where the upward current responsible for the
northern lights is accompanied by a downward return current.
[3] A current system influences the ionosphere by modifi-

cation of E‐region electron number density. Upward currents
enhance electron number densities by depositing electrons
(which may then produce further ionization), while down-
ward currents suppress them by removing electrons. The
currents close through the ionosphere via Pedersen currents, as
ions move horizontally to preserve quasi‐neutrality. Typical
current densities are readily sustained in the upward current
channel, since the magnetosphere provides a large reservoir of
electrons [Wright et al., 2002; Wright, 2005]. In contrast,
downward currents can rapidly suppress the ionospheric
number density (on a time scale of ∼30 s) and can lead to the

formation of a plasma density cavity in the E‐region [Doe et
al., 1995; Blixt and Brekke, 1996; Karlsson and Marklund,
1999; Marklund et al., 2001; Aikio et al., 2002, 2004].
[4] The depletion of ionospheric densities means that the

downward current cannot maintain a large current density.
The downward current channel (and region of suppressed
number density) therefore has to broaden. This ensures that
the total downward current remains the same, closing the
current system, but is produced over a larger area, requiring
lower current densities [Marklund et al., 2001; Aikio et al.,
2002, 2004; Cran‐McGreehin et al., 2007].
[5] Fine scales present in the steady state are of great

importance. Because of coupling of the ionosphere and
magnetosphere, rapid variation in ionospheric number den-
sity produces small‐scale current features in the magneto-
sphere. It is now well established that small‐scale currents
and electric fields are frequently observed in downward
current channels [Paschmann et al., 2002; Mishin et al.,
2003; Wright et al., 2008]. Physical mechanisms that pro-
duce fine‐scale features include the ionospheric feedback
instability (IFI) or generalization of Ohm’s Law to include
electron inertia [Streltsov and Lotko, 2004, 2008].
[6] In this paper, we present steady state solutions for a

1‐D model of a coupled magnetosphere‐ionosphere system.
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We show that an analytic solution can be constructed for any
field‐aligned current system driven by an incident Alfvén
wave. Having obtained this steady state, we also find a
condition for formation of a plasma density cavity and
broadening of the downward current channel, the minimum
density, width of the plasma density cavity, and a guide to
the finest length scale present in the steady state.

2. Model

[7] We employ the model described by Cran‐McGreehin
et al. [2007]. This uses a Cartesian coordinate system in
which the background magnetic field, directed downward in
the Northern Hemisphere, points in the negative z direction.
A thin “sheet” ionosphere (representing the E‐region) is
located between z = 0 and z = h, and underlies a magneto-
sphere of uniform number density. Fields are considered
invariant in the x direction. A diagram of the yz plane
summarizes the model and is provided as Figure 1.
[8] Field‐aligned currents are modeled by specifying an

incident magnetospheric Alfvén wave, originating at z = ∞.
This propagates downward, meeting the top of the iono-
sphere at t = 0, defining the time origin. At later times, the
incident wave induces Pedersen currents in the ionosphere,
leading to partial reflection of the incident wave.
[9] The incident velocity perturbation −ui(y)x̂ is polarized

in the x direction, producing a magnetic field perturbation
bi(y)x̂ by advection of field lines. Hence, gradients in ui(y)
lead to gradients in bi(y), resulting in an incident field‐
aligned current.

[10] In order to consider localized physical solutions, we
specify an incident velocity perturbation for which ui and
dui/dy go to zero as y → ±∞. This is equivalent to zero
transverse electric field and zero field‐aligned current at
y = ±∞, forcing currents to close locally. It follows that
there is at least one channel of upward current and one
channel of downward current incident on the ionosphere.
Ionospheric Pedersen current closes the magnetospheric
current by flowing from the downward current region to the
upward current region.
[11] At t = 0, the ionosphere is in an equilibrium state in

which losses due to recombination are exactly balanced by
gains from ionization. As yet, no electrons have been deposited
or removed by currents. At later times, upward/downward
field‐aligned currents act as additional gain/loss terms in
the ionospheric electron continuity equation, leading to
enhanced/suppressed ionospheric number densities. The
steady state is obtained once a new balance is reached
between ionization, recombination, and field‐aligned currents.
[12] For any physical scenario, one can define a length

scale over which the magnetospheric density, magnetic field
strength, and wavefields vary significantly. If this is much
larger than the ionospheric thickness h, then the model
which we have described can be applied. The remaining
assumption, that of vertical background magnetic field, is
reasonable for high latitudes.

3. Governing Equation

[13] Following the approach of Streltsov and Lotko [2005]
and Cran‐McGreehin et al. [2007], we begin with the
continuity equation for electrons in the E‐region of the
ionosphere:

@n

@t
¼ 1

e

@jz
@z

þ � n2e � n2
� �

: ð1Þ

Here n is the electron number density, jz is the vertical
current, e is the fundamental charge, ne is the equilibrium
electron density in the absence of field‐aligned currents, and
a is the recombination coefficient which we take to be
constant.
[14] Equation (1) can be integrated over the thickness of

the E‐region. If n is independent of height, then the height‐
integrated electron density is N = hn, where h is the thick-
ness of the E‐region. Also, jz = 0 at the base of the E‐region.
Thus, integration of (1) gives

@N

@t
� jz

e
¼ �

h
N 2
e � N 2

� �
; ð2Þ

where jz now represents the current at the top of the
E‐region.
[15] Positive vertical currents are directed upward, and are

carried by a downward flow of electrons. Therefore, these
currents deposit electrons in the E‐region and act as a gain
term in the continuity equation. Similarly, negative currents
act as a loss term. The term aNe

2/h is a source term re-
presenting ionization and −aN2/h is a loss term representing
recombination. In the absence of field‐aligned currents, the
steady state is satisfied by N = Ne.

Figure 1. Diagram of the y‐z plane of the model. An Alf-
vén wave, incident on the ionosphere, leads to the shearing
of field lines, producing a channel of upward field‐aligned
current and a channel of downward field‐aligned current.
Upward field‐aligned current deposits electrons into the ion-
osphere, enhancing number densities there (region marked
with crosses). Downward field‐aligned current removes
electrons from the ionosphere, leading to electron depletion
(region marked with dots).
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[16] Field‐aligned currents are driven by an incident
Alfvén wave that is reflected by the ionosphere. Writing
bi(y)x̂ and −ui(y)x̂ as the incident wave magnetic and ve-
locity perturbations, the total magnetospheric perturbations
are given by

uTx yð Þ ¼ 1þ rð Þui ð3Þ

bTx yð Þ ¼ 1� rð Þbi; ð4Þ

where

r ¼ 1� �0�PVA

1þ �0�PVA
ð5Þ

and

bi ¼ B0ui
VA

: ð6Þ

The variable r is the reflection coefficient for the iono-
sphere, assuming that the current closes in the E‐region,
resulting in the atmosphere being shielded from the mag-
netospheric magnetic perturbation bx

T. SP = SP0N/Ne

represents the height‐integrated Pedersen conductivity, B0 is
the background magnetic field strength, r0 is the magneto-
spheric ion density, and VA = B0/

ffiffiffiffiffiffiffiffiffiffi
�0�0

p
is the magneto-

spheric Alfvén speed.
[17] Substituting (5) and (6) into (4) and differentiating to

obtain

jz ¼ � 1

�0

@bTx
@y

; ð7Þ

the height‐integrated continuity equation (2) may be written
as

@

@t

N

Ne

� �
þ @

@y

�uiN

Ne þ �N

� �
¼ � 1� N2

N2
e

� �
; ð8Þ

where

� ¼ �Ne

h
; ð9Þ

� ¼ 2�P0B0

Nee
; ð10Þ

and

� ¼ �0VA�P0 � �P0

�A
: ð11Þ

Here N is the primary dependent variable of our system,
from which magnetospheric perturbations, ionospheric cur-
rents, and field‐aligned currents may be directly obtained,
given knowledge of ui and equilibrium quantities. Also,
b represents the ratio of the Pedersen conductivity to the
Alfvén conductivity, SA = 1/m0VA, in the absence of field‐
aligned current. It will be seen to be an important descriptor
of the system.

[18] In the steady state, (8) reduces to

d

dy

�uiN

Ne þ �N

� �
¼ � 1� N 2

N 2
e

� �
; ð12Þ

which is the focus of this paper.

4. Numerical Solution

4.1. Method

[19] To obtain example solutions to the steady state
equation (12), we used a numerical scheme to evolve an
initial state

N ¼ Ne at t ¼ 0; ð13Þ

according to the time‐dependent governing equation (8).
Numerically, it is convenient to solve this in a normalized
form, putting

�y ¼ y

y0
; ð14Þ

�ui ¼ ui
ui0

; ð15Þ

�t ¼ t

�
¼ ui0t

y0
; ð16Þ

�N ¼ N

Ne
; ð17Þ

�� ¼ �� ¼ y0�

ui0
; ð18Þ

where y0, ui0, and t are the characteristic length scale,
incident velocity, and time scale, respectively. This means
that a numerical steady state represents a family of steady
states, since it can be scaled by y0 and ui0.
[20] The code uses an Euler scheme and evaluates spatial

derivatives as forward differences. This results in a code that
is first order in both time and space and that can evolve
discontinuities in number density. The high spatial resolu-
tion required to resolve fine scales means that a higher order
scheme would not significantly improve accuracy. For the
runs presented here, the spatial resolution is dy = 0.001 and
the time resolution is dt = 0.0001. The parameters h = 1.015,
a = 3 × 10−13 m3 s−1, h = 2 × 104 m, and Ne = 1.2 × 1015 m−3

were fixed across all runs, while b was varied between
them.
[21] The velocity profile was taken as

ui ¼
� 1þ cos yð Þð Þ; for � 	 < y < 	

0 otherwise;

8<
: ð19Þ

producing an incident current that is upward between −p and
0, downward between 0 and p, and zero everywhere else. We
chose to keep the maximum initial current density in the
downward channel constant across all simulations, using a
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value of jk0 = 5 × 10−6 mAm−2. This includes a contribution
from the reflected wave and is enforced by the condition

� ¼ y0
ui0

¼ 2B0�P0

1þ �ð Þ jk0
: ð20Þ

[22] Since ui = 0 at the edges of the simulation domain,
the governing equations provide tests for the simulations. If
a = 0, then (8) conserves the integrated number density. To
test the code, a run was performed with a = 0 and b = 100
(all other parameters were set as stated above). During this
run, the dimensionless integrated number density varied
from its initial value of 8.0 by less than 1.78 × 10−14.
[23] Taking a ≠ 0, (12) implies that the integral of (1 −

N2) over the simulation domain is zero in the steady state.
The physical interpretation of this is that ionization and
recombination balance one another in the steady state.
Evaluating the integral allows us to check convergence to
the steady state: all the steady states referred to in this paper
were obtained by running simulations until ∣

R
(1 − N2)dy∣

was less than 1.0 × 10−10 and slowly converging to zero, as
evaluated over the simulation domain.

4.2. Results

[24] Figure 2 shows steady states for b = 12.2, 100, and
1370. In the upward current channel, the ionospheric num-
ber density is enhanced, the solution varying little with b. In
the downward current channel, number densities are sup-
pressed to a degree that increases with b.
[25] The finest length scale present in each steady state is

located at the boundary between the upward and downward
current channels. Here the number density changes rapidly
over a distance that decreases with increasing b. We
investigated the relationship between fine scales and b by
determining the steepest gradient in each steady state from
finite differencing. Plotting this gradient against b, as in

Figure 3, reveals that the steepest gradient varies linearly
with b. The best fit straight line is −1.42–0.108b, giving


 � 9:24y0
�

ð21Þ

as the fine scale for runs in which b � 13.
[26] Defining Nmin as the minimum value of N in the

steady state, it is seen that Ne /Nmin is linear in b for the
numerical solutions (Figure 4). The best fit straight line is
2.64 + 0.253b, implying that

Nmin � 3:95Ne

�
ð22Þ

Figure 2. Numerical steady states for b = 20 (dotted curve),
b = 100 (solid curve), and b = 1370 (dashed curve). As b is
increased, the suppression of number densities in the down-
ward current channel becomes more severe. The finest scale
present in each steady state is seen to decrease with increas-
ing b, leading to steeper gradients.

Figure 3. Demonstration that the steepest gradient in the
numerical steady state is linear in b. Points represent simu-
lations and the straight line is a best fit to the data, given by
−1.42–0.108b. This linear relationship implies that the finest
length scale present in the steady state goes as 1/b.

Figure 4. Demonstration that Ne /Nmin is linear in b for the
numerical steady states. Points represent simulations and the
straight line is a best fit to the data, given by 2.64 + 0.253b.
This linear relationship implies that Nmin goes as 1/b.
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for b � 10. Introducing ymin as the position of the mini-
mum, 1/(Wu′(ymin) − 1) = 3.86 for b = 400. Hence, the
constant of proportionality in (22) is in good agreement with
the analytic result, equation (32).

5. Analytic Solution

[27] The steady state equation (12) may be solved directly
in two limits. The first of these assumes that bN � Ne, and
is valid where depletion has not significantly altered the
reflection coefficient from r = −1 (the ionosphere remains
highly reflective). This leads to an upper steady state solu-
tion Nupper. The second assumption is to take N2 � Ne

2. This
corresponds to significant depletion, so that recombination
is negligible, leading to a lower solution Nlower. Once these
have been obtained, the global solution can be constructed
through boundary layer matching.

5.1. Upper Solution

[28] Where bN � Ne, (12) reduces to

�

�

dui
dy

¼ � 1� N2

N2
e

� �
: ð23Þ

We can rearrange this directly to obtain the upper steady
state solution

Nupper ¼ Ne

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

��

dui
dy

s
: ð24Þ

Note the role of the parameter

W ¼ �

��
¼ 2B0

�hn2ee�0VA
ð25Þ

that has the dimension of time. (This appears in Cran‐
McGreehin et al. [2007] in its dimensionless form, nor-
malized by t.) If Wdui/dy ≤ 1 then Nupper is real; otherwise,
Nupper is imaginary. This means that the upper solution
breaks down at points where

W dui
dy

¼ 1; ð26Þ

If max(Wdui/dy) > 1, then a lower solution is required.

5.2. Lower Solution

[29] Where N2 � Ne
2, (12) reduces to

d

dy

�uiN

Ne þ �N

� �
¼ �: ð27Þ

Integrating this directly and rearranging yields the lower
steady state solution

N lower ¼ Ne� yþ cð Þ
�ui � �� yþ cð Þ ; ð28Þ

where c is an integration constant.
[30] The lower solution breaks down at points where the

denominator goes to zero. This occurs for

c ¼ Wui yð Þ � y: ð29Þ

It follows that c can be determined if there is a known
location at which the lower solution must break down.
[31] Broadening is seen to occur on the side of the

downward current region at which the Pedersen current jP
has the same sign as the spatial gradient of number density
∂N/∂y. Since we require that Pedersen currents close the
field‐aligned currents locally, this means that the depleted
trough broadens on the side adjacent to the upward current
region.
[32] A complete steady state that has broadened on one

side, can be constructed, if, and only if, upper and lower
solutions break down at common point, on the side of the
trough that has not broadened. The best way to visualize this
is to examine a plot of Wui − y, an illustration of which is
given in Figure 5. By (26), the upper solution breaks down
at the turning points of this curve; by (29), the lower solu-
tion breaks down at intersections with Wui − y = c. Hence,
the condition that the steady state follows broadening on one
side requires f(y) = c to intersect the turning point of f(y) =
Wui − y farthest from the upward current region (always a
maximum). Therefore, the value of the integration constant
c is readily determined, providing a unique lower solution.

5.3. Minimum E‐Region Plasma Density

[33] If Wdui/dy < 1 everywhere, then the upper solution
gives a complete description of the steady state. In such a

Figure 5. Sketch ofWui‐y against y, from which many key
features of the solution can be determined. The horizontal
line, passing though the maximum turning point determines
the integration constant c. The horizontal distance between the
turning points wi indicates the initial width with which the
plasma density cavity forms. The distance between the inter-
sections Wui‐y = c, wf, indicates the final width of the
plasma density cavity. A straight line may be drawn through
the point (−c,c) that is tangent to Wui − y between its turn-
ing points. The tangent meets the curve at the location of
the minimum in number density ymin, and the minimum
number density is Ne /bm, where m is the slope of the
tangent.
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case, the minimum E‐region plasma density is located
where the initial current density is at its maximum, and

Nmin ¼ Ne

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�max W dui

dy

� �s
: ð30Þ

[34] If max(Wdui/dy) > 1, then the density minimum is
obtained from the lower solution. Writing ymin as the loca-
tion of the density minimum, ymin satisfies

ui yminð Þ � u0i yminð Þ ymin þ cð Þ ¼ 0 ð31Þ

and the minimum density is

Nmin ¼ Ne

� Wu0i yminð Þ � 1ð Þ : ð32Þ

In practice,Wu′i(ymin) is weakly dependent on b, remaining of
order ∼1. Hence, the main dependence on b is Nmin ∼ 1/b, in
keeping with the numerical results presented in section 4.2.
[35] When the lower solution exists, the location and

value of the density minimum may be obtained from a plot
of Wui − y against y (Figure 5). At ymin, the curve has
gradient m = Wu′i(ymin) − 1. Therefore, multiplying (31)
through by W, putting Wu′i(ymin) = m + 1, and rearran-
ging for m, we may write

m ¼ c� Wui yminð Þ � yminð Þ
�cð Þ � ymin

: ð33Þ

Hence, a straight line through the point (−c, c) that is tangent
toWui − y between its turning points must meet the curve at
ymin. Furthermore, (32) allows us to write

Nmin ¼ Ne

�m
; ð34Þ

where m is the slope of the tangent.

5.4. Plasma Density Cavity: Formation, Width,
and Broadening

[36] If max(Wdui/dy) < 1, then the upper solution gives a
complete description of the steady state, and the reflection
coefficient is not significantly altered from r = −1. In such a
case, density is suppressed, but a true plasma density cavity
does not form.
[37] If max(Wdui/dy) > 1, then a plasma density cavity is

present in the steady state. We may discuss both an initial
width, with which the plasma density cavity first forms, and
a final width, which it attains by broadening.
[38] The initial width may be estimated as the distance

between the two points at which the upper solution breaks
down. These are the points at which Wu′i(y) = 1. Inspection
of a plot of Wui − y against y (Figure 5) yields this as the
horizontal distance between the two turning points (marked
as wi).
[39] Similarly, the final width may be estimated as the

distance between the two points at which the lower solution
breaks down. These are the points at which Wui − y = c.
Referring to the plot of Wui − y against y (Figure 5), this
final width is the horizontal distance between intersec-
tions of f(y) = Wui − y and f(y) = c (marked as wf). It can be
seen that, regardless of the value of c, the final width
increases monotonically with W. Writing y = a and y = b for
the limits of the plasma density cavity, where b > a, the final
width satisfies

wf ¼ b� a ¼ W ui bð Þ � ui að Þð Þ: ð35Þ

The strong dependence on W is apparent. Recalling that
ui → 0 at the edge of the current system, it is also clear
that the plasma density cavity cannot expand beyond the
limits of the current system.
[40] Since the minimum turning point of f(y) = Wui − y

lies between the intersections with f(y) = c, the final width of
the plasma density cavity is always greater than the initial
width. If max(Wdui/dy) < 1, then Wui − y does not possess
turning points. This means that it is not possible to discuss
the width of a plasma density cavity in the same way as
for max(Wdui/dy) > 1. It follows that the condition max
(Wdui/dy) > 1 is a robust condition for the formation and
broadening of a plasma density cavity (and hence broad-
ening of the downward current channel).

5.5. Global Solution by Boundary Layer Matching

[41] Once upper and lower steady states have been deter-
mined, the global steady state can be accurately approximated
using a boundary layer analysis. The principle is that we can
use the upper steady state where there is little depletion and
the lower steady state where depletion is significant. There
are, however, two narrow regions in which neither approx-
imation is valid, and the solution makes a transition between
the upper and lower steady states (Figure 6). We solve the
full steady state equation in each of these regions, but sim-
plify matters by assuming regions are narrow and a solution
need only be valid within the appropriate boundary region.
Once we have boundary layer solutions, the global steady
state can be constructed.
[42] Here we outline the method and results of this anal-

ysis, reserving detailed working for the appendices. For a

Figure 6. Plot showing the steady state obtained numeri-
cally for b = 100 (solid line) with the upper steady state
(dashed curve) and lower steady state (dotted curve).
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boundary layer positioned at y = x (a location at which the
lower solution breaks down), the method is as follows:
[43] 1. Introduce a scaling of the form

Y ¼ �� y� �ð Þ ð36Þ

N ¼ �N=Ne; ð37Þ

where � > 0. This provides a stretched coordinate Y that is
small within the boundary layer.
[44] 2. Expand N upper

2 (Y) and N lower(Y) about x. Since
ui is regular at x, it has a Taylor expansion

ui Yð Þ ¼ ui �ð Þ þ ui′ �ð Þ���Y þ ui″ �ð Þ
2

��2�Y 2 þ . . . ; ð38Þ

where a prime denotes differentiation with respect to y.The
expression N upper(Y) is readily obtained from N upper

2 (Y),
and inspection reveals the behavior of the upper and lower
solutions as Y → 0. At this stage, � and n may be fixed as
described in Appendix A.
[45] 3. ExpandN . Led by the occurrence of powers of b−�

in the expansion of ui, we expand N as

N ¼ N 0 þN 1�
�� þN 2�

�2� þ . . . : ð39Þ

If b−� < 1, then N 0 is an approximation for N , while N 1,
etc., provide corrections. The smaller the value of b−�, the
better the approximation.
[46] 4. Substitute expansions of N upper

2 , ui, and N into the
scaled governing equation; equate terms in b0. This gives an
ordinary differential equation for N 0. Solutions for N 1 and
higher order corrections may be obtained by equating lower
powers of b in the scaled governing equation.
[47] 5. Construct the global solution across the boundary

layer. Let N outer be the steady state solution (either N upper

or N lower) that is valid to the left of the boundary layer. We
introduce g(Y) as the leading order behavior of N outer as
Y → 0, making sure that g(Y) includes all singular terms.
We also put

N inner ¼ N 0 þ . . .þN r�1�
� r�1ð Þ�; ð40Þ

where r 2 N matches or exceeds the number of singular
terms in N outer. The complete solution can be constructed
on the left of the boundary layer, provided N inner → g(Y)
as Y → −∞. That is to say, the behavior of the inner
solution as Y → −∞ matches the behavior of the outer
solution as Y → 0. (This is true for solutions con-
structed in this paper.) The solution to the left of x is

N � N inner þN outer � g Yð Þ: ð41Þ

A similar construction applies to the right of x.
[48] 6. Rewrite the complete solution in terms of the

original, unscaled variables N and y.
[49] Between the upward and downward current channels,

the scaling is � = 1, n = 0. Farthest from the upward current
channel, the scaling is � = 2/5, v = 1/5. Equation (36)
informs us that the width of each boundary layer scales as
b−�. It follows that the finest length scale in our steady state
goes as 1/b, and that this occurs between the upward and

downward channels. This agrees with the numerical simu-
lations presented in section 4 (Figure 3).
[50] Matching between the upward and downward current

channels, the unscaled solution is

N ¼ N0 þ Nupper � Ns ð42Þ

on the upper steady state side of x and

N ¼ N0 þ Nlower þ N 3
eWui �ð Þ

�N2
s y� �ð Þ ð43Þ

on the lower steady state side of x, where

Ns ¼ Nupper �ð Þ; ð44Þ

and N0 is given implicitly by

� � y� �ð Þ
N 3
e Wui �ð Þ ¼ 1

N2
sN 0

þ 1

2N3
s

ln Ns � N 0ð Þ

� 1

2N 3
s

ln Ns þ N 0ð Þ: ð45Þ

[51] For the boundary layer farthest from the upward
current channel, the unscaled solution is

N ¼ N 0 þ ��2=5N 1 þ N upper � Ne

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Wui″ �ð Þ y� �ð Þp

þNeui‴ �ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Wui″ �ð Þ y� �ð Þp
y� �ð Þ

4ui″ �ð Þ ; ð46Þ

on the upper steady state side of x and

N ¼ N 0 þ ��2=5N 1 þ N lower � 2Neui �ð Þ��1

ui″ �ð Þ y� �ð Þ2

þ 2u0i �ð Þ
ui″ �ð Þ � 2ui �ð Þui‴ �ð Þ

3ui″ �ð Þ
� �

Ne�
�1

y� �ð Þ ð47Þ

on the lower steady state side of x, where N0 and N1 are the
solutions of the following ordinary differential equations:

dN0

dy
¼ � �N 0

Wui �ð Þ þ
�ui″ �ð Þ
Neui �ð ÞN

2
0 y� �ð Þ ð48Þ

dN1

dy
¼ N0

Wui �ð Þ �2=5 � �N 2
0N 1

N 3
e

� �

þ N 0

Neui �ð Þ
�7=5N 3

0

N 2
eW2ui �ð Þ � 2�N 1ui″ �ð Þ

 !
y� �ð Þ

þ �7=5N 2
0

Neui �ð Þ
ui″ �ð Þ
Wui �ð Þ �

ui‴ �ð Þ
2

� �
y� �ð Þ2: ð49Þ

These can be solved numerically if we note that the asymp-
totic behavior

N 0 � �Ne

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wui″ �ð Þ y� �ð Þ

p
ð50Þ

N1 � �Ne�
2=5ui‴ �ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiWui″ �ð Þ y� �ð Þp

y� �ð Þ
4ui″ �ð Þ ; ð51Þ

as ∣y∣ → ∞ in the direction of the upper steady state (see
Appendix C), provides boundary conditions for numerical
integration.
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[52] If the boundary matching between the upward and
downward channels is performed at y = a, and the matching
far from the upward channel is performed at y = b, then the
complete solution can be constructed by using (42) and (46)
out with the plasma density cavity, and taking

N ¼ N lower þ Na0 þ Nb0 þ ��2=5Nb1

þ N3
eWui að Þ

�N 2
s y� að Þ �

2Neui bð Þ��1

ui″ bð Þ y� bð Þ2

þ 2u0i bð Þ
ui″ bð Þ � 2ui bð Þui‴ bð Þ

3ui″ bð Þ
� �

Ne�
�1

y� bð Þ
ð52Þ

inside the plasma density cavity, where Na0 is the solution to
(45) with x = a, Nb0 is the solution to (48) with x = b, and Nb1
is the solution to (49) with x = b.
[53] We test the analytic solution by comparison with

numerical solutions. Figure 7 shows this comparison for b =
100. The agreement is excellent. For all numerical solutions
with b ≥ 20, the area between the two curves is less than
3.7% of the area under the numerical solution, with the best
agreement obtained for large b. For very low values of b,
agreement can be improved by including higher order cor-
rections in the analytic solution.

6. Discussion and Conclusions

[54] We have obtained self‐consistent steady states for
ionospheric density modifications by field‐aligned currents.
These illustrate the large‐scale features of such a system at
late times, which may follow the formation and broadening
of an ionospheric plasma density cavity. The method is
applicable to any current system driven by an incident
Alfvén wave. In addition to detailing how to compute these
steady states, we have investigated the formation and
broadening of density cavities, their width, the minimum
density, and the finest scale in the steady state.
[55] The steady state solutions have revealed that the

downward current channel broadens for max(Wdui/dy) > 1
(section 5.1). Using (25) to evaluate W, using (4)–(7) to

evaluate dui/dy, and writing jk0 for the greatest initial
downward current density, this condition becomes

1þ 1=�ð Þ jk0
�hn2ee

> 1: ð53Þ

Hence, for given a, h, ne and b = SP0/SA, there is a max-
imum current intensity jc that can be supported without
broadening. Rearranging (53)

jc ¼ 1

1þ 1=�ð Þ�n
2
ehe: ð54Þ

In the limit b � 1, (53) and (54) are independent of b, and
reproduce equations (32) and (33) of Cran‐McGreehin et al.
[2007]. This represents a generalization of their result to any
current system and for any value of b.
[56] Downward current density can be maintained over a

region of ionosphere if and only if electrons can be pro-
duced at a sufficient rate. Examining (54), ane

2 is the ioni-
zation rate in the ionosphere. The maximum rate at which
charge can be produced in the ionosphere is therefore ane

2he.
If the downward current density exceeds this, then the
current can only be maintained if the current channel
broadens, reducing the current density. The factor involving
b represents the fact that broadening occurs for low b
without completely evacuating the plasma density cavity of
electrons and ions (the minimum electron number density
goes as 1/b). This means that recombination persists, so
electrons produced by ionization must balance both current
density and recombination. Therefore, the critical current is
less than ane

2he for low b.
[57] We have demonstrated that the finest scale present in

the steady state scales as 1/b. Therefore, for given h, a, h,
and Ne, there is always a threshold value of b above which
additional terms should be included in Ohm’s law. The Hall
term can initially be neglected, since the linear order current
is field‐aligned, but electron inertia should be considered.
[58] The runs presented in section 4 exhibit a fine scale,

l ≈ 9.24y0/b. The width of the simulated current channel is
approximately p y0 and compares with observations of
∼25 km width after broadening [Marklund et al., 2001].
Assuming a number density of n0 = 106 in the magnetosphere
gives an electron inertial length le =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=�0n0e2

p
of

5.32 km. In a study of field line resonances, Wei et al.
[1994] showed that electron inertial effects are important
in the magnetosphere for l ] 6le. Therefore, electron
inertial effects should be considered of interest for b ^ 2.
This indicates that electron inertial effects may be present in
the downward current channel, and might introduce small‐
scale features, following the production of a single fine‐
scale feature by depletion and broadening [Streltsov and
Lotko, 2004; Marklund et al., 2001; Paschmann et al.,
2002; Mishin et al., 2003]. This promises a possible
explanation for the origin of current filaments observed
within downward current channels [Wright et al., 2008].

Appendix A: Scalings

[59] In order to perform the boundary layer analysis, we
use a stretched coordinate

Y ¼ �� y� �ð Þ; ðA1Þ

Figure 7. Comparison of steady states obtained numerically
(solid line) and analytically (dashed line) for b = 100.
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so that Y is small within the boundary layer. This is provided
for � > 0. It may prove necessary to scale the density as well,
so we write

N ¼ �N=Ne; ðA2Þ

noting that v may be zero.
[60] We can rewrite the steady state equation (12) by

applying the product and quotient rules to the derivative,
noting that

N

Ne þ �N
¼ 1

�
� 1

� 1þ �N=Neð Þ ; ðA3Þ

and using (24). After rearranging, this yields

� 1þ �
N

Ne

� �
dui
dy

þ ui�
d

dy

N

Ne

� �
¼ 1

W 1þ �
N

Ne

� �2 N2
upper

N 2
e

� N 2

N 2
e

 !
:

ðA4Þ

[61] Applying the scaling, this becomes

���þ�1 ��1 þNð Þ dui
dY

þ ��þ�1ui
dN
dY

¼ ��2

W ��1 þN� �2
� N 2

upper �N 2
� �

: ðA5Þ

[62] The parameters � and n are determined by inspecting
(A5) and the expanded form of N upper

2 . Assuming that the
greatest power of b in an expansion of N is zero, and that
n < 1, then matching terms in the leading order of b requires

�þ 3 ¼ 1; ðA6Þ

and that the greatest power of b in N upper
2 is zero.

[63] Between the upward and downward current channels,
N upper

2 is nonsingular at x, so its leading order term is the
constant N upper

2 (x). The greatest power of b is automatically
zero, so we do not need to scale the density. Hence, we take

 ¼ 0; � ¼ 1: ðA7Þ

[64] At the edge of the depleted region farthest from the
upward current channel, N upper

2 is singular at x. Here the
leading term is Wu″i(x)b

2n−�Y, where primes denote dif-
ferentiation with respect to y. Since we wish the greatest
power of b to be zero, this gives

2 � � ¼ 0: ðA8Þ

Solving this alongside (A6) yields

 ¼ 1

5
; � ¼ 2

5
: ðA9Þ

[65] Alternatively, one may obtain scalings by inspection
of N upper and N lower, requiring that the greatest power of b

be zero in each expansion. The same values are obtained for
� and n.

Appendix B: Boundary Layer Matching Between
Upward and Downward Current Channels

[66] First let us note that x + c = Wui(x) and Ns
2 =

Nupper
2 (x) = Ne

2(1 − Wu′i(x)) > 0, where primes denote
differentiation with respect to y. These results are useful in
what follows.
[67] We proceed according to the method outlined in

section 5. Applying the scaling, and using (24), (28), and
(38) to expand N upper

2 and N lower about x gives

N 2
upper ¼ N 2

s �Wui″ �ð Þ�2��Y �Wui‴ �ð Þ�2�2�

2
Y 2 � . . . ðB1Þ

N lower ¼ �Wui �ð Þ�3þ��1

N 2
s Y

� �3�1

N 2
s

�Wui″ �ð Þ�5�1

2N 4
s

� . . . :

ðB2Þ

[68] The scaling is determined as described in Appendix A,
giving v = 0 and " = 1. Thus, the above expansions become

N 2
upper ¼ N 2

s �
Wui″ �ð Þ

�
Y �Wui‴ �ð Þ

2�2
Y 2 � . . . ðB3Þ

N lower ¼ �Wui �ð Þ
N 2

s Y
� 1

�N 2
s

�Wui″ �ð Þ
2�N 4

s

� . . . ; ðB4Þ

and by application of the binomial theorem

N upper ¼ N s �Wui″ �ð Þ
2�N s

Y

� W
4N s�2

ui‴ �ð Þ �Wui″2 �ð Þ
2N 2

s

 !
Y 2 � . . . : ðB5Þ

By inspection, the upper solution tends to the constant N s

as Y → 0. The lower solution is singular in this limit, and
behaves as −Wui(x)/{N s

2Y}. These outer solutions contain
at most one singular term, so solving for N 0 (as intro-
duced in (39)) will be sufficient to build a global solution.
[69] Substituting for n and � in the scaled governing

equation (A5), we wish to find an approximate solution to

� ��1 þNð Þ dui
dY

þ ui
dN
dY

¼ 1

W ��1 þN� �2 N 2
upper �N 2

� �
:

ðB6Þ

Expanding ui and N as given in equations (38) and (39),
substituting for N upper

2 with (B3), and equating terms in b0

gives

ui �ð Þ dN 0

dY
¼ 1

WN 2
0 N 2

s �N 2
0

� �
: ðB7Þ
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This is a separable ordinary differential equation for N 0.
Rearranging and using partial fractions leads to the solution

Y

Wui �ð Þ ¼ � 1

N 2
sN 0

� 1

2N 3
s

ln N s �N 0ð Þ þ 1

2N 3
s

ln N s þN 0ð Þ:

ðB8Þ

In practice, the constant of integration that is present in the
general solution to (B7) has at most a small effect on N 0, so
it is typically neglected.
[70] Having obtained an implicit expression for N 0, we

check its asymptotic behavior. As ∣Y∣ → ∞ in the direction
of the upper steady state, the left‐hand side of (B8) goes to
infinity. This must be balanced by the second term on the
right‐hand side, so, in this limit

Y

Wui �ð Þ � � 1

2N 3
s

ln N s �N 0ð Þ

) N 0 � N s � exp � 2N 3
s Y

Wui �ð Þ

 !
:

ðB9Þ

Hence, N 0 → N s, which matches the behavior of the upper
solution as Y → 0. This allows us to construct a solution on
the side of x where the outer solution is the upper steady
state.
[71] As ∣Y∣ → ∞ in the direction of the lower steady state,

the left‐hand side of (B8) goes to minus infinity. This must
be balanced by the first term on the right‐hand side, so, in
this limit

Y

Wui �ð Þ � � 1

N 2
sN 0

) N 0 � �Wui �ð Þ
N 2

s Y
:

ðB10Þ

Thus, the behavior of N 0 in this limit matches the behavior
of the lower solution as Y → 0. This allows us to construct a
solution on the side of x where the outer solution is the
lower steady state.
[72] Finally, we are ready to construct the complete steady

state, taking N 0 as the inner solution. This gives

N ¼ N 0 þN upper �N s; ðB11Þ

on the upper steady state side of x, and

N ¼ N 0 þN lower þWui �ð Þ
N 2

s Y
; ðB12Þ

on the lower steady state side of x. Here N 0 is given
implicitly by (B8) above.
[73] To complete the analysis, the result should be sum-

marized in unscaled form. This is given in section 5.

Appendix C: Boundary Layer Matching Farthest
From Upward Current Channel

[74] First let us note that x + c = Wui(x) and that Ns
2 =

Nupper
2 (x) = Ne

2(1 − Wu′i (x)) = 0, where primes denote dif-
ferentiation with respect to y. These results are useful in
what follows.

[75] We proceed according to the method outlined in
section 5. Applying the scaling, noting that u′i(x) = 1/W, and
using equations (24), (28), and (38) to expand N upper

2 and
N lower about x gives

N 2
upper ¼ �Wui″ �ð Þ�2��Y �Wui‴ �ð Þ�2�2�

2
Y 2 � . . . ðC1Þ

N lower ¼ 2�2�þ�1ui �ð Þ
ui″ �ð ÞY 2

þ 2ui′ �ð Þ
ui″ �ð Þ � 2ui �ð Þui‴ �ð Þ

3ui″ �ð Þ
� �

��þ�1

Y
� . . .

ðC2Þ

[76] The scaling is determined as described in Appendix A,
giving n = 1/5 and � = 2/5. Thus, the above expansions
become

N 2
upper ¼ �Wui″ �ð ÞY �Wui‴ �ð Þ��2=5

2
Y 2 � . . . ðC3Þ

N lower ¼ 2ui �ð Þ
ui″ �ð ÞY 2

þ 2ui′ �ð Þ
ui″ �ð Þ � 2ui �ð Þui‴ �ð Þ

3ui″ �ð Þ
� �

��2=5

Y
� . . . ðC4Þ

On the side of x on which N upper is real, −u″i (x)Y > 0,
allowing us to sensibly take the square root of −u″i (x)Y.
Applying the binomial theorem

N upper ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Wui″ �ð ÞYp � ��2=5ui‴ �ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Wui″ �ð ÞYp

Y

4ui″ �ð Þ þ . . .

ðC5Þ

By inspection, as Y → 0, the upper solution tends to zero.
The lower solution is singular in this limit, with two sin-
gular terms behaving as 1/Y and 1/Y2. These outer solu-
tions contain at most two singular terms, so we shall solve
for N 0 and N 1 to construct a global solution.
[77] Substituting for n and � in the scaled governing

equation (A5), we wish to find an approximate solution to

� ��4=5 þN� � dui
dY

þ ui
dN
dY

¼ 1

W ��4=5 þN
� �2

N 2
upper �N 2

� �
:

ðC6Þ

Expanding ui and N as given in equations (38) and (39),
substituting for N upper

2 with (C3), and equating terms in b0

gives

dN 0

dY
¼ � N 4

0

Wui �ð Þ �
ui″ �ð Þ
ui �ð Þ N

2
0Y : ðC7Þ

Equating terms in b−2/5 gives

dN 1

dY
¼ � 4N 3

0N 1

Wui �ð Þ þ N 0
ui′ �ð Þ
ui �ð Þ� 2N 0N 1

ui″ �ð Þ
ui �ð Þ þ

dN 0

dY

ui′ �ð Þ
ui �ð Þ

� �
Y

�N 2
0

2

ui‴ �ð Þ
ui �ð Þ Y

2: ðC8Þ
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Removing dN 0/dY from (C8) with (C7)

dN 1

dY
¼ N 0

ui �ð Þ ui′ �ð Þ � 4N 2
0N 1

W

 !

þ N 0

ui �ð Þ
N 3

0ui′ �ð Þ
Wui �ð Þ � 2N 1ui″ �ð Þ

 !
Y

þ N 2
0

ui �ð Þ
ui′ �ð Þui″ �ð Þ

ui �ð Þ � ui‴ �ð Þ
2

� �
Y 2: ðC9Þ

[78] We now use the above equations to obtain the as-
ymptotic behavior of N 0 and N 1. As ∣Y∣ → ∞ in the di-
rection of the upper steady state, the second term on the
right‐hand side of (C7) goes to sign(ui)∞. This is balanced
by the first term on the right‐hand side, so, in this limit

N 4
0

Wui �ð Þ � � ui″ �ð Þ
ui �ð Þ N

2
0Y

) N 0 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Wui″ �ð ÞYp
:

ðC10Þ

As ∣Y∣ → ∞ in the direction of the lower steady state, the
second term on the right‐hand side of (C7) goes to −sign
(ui)∞. This is balanced by the term on the left‐hand side,
giving

dN 0

dY
� � ui″ �ð Þ

ui �ð Þ N
2
0Y

) �
Z

dN 0

N 2
0

� ui″ �ð Þ
ui �ð Þ

Z
YdY

) N 0 � 2ui �ð Þ
ui″ �ð ÞY :

ðC11Þ

[79] Next we consider the asymptotic behavior of N 1. As
∣Y∣ → ∞ in the direction of the upper steady state, we can
use (C10) to substitute for N 0 in (C9). After rearranging,
this gives

dN 1

dY
� ui′ �ð Þ

ui �ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Wui″ �ð ÞY

p
þ 2N 1ui″ �ð Þ

ui �ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Wui″ �ð ÞY

p
Y

þWui″ �ð Þui‴ �ð Þ
2ui �ð Þ Y 3: ðC12Þ

In this limit, the term in Y3 is balanced by the term inffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Wui00 �ð ÞYp
Y , so

2N 1ui″ �ð Þ
ui �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Wui″ �ð ÞY

p
Y � �Wui″ �ð Þui‴ �ð Þ

2ui �ð Þ Y 3

) N 1 � � ui‴ �ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Wui″ �ð ÞYp
Y

4ui″ �ð Þ : ðC13Þ

[80] As ∣Y∣ → ∞ in the direction of the lower steady state,
we can use (C11) to substitute for N 0 in (C9). After
rearranging, this gives

dN 1

dY
� � 4N

Y
þ 6ui′ �ð Þ
ui″ �ð ÞY 2

� 2ui �ð Þui‴ �ð Þ
ui‴2 �ð ÞY 2

� 32N 1u2i �ð Þui′ �ð Þ
ui″ �ð ÞY 6

þ 16u2i �ð Þui′ �ð Þ
ui0 04 �ð ÞY 7

: ðC14Þ

In this limit, terms in Y−6 and Y−7 may be neglected, so we
solve the following first‐order ordinary differential equation:

dN 1

dY
þ 4

Y
N 1 � 6ui′ �ð Þ

ui″ �ð Þ � 2ui �ð Þui‴ �ð Þ
ui″2 �ð Þ

� �
1

Y 2

) N 1 � 2ui′ �ð Þ
ui″ �ð Þ � 2ui �ð Þui‴ �ð Þ

3ui″2 �ð Þ
� �

1

Y
: ðC15Þ

[81] From these asymptotic solutions, we see that

N inner ¼ N 0 þ ��2=5N 1

picks up the behavior of the outer solutions in the appro-
priate limits. This allows us to construct the complete steady
state as

N ¼ N 0 þ ��2=5N 1 þN upper �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Wui″ �ð ÞYp

þ ��2=5ui‴ �ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Wui″ �ð ÞYp
Y

4ui″ �ð Þ ðC16Þ

on the upper steady state side of x, and

N ¼ N 0 þ ��2=5N 1 þN lower � 2ui �ð Þ
ui″ �ð ÞY 2

þ 2ui′ �ð Þ
ui″ �ð Þ � 2ui �ð Þui‴ �ð Þ

3ui″ �ð Þ
� �

��2=5

Y
; ðC17Þ

on the lower steady state side of x. Here N 0 and N 1 are the
solutions to ordinary differential equations (C7) and (C9),
respectively.
[82] To complete the analysis, the result should be sum-

marized in unscaled form. This is given in section 5.
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