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[1] Upward field‐aligned currents and their associated parallel electric fields couple the
ionosphere to the magnetosphere. It is desirable to know how such a potential drop is
distributed along the flux tube, what controls its variation, and how it is balanced by the
plasma. By considering the motion of the ionospheric and magnetospheric electrons and
ions, under the influence of electrostatic and magnetic mirror forces, a quasi steady state,
quasi‐neutral electric field distribution along the magnetic flux tube can be obtained. A
feature of the potential profiles is the occurrence of a potential jump that splits the profile
into three distinct regions: below the jump, within the jump, and above the jump. Within a
kinetic framework, we analyze how the plasma velocity distributions evolve along the flux
tube, taking into account ionospheric, magnetospheric, mirroring, and precipitating
electron populations. By calculating the moments of the governing Vlasov equation, we
ascertain what balances the parallel electric field (Ek) and how it is maintained,
establishing a dynamical equilibrium. Our calculations show that (1) earthward of the jump
Ek ≈ −(p?/enB)rkB associated with the ionospheric electrons, except for at the base of the
F region where pk contributions become more significant; (2) within the jump
magnetosphere electrons dominate and Ek ≈ −(1/en)rkpk; and (3) above the jump
mirroring magnetospheric electrons make a principal contribution of Ek ≈ −(1/en)rkpk,
with a secondary contribution of −(p? − pk)rkB/(ne) becoming comparable beyond ≈3 RE.
Additionally, we found that although the precipitating electrons carry the field‐aligned
current, it is the mirroring population that determines where Ek is concentrated and hence
where precipitating electrons are accelerated.
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1. Introduction

[2] Parallel electric fields and their associated field‐aligned
currents are key in coupling the hot, tenuous magnetosphere
to the cool, dense ionosphere. They are responsible for the
observed aurora and play a significant role in the global
circuitry network surrounding the Earth. It remains one of the
outstanding problems in magnetospheric physics to fully
understand the origin and structure of parallel electric fields.
Observations have suggested that elongated, U‐shaped
potential structures straddling the magnetic field are respon-
sible for the parallel fields. It is believed that the required
parallel potential drop (∼1 kV) is distributed over a large
length scale (∼103 km) however, observations of large‐
amplitude electric fields (∼25 to 300 mV/m) suggest that in
some instances a significant fraction of the total potential drop
occurs over a much smaller length scale (∼10 km) close to the
Earth (∼1000 km) [Mozer and Hull, 2001; Hull et al., 2003a,
2003b;Chaston et al., 2007;Ergun et al., 2000, 2001, 2002a].

[3] A significant challenge is understanding how the
electric field varies as a function of position along the mag-
netic field and what controls that variation. Initial modeling
of magnetospheric fields by Alfvén and Fälthammer [1963]
considered a low density, kinetic plasma in a simple mag-
netic mirror field and found that the parallel electric field
vanishes if the electrons and ions have the same pitch angle,
otherwise charge separation results and an equilibrium elec-
tric field is required to ensure the plasma is quasi‐neutral
along themagnetic flux tube [Persson, 1963, 1966]. Following
similar treatments many have built upon these seminal works
incorporating additional physics. Alfvén and Fälthammer
[1963] only considered magnetospheric, delta source dis-
tributions; Knight [1973] relaxed this simplification and
included Maxwellian source distributions at both the magne-
tosphere and the ionosphere. This approach yielded a current‐
voltage relationship, but did not produce a potential profile,
nor did it consider quasi‐neutrality. This deficiency was cor-
rected in the models adopted byWhipple [1977] and Chiu and
Schulz [1978]. Stern [1981] found that double layers, where the
potential varies significantly over a discrete length scale, were
a necessary and unavoidable feature of the solutions. Miller
and Khazanov [1993] produced potential profiles where the
source distributions could be manipulated to have a prescribed
degree of anisotropy. Others, such as Vedin and Rönnmark
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[2004], have used fluid and fluid‐kinetic hybrid models to
yield potential distributions and current‐voltage relations.
[4] Recently, Boström [2003, 2004] studied the distribu-

tion of current‐driven electrostatic potentials along auroral
flux tubes analytically, taking into account quasi‐neutrality,
the kinetic orbital motion of the plasma under the influence
of electric and magnetic mirror forces. Paying careful
attention to particle accessibility, Boström calculated a
series of potential profiles that included potential jumps
(double layers), where a significant fraction of the total
potential drop along the flux tube occurs over a small length
scale comparable to the Debye length. The altitude of the
potential jump is sensitive to the relative density and tem-
perature of the source ionospheric and magnetospheric
populations. The purpose of this paper is to extend the work
of Boström [2003, 2004] to investigate how the quasi‐neutral
electric potential variation is balanced and maintained by the
plasma, specifically the electrons, along the flux tube. We
derive the moments of the gyrotropic Vlasov equation in
order to ascertain what are the significant contributions to
the parallel electric field. We also resolve the ambipolar
nature of the ionospheric plasma.
[5] This paper is structured as follows: section 2 sets up

the kinetic framework that we will use throughout this
paper. It follows the treatment of Boström [2003, 2004],
briefly summarizing the important results relevant for the
subsequent work. Sections 3 and 4 build on this by deriving
the moments of the gyrotropic Vlasov equation in order to
understand how the plasma, specifically the electrons,
behave under the influence of the electrostatic potential, the
magnetic inhomogeneity and pressure effects.

2. Upward Field‐Aligned Current Model

[6] Field‐aligned currents and their associated parallel
electric fields connect the ionosphere to the magnetosphere.
Plasma, of both ionospheric and magnetospheric origin, that
contributes to the current must have sufficient energy par-
allel to the ambient magnetic field to overcome electrostatic
and magnetic mirror forces. In the absence of a driving
electric field, the conservation of the first adiabatic invariant
solely dictates the plasma dynamics and determines what
population of the given source distributions mirror or pre-
cipitate, hence determining the current (termed the thermal
current). If the drawn current is larger, then a sympathetic
potential drop is required, widening the effective source
cone and altering the fraction of potential current carriers. It
is desirable to know how such a potential drop is distributed
along the flux tube and what controls this variation.
[7] By considering the motion of the ionospheric and

magnetospheric plasma, under the influence of a back-
ground electromagnetic field, one can obtain a quasi steady
state electric field distribution along the magnetic field while
preserving quasi‐neutrality. Following Boström’s approach
[Boström, 2003, 2004], we consider a flux tube segment of
the global circuitry network surrounding the Earth, with one
end grounded in the F region of the ionosphere, the other in
the magnetosphere. We assume (1) a prescribed current
density along the flux tube (or equivalently a prescribed
potential drop, �M); (2) some plasma processes continuously
replenish plasma at the ionospheric and magnetospheric

ends of the flux tube, with a Maxwell‐Boltzmann distribu-
tion function; (3) a dynamical equilibrium prevails, where
there are no temporal variations; (4) the particles carrying
the current along the flux tube are sourced from the dis-
tributions that enter/exit at either end of the flux tube; and
(5) the plasma responds to electrostatic and magnetic mirror
forces.
[8] Within a kinetic framework, the plasma species (a) is

described by a distribution function fa(Wk, W?, z, U(z))
where: Wk,? = uk,?

2 /2 is the nondimensional kinetic energy
component parallel (perpendicular) to the magnetic field; uk,? =
vk,?(kBTM/m)

−1/2 is the corresponding nondimensional
velocity components; TM is the magnetospheric source tem-
perature; U = e�/(kBTM) is the normalized electrostatic
potential with U = 0 at the ionosphere and U = UM at the
magnetospheric end of the flux tube; and z = BI/B is a field‐
aligned coordinate normalized by the magnetic flux density at
the ionospheric end of the flux tube BI. Thus, the ionospheric
end of the flux tube is at z = 1 and the magnetospheric end is
zM = BI/BM. Note that for ionospheric species, quantities are
normalized with respect to the ionospheric source temperature
TI and are denoted with a tilde. Please refer to Appendix A
for further details regarding corresponding dimensionalized
quantities. The magnetospheric and ionospheric source plas-
mas are composed of hydrogen and singly ionized oxygen
respectively, characterized by t = TI/TM and n = nI/nM which
defines their relative temperature and number density. In this
study we use t = 1 × 10−3 and n = 3 × 103.
[9] The dynamical evolution of f in phase space is

described by the Vlasov equation which can be conveniently
solved using Liouville’s theorem (i.e., the phase space
density, f, is constant along a particle trajectory). Hence,
given a source distribution at zs and knowledge of how the
trajectories behave under the influence of external forces,
then one can obtain the distribution function at an arbitrary
point in space z. For a plasma under the influence of elec-
trostatic and magnetic mirror forces, the particle trajectories
are described by the following equations of motion

Wks þW?s � Us ¼ Wk �ð Þ þW? �ð Þ � U �ð Þ ð1Þ

�sW?s ¼ �W? �ð Þ ð2Þ

where the plus (minus) sign refers to ions (electrons), for
ionospheric species add a tilde. The first equation is the
conservation of particle energy and the second represents
conservation of the first adiabatic invariant m = 1

2mv?
2 /B.

Using equations (1) and (2) we can determine the populated
regions of phase space at an arbitrary point z. Particles
originating from the source at zs, will occupy the region at z
defined by

Wk � �=�s � 1ð ÞW? � U � Usð Þ
Wk � 0

ð3Þ

The boundaries of these regions will be denoted by Gb and
Ga respectively. The particles satisfying the above condi-
tions that are subsequently lost at the end of the flux tube at
zc are given by

Wk � �=�c � 1ð ÞW? � U � Ucð Þ ð4Þ
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This boundary will be referred to as Gc. These boundaries
define which particles precipitate and those which mirror.
To obtain the potential distribution along the flux tube U(z)
the boundaries in phase space of both ion and electron
populations must be considered. Figure 1 shows the bound-
ary limits for the magnetospheric and ionospheric electrons
only (for the full set of phase space diagrams, including ions,
see Boström [2004]). Although we map the ions also, we do
not present a detailed discussion of them here, as it is done by
Boström [2004]. We focus our discussion on the electrons,
as the remainder of the paper aims to provide a comparison
with studies that consider electron observations. Regions A1

and A5 are populated by particles that are lost at the end of
the flux tube; regions A2 and A6 are populated by particles
being mirrored. In reality, particles that are trapped between
the magnetic mirror and electrostatic forces constitute an
additional population (region A8 in Figure 1) important to the
potential distribution. A correct treatment of the trapped pop-
ulation is rather involved; to simplify matters here we do not
include a trapped population in our calculations. As demon-
strated by Boström [2004, Figure 10d], when no trapped par-
ticles are incorporated the potential jump occurs at slightly
higher altitudes and accounts for a slightly larger fraction of
the total potential jump.
[10] With knowledge of how the distribution functions

evolve with position along the flux tube one can easily
obtain any bulk commodity at z (such as the number density
or the fluid velocity) by integrating the distribution function
over the appropriate regions in phase space. Summing over
the charge densities of the participating plasma species (ions
and electrons) yields the total (dimensionless) charge den-
sity r(z, U). Maps of r as a function of z and U can be
constructed [see Boström, 2004, Figures 8 and 9] that show

two distinct regions of positive and negative charge density
separated by the contour r = 0. To obtain the potential
distribution along the flux tube, quasi‐neutrality is invoked
by finding the root U(z) that satisfies r(z,U) = 0. In general
the resulting potential distribution is a multivalued function
of z, with no acceptable continuous solution joining the
ionosphere to the magnetosphere. This issue can be cir-
cumvented by means of a potential jump (double layer). The
maps of r apply within the potential jump where z is
approximately constant and the charge density is only a
function of U. The location of the potential jump is found by
considering Poisson’s equation within the double layer.
Following Boström [2004] and others [Langmuir, 1929;
Stern, 1981; Block, 1972] multiplying Poisson’s equation by
dU/dz and integrating once yields the necessary criteria for
the position (z j) of the jump,

Z Uj2

Uj1

� �j;U
� �

dU ¼ k2

2

dU

d�

� �2

j1

� dU

d�

� �2

j2

" #
� 0 ð5Þ

where k = lDdz/dz (approximately constant within the
double layer); lD is theDebye length; and z is the dimensional
coordinate along the flux tube. If the scale of the background
magnetic field variation is ∼RE, then k ≈ lD/RE � 1. As
described by Stern [1981] and Boström [2004], if Ek adjacent
to the jump is much less than that inside, the integral inside
equation (5) is zero to leading order.
[11] Note that Boström [2004] assumes no potential drop

between the jump location and the ionospheric end (i.e.,
Uj1 = 0). Our calculation relaxes this simplifying assumption,
and resolves the ambipolar structure of the ionospheric
plasma.

Figure 1. Regions of phase space populated by electrons, originating from the (right) ionosphere and
(left) magnetosphere, at an arbitrary point z where the electrostatic potential is U(z). Particles in regions
A1 and A5 travel the length of the flux tube without mirroring, while those in regions A2 and A6 mirror.
Particles in region A8 are trapped between the magnetic mirror and electrostatic forces. Figure 1 is adapted
from Boström [2004, Figure 2].
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[12] Given the potential variation U(z), the magneto-
spheric and ionospheric source distribution functions, and
the electron trajectories in phase space, we can calculate the
moments of the governing Vlasov equation and ascertain
how the parallel electric field is maintained, establishing a
dynamical equilibrium. An alternative way of expressing
this is that we identify the principal routes through which the
electric field modifies the electron motion such that a net
charge density is established which satisfies Poisson’s
equation, or quasi‐neutrality, as appropriate. For example,
the main effect of the electric field could be to accelerate the
current carrying electrons, or to redistribute the mirroring
electrons, etc.

3. Parallel Electric Field

[13] In this section we derive the moments of the Vlasov
equation. Initially, we will suppress the nondimensional
notation to aid a physical appreciation.
[14] Assuming the plasma to be collisionless and the

guiding center approximation valid, the electrons are
described by a gyrotropic distribution function f = f(l, vk, v?, t)
which is a function of the distance along the flux tube, l;
the parallel guiding center velocity, vk; the perpendicular
speed of the electrons, v?; and time, t. Under the influence
of a parallel electric field and the magnetic mirror force,
the electron dynamics are described by mdvk/dt = −eEk −
m∂B/∂l, where m is the first adiabatic invariant. In the
steady state f = f (l, vk, v?) and the gyrotropic Vlasov
equation becomes

vk
@f

@‘
� eEk

m
þ v2?
2B

@B

@‘

� �
@f

@vk
þ vkv?

2B

@B

@‘

@f

@v?
¼ 0 ð6Þ

where f = fM + fI, and fM and fI represent the magnetospheric
and ionospheric electron distribution functions respectively.
The average, macroscopic description of the plasma is found
by calculating the moments of the Vlasov equation. Taking
the zeroth moment yields the continuity equation

@

@‘
n�vk
� �� n�vk

B

@B

@‘
¼ 0; ð7Þ

where �vk =
R
vk fdv/n and n =

R
fdv. Noting that jk = ±en�vk,

this can be rewritten to explicitly emphasize that jk/B is
conserved along a flux tube,

@

@‘

jk
B

� �
¼ 0; ð8Þ

This expression provides a useful means of calculating �vk
along the flux tube. Calculating the first moment, by mul-
tiplying the Vlasov equation by mvk and integrating over
velocity space, gives the momentum equation

� en

m
Ek ¼ @

@‘

Z
v2k f dvþ

1

2B

@B

@‘

Z
v2? f dv� 1

B

@B

@‘

Z
v2k f dv ð9Þ

where use is made of equation (7). This equation can be recast
in terms of the parallel (pk) and perpendicular (p?) electron
pressure

Ek ¼ � 1

en

@pk
@‘

þ mn�vk
@�vk
@‘

þ p? � pk
B

@B

@‘

� �
ð10Þ

where the parallel pressure is

pk ¼ nm

Z
v2k f dv� �v2k

� �
ð11Þ

and the perpendicular pressure

p? ¼ m

2

Z
v2? f dv ð12Þ

Equation (10) clearly exhibits the main components balanc-
ing the parallel electric field: the first term is the parallel
pressure force; the second term is a measure of the electron
fluid acceleration; and the third term quantifies the effect of
the magnetic inhomogeneity: (p?/B)∂B/∂l is the magnetic
mirror force and − (pk/B)∂B/∂l is the pressure force associated
with the changing cross‐sectional area of the flux tube. Note
that these two forces are in opposition [Comfort, 1988].
[15] Rewriting the problem in nondimensional form yields

�Ek ¼ 1

N

@�pmag
k
@y

þ N�uk
@�uk
@y

þ
�pmag
k � �pmag

?
�

@�

@y

 !

þ �

N

@�pionok
@y

þ
�pionok � �piono?

�

@�

@y

 !
¼ �Emag

k þ �Eiono
k ð13Þ

where

�Ek ¼ eREEk= kBTMð Þ ð14Þ

�pmag
k;? ¼ pmag

k;? = kBTMn0ð Þ ð15Þ

�pionok;? ¼ pionok;? = kBTIn0ð Þ ð16Þ

N ¼ n=n0 ð17Þ

�fM ¼ fM kBTM=mð Þ3=2=n0 ð18Þ

�fI ¼ fI kBTI=mð Þ3=2=n0 ð19Þ

and we have performed the change of variable to a field‐
aligned coordinate y = (lm − l)/REwhich is measured from the
ionospheric end, such that y = 0 is the base of the F region
and y increases as we approach the magnetosphere. Further
details regarding dimensionalized quantities are given in
Appendix A. The magnetospheric electron contribution can
be decomposed into that from the precipitating and mirroring
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populations: �pk
mag = �pk

mag,p + �pk
mag,m and �p?

mag = �p?
mag,p + �p?

mag,m

such that �Ek
mag = �Ek

mag,p + �Ek
mag,m, where

�pmag;p
k ¼

Z
A1

u2k�fMdu� N�u2k ð20Þ

�pmag;m
k ¼

Z
2A2

u2k�fMdu ð21Þ

�pmag;p? ¼
Z
A1

u2?�fMdu ð22Þ

�pmag;m? ¼
Z
2A2

u2? �fMdu ð23Þ

and

�uk ¼
�M
N�

Z
source

uk�fMdu ð24Þ

The latter expression is a convenient way of calculating �uk
along the flux tube exploiting the conservation of ikz (ik being
the dimensionless current density jk). A similar relation can be

used for the ionospheric electrons. In this notation the iono-
spheric electron pressure becomes

�pionok ¼
Z

A5þ2A6

~u2k�fId~u� N�u2k ð25Þ

�piono? ¼
Z

A5þ2A6

~u2?�fId~u ð26Þ

Evaluating the integrals over the appropriate regions of phase
space defined by equations (3) and (4) we can calculate the
contributions to the parallel electric field �Ek.
[16] When a potential jump occurs it is also of interest to

analyze how the parallel electric field within the jump is
balanced by the electrons. A full, self‐consistent calculation
for the electric field in this region would require explicitly
solving Poisson’s equation, since we would be working on a
length scale where quasi‐neutrality breaks down. Here, we
probe the plasma behavior by prescribing a electric potential
(consistent with Uj1 and Uj2) within the double layer to get a
glimpse of the electron behavior. Ultimately a self‐consistent
calculation is required.Within the potential jumpwe choose a
dimensionless length scale of interest L( = (lm − l)/R0, where
R0 is expected to be of the order of the Debye length) that is
sufficiently small such that there is no significant spatial
variation in the magnetic field ∂z/∂L ≈ 0, yet acceptably large
that there is a spatial variation in the distribution function. On
such a length scale any forces associated with the ambient
magnetic inhomogeneity are negligible, therefore

��Ek ¼ 1

N

@�pmag
k

@L
þ N�uk

@�uk
@L

 !
þ �

N

@�pionok
@L

ð27Þ

where � = R0/RE.

4. Contributions to the Parallel Electric Field �Ek
[17] Given the potential variation U(z) there are two

equivalent and complementary methods for calculating the
parallel electric field �Ek. The simplest and most direct
involves calculating the derivative of the normalized
potential variation with respect to y, �Ek = ∂U/∂y. In the
analysis presented here, given U(z): the magnetospheric and
ionospheric source distributions, and the electron trajectories
in phase space, we can calculate the moments of the Vlasov
equation to find �Ek. In doing so, we gain the added benefit
of understanding what balances the parallel electric field and
how it is maintained. The contributions to �Ek calculated
from equation (13) is equal to �Ek = ∂U/∂y (the alternative
method) and agrees to O(10−5): This is an important con-
firmation of the calculations presented here.
[18] Following Boström’s model (as described in section 2),

the variation of the electric potential as a function of y along
the flux tube is shown in Figures 2 and 3. For this particular
calculation the prescribed potential drop was UM = −10( jkI ≈
2.7 × 10−12ne

M
ffiffiffiffiffiffiffi
TM
e

p
Am−2, for ne

M = 106 m−3 and kBTe
M =

500 eV, jkI ≈ 6.5mAm−2, which corresponds to �M = 5 kV)
and the key dimensionless parameters listed in Table 1 were
used. The potential jump was found (using equation (5)) to

Figure 2. Plot of the electric potential variation U as a
function of the field‐aligned coordinate y for the whole spa-
tial length of the flux tube. The plot exhibits three main re-
gions of interest: earthward of the potential jump
(prepotential jump), within the present double layer (within
the potential jump), and magnetospheric end of the jump
(the postpotential jump). Note that the potential variation
in the prejump region and within the potential jump varies
on a scale that cannot be resolved by this plot (see Figure 3
for further details).
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occur at zj = 13.47 (which occurs at a radial distance 2.33RE

from the Earth), where the potential changes suddenly from
Uj1 = −2.31 × 10−3 to Uj2 = −8.53. Figure 2 exhibits the
potential variation along the entire flux tube under consid-
eration, showing the three main regions of interest: earth-
ward of the potential jump (prepotential jump); within the
potential jump; and the magnetospheric end of the jump
(postpotential jump). Note that the potential variation in the
prejump region and within the potential jump varies on a
scale unresolved by the plot. Figure 3 shows the detail of the
potential variation and the variation of the parallel electric
field within the three regions. Note that within the potential
jump the plotted parallel electric field is ��Ekwhere � = R0/RE,
and R0 is the field‐aligned scale of the jump.
[19] To aid in a physical appreciation of the plots we

shall set ne
M = 106 m−3, kBTe

M = 500 eV and the spatial
extent of the double layer to ≈ 100 km. The prejump region
then occurs over a length scale ≈ 8900 km, where the
potential difference D� ≈ 1.25 V and the peak electric
field ∣Ek

peak∣ ≈ 62.7 mVm−1; within the potential jump D� ≈
4.264 kV and ∣Ek

peak∣ ≈ 320 mVm−1; and in the postjump
region D� ≈ 735 V and ∣Ek

peak∣ ≈ 0.3 mVm−1 over a spatial
range of ≈48000 km. These values are in general agreement
with Ergun et al. [2002b, 2004].
[20] In Figure 4 we show the total space charge distribu-

tion within the potential jump, which integrated over U is
zero, consistent with equation (5). Within the jump, a tanh
potential variation is used, which closely mimics a typical
sheath field, such that the electric field at the edges of the
double layer is zero.
[21] Figures 5 and 6 show the electron number density as

a function of y, decomposed into contributions from the
ionospheric (Ne

I) and magnetospheric (Ne
M) species; the

magnetospheric mirroring (Ne
M,m) and precipitating popula-

tions (Ne
M,p) respectively. In the prepotential jump region

(i.e., earthward of the jump), there is a pronounced peak inNe
M

resulting from a combination of competing effects acting on
the magnetospheric electrons; moving earthward �Ek (the
magnetic mirror force) tends to accelerate (decelerate) the
magnetospheric electrons. Additionally, as the magnetic flux
density increases, the cross‐sectional area of the flux tube
decreases. As the ionosphere is approached, the precipitating
electron population (and the empty region in phase space
associated with them not mirroring) grows in significance as
fewer electrons are mirrored leading to a decline in the den-
sity. This effect is evident in the prejump region in Figures 5
and 6.
[22] The effect of the magnetic mirror force is clearly

exhibited in the magnetospheric pressure components in
Figure 7: as the magnetospheric electrons move from the
source, the magnetic anisotropy gradually increases and the
mirror force grows increasingly prominent. Conservation of
the first adiabatic invariant transfers energy from the particles

Figure 3. Plot of the electric potential variation U in the three regions of interest: earthward of the poten-
tial jump (prepotential jump), within the present double layer (within the potential jump), and magneto-
spheric end of the jump (the postpotential jump). The dashed (solid) curve is the electric potential (parallel
electric field); in all subplots the left‐hand axis (right‐hand axis) corresponds to the electric potential (par-
allel electric field). Prepotential and postpotential jump variation is a function of the field‐aligned coor-
dinate y; within the potential jump, the variation is a function of a dimensionless spatial parameter L. Note
that within the potential jump, the plotted parallel electric field is ��Ek, where � = R0/RE, R0 being the
typical width of the double layer.

Table 1. KeyDimensionless Parameters for Numerical Simulationsa

Quantity Value

zM 1000
UM −10
t 1 × 10−3

n 3 × 103

z j 13.47
Uj1 −2.31 × 10−3

Uj2 −8.53
aThe bottom half of the table lists the potential jump conditions

obtained as part of the quasi‐neutral solution calculated from the
parameters listed in the top half of the table.
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parallel motion to its perpendicular motion increasing �p?
mag,

hence �p?
mag > �pk

mag.
[23] Similar competing effects dictate the dynamics and

hence the density variation of Ne
I (see Figure 5). Under the

sole influence of an upward electric field, ionospheric elec-
trons with a nonzero source temperature would be expected
to be restricted to the ionosphere, and have a density vari-
ation / n exp(− ~U ), where ~U = U/t. However, the combined
competing effects introduced via the magnetic inhomoge-
neity complicates this simple dependence. The magnetic
mirror force aids in allowing the electrons to reach further
along the flux tube than would be possible without it,
whereas the pressure force associated with the changing

cross‐sectional area of the flux tube, acts to constrain the
electrons close to the ionosphere. Within the potential jump,
where forces associated with the magnetic inhomogeneity
are negligible and U varies dramatically, the ionospheric
electrons are excluded and Ne

I tends to zero. The effect of the
magnetic mirror force is evident in the behavior of the
parallel and perpendicular ionospheric pressure terms
(Figure 8): moving away from the ionosphere, conservation
of magnetic moment converts u? to uk, causing the distri-
bution to become highly collimated and having �pk

iono > �p?
iono.

The exclusion of these electrons from traversing the
potential jump means �pk

iono and �p?
iono are negligible postjump

and throughout most of the jump.
[24] Using the expressions derived in section 3 and the

solution for U(z) obtained from Boström’s model, we can
now analyze how the electric field is balanced and main-
tained by the electrons. Contributions from the precipitating,
mirroring and ionospheric electron populations in the three
regions of interest are shown in Figure 9, which are plotted
normalized to the total parallel electric field �Ek at each value
of y (or L). In the prepotential jump region the ionospheric
population supports virtually the entire electric field close to
the Earth due to Ne

I � Ne
M. When Ne

I becomes comparable to
Ne
M (at L ≈ −4, see Figure 5) the influence of the ionospheric

population diminishes and the magnetospheric population
becomes the primary contributor to �Ek. Of this species it is
the mirroring population (Ne

M,m) that balances the majority
of �Ek due to its greater number density relative to the pre-
cipitating particles (Figure 6). This trend continues in the
postpotential jump region: ∣�Ek

mag,m∣ > ∣�Ek
mag,p∣ and their

respective spatial variations within and outwith the poten-
tial jump region correlate with those of Ne

M,m and Ne
M,p

(Figure 6). Although the precipitating electrons carry the
field‐aligned current it is the mirroring population that
actually balances the majority of �Ek which accelerates the
precipitating electrons. This result underlines the importance
of the mirroring electron population, as they play the
dominant role in maintaining the quasi‐neutrality of the
system.

Figure 5. Variation of the magnetospheric (Ne
M, solid curve) and ionospheric electron number density

(Ne
I, dashed curve) as a function of position y along the flux tube and position L within the potential jump.

Note that in the three subplots, the left‐hand axis (right‐hand axis) corresponds to Ne
I (Ne

M).

Figure 4. The total (dimensionless) charge density (all
species a including ions) as a function of potential within
the potential jump from Uj1 to Uj2. The positive and neg-
ative charge distribution within the double layer balance
and

R
Uj1

Uj2 r(z j, U)dU = 0.
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[25] In this system, the electron guiding center dynamics
are dictated by the electric force, the pressure force and
the forces associated with the magnetic inhomogeneity.
Figure 10 exhibits how these forces acting on the ionospheric
electrons balance the parallel electric field in the prejump
region. Close to the ionosphere, the electrons thermal energy
exceeds its potential energy (∣ ~U (y < 0.05)∣ < 1), as a result
thermal effects (the parallel pressure gradient) locally support
�Ek. As y increases and the electrons are decelerated through a
growing electric potential (∣ ~U (y < 0.05)∣ > 1), thermal effects
diminish leaving those associated with the magnetic inho-
mogeneity to dominate. Now, the parallel pressure gradient
and the competing parallel pressure force associated with the
magnetic inhomogeneity largely cancel each other leaving
the magnetic mirror force as the main effect balancing the
majority of �Ek.

[26] Within the potential jump (Figure 11), the main
contributor balancing �Ek changes suddenly from the iono-
spheric to the magnetospheric species since Ne

I falls to
almost zero. The small length scale of the transition means
the magnetospheric parallel pressure gradient dominates the
mirror force, and balances the parallel electric field.
[27] In the postjump region, where the magnetospheric

species dominates, it is their parallel pressure gradient that
balances the majority of the parallel electric field (Figure 12).
Additionally, the electric potential energy of the electrons is
less than their thermal energy (U < 1), highlighting the
importance of thermal effects in this region. At y ≈ 3 the
magnetic inhomogeneity is approximately equal in magni-
tude to the parallel pressure force; as y decreases, both
increase in magnitude with the latter becoming the dominant
effect. We note some details of the magnetic inhomogeneity
term, ( �pk

mag − �p?
mag)(∂z/∂y)/(Nz): In a trapped, perfectly

Figure 6. The magnetospheric electron number density (Ne
M) decomposed into its mirroring (Ne

M,m, solid
curve) and precipitating populations (Ne

M,p, dashed curve). Ne
M,m and Ne

M,p are plotted as functions of y
(and L within the potential jump). The plot clearly shows what populations that make up Ne

M dominate
in what regions.

Figure 7. Magnetospheric parallel (�pk
mag, solid curve) and perpendicular (�p?

mag, dashed curve) pressures
plotted as a function of y prepotential and postpotential jump and as function of L within the potential
jump.
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mirroring isotropic Maxwellian distribution, there would be
no current and pk and p? would have the same (constant)
value along the entire field line. The individual contributions
of pk and p? to the above term are not zero, but are equal
and opposite such that they cancel and yield the solution
�Ek = 0. The current carrying case we present in Figure 12
seems to be a perturbation to this state, inasmuch as the
contributions of pk and p? to the above term are a factor of
O(10) greater than the sum of the contributions. Thus the
magnetic inhomogeneity term only plays a secondary role in
accounting for �Ek in the magnetosphere.

5. Discussion and Conclusion

[28] In this paper we have studied the contributions to the
parallel electric field responsible for coupling the ionosphere

to the magnetosphere. Following Boström’s kinetic model
[Boström, 2003, 2004] we considered the motion of the
ionospheric and magnetospheric plasma under the influence
of electrostatic and magnetic mirror forces, to obtain how
the quasi‐neutral electric potential varies with position along
the flux tube U(z). Invariably we find that U(z) contains a
jump which may correspond to a double layer where the
electric potential suddenly jumps over a length scale com-
parable to the Debye length. The potential jump splits U(z)
into three distinct regions: the region earthward of the
potential jump (prejump); within the potential jump; and the
magnetospheric side of the potential jump (postjump). This
is in qualitative agreement with the model of parallel electric
fields proposed byMozer and Hull [2001] and the numerical
simulations by Ergun et al. [2000]. In the later, multiple

Figure 8. Ionospheric parallel (�pk
iono, solid curve) and perpendicular (�p?

iono, dashed curve) pressures plot-
ted earthward of the potential jump, within the jump, and on the magnetospheric side of the jump.

Figure 9. Contributions to the parallel electric field �Ek from the ionospheric (�Ek
iono, solid), magneto-

spheric mirroring (�Ek
mag,m, dotted) and magnetospheric precipitating (�Ek

mag,p, dashed) populations. Note
that these contributions are normalized to the total parallel electric field �Ek

total at each y (or L) shown
in Figure 3 (to aid in the visualization of the data). In the prejump region the ionospheric population
supports the parallel electric field. Within the potential jump when Ne

I ≈ Ne
M (L ≈ −4) the magnetospheric

mirroring population suddenly becomes the dominant contributor to �Ek. In the postjump region the
magnetospheric mirroring population remains the dominant species balancing �Ek.
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transition layers (double layers) can occur depending on the
specific conditions invoked at the ionospheric boundary.
However, our results differ from Ergun et al. [2002b, 2004],
who reported that ≈10% of the total auroral potential is
concentrated in the double layer. The difference can be
attributed to the relative complexity of the models involved.
Ergun et al. [2002b, 2004] consider a more complex system
incorporating a greater number of particle species including
a trapped population, which we neglect. The inclusion of
extra particle species can give rise to more than one jump in
the potential, whilst the inclusion of a trapped population
given in the work by Boström [2004, Figure 10d] can reduce
the potential drop we find in Figure 2 by ≈50%, and lower
the altitude of the jump by ≈20%. The remainder of the
potential is then dropped gradually over the magnetospheric
portion of the field line. Evidently the details of the potential
solution are sensitive to the particle species that are present.
[29] With the variation U(z), we evaluated the moments of

the governing gyrotropic Vlasov equation to study how the
quasi‐neutral electric field �Ek is balanced and maintained by
the electrons in each of these three regions. Our results show
that in the prejump region the ionospheric species supports
the electric field as a consequence of Ne

I � Ne
M. Close to the

ionosphere it is the parallel pressure gradient that locally
balances �Ek, but as we approach the potential jump and the
electrons are decelerated by the electric field, the magnetic
mirror force becomes the main contributor to �Ek. Within the
potential jump itself, as Ne

I falls to zero, the magnetospheric
electrons become the sole species maintaining �Ek through
the parallel pressure gradient. This is consistent with Polar
[Hull et al., 2003a, 2003b] and FAST [Chaston et al., 2007]
observations, where detailed analysis of large‐amplitude

Figure 10. Contributions to �Ek
iono from the moments of the ionospheric electron distribution. These cor-

respond to the parallel pressure gradient plus the pressure force associated with the magnetic inhomogeneity
(dashed), the electron fluid acceleration (dotted), the magnetic mirror force (dash‐dotted), and �Ek

iono (solid).
Contributions are plotted as a function of y in the prepotential jump region. In most of this region the mag-
netic mirror force is the main effect balancing the parallel electric field.

Figure 11. Contributions to �Ek from the moments of the
moments of the electron distribution. These correspond to
the magnetospheric parallel pressure gradient (dashed); the
ionospheric parallel pressure gradient (dotted); the electron
fluid acceleration (dash‐dotted); and �Ek (solid). Contribu-
tions are plotted as a function L within the potential jump.
The contributions from the electron fluid acceleration and
the ionospheric parallel pressure gradient are negligibly
small, leaving the magnetospheric parallel pressure gradient
to balance the parallel electric field. As a result the plot of �Ek
(solid) is indistinguishable from that of the magnetospheric
parallel pressure gradient (dashed).
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electric field structures (double layers) suggest that they are
balanced by ambipolar effects. In the postjump region, as we
approach the magnetosphere, it is the magnetospheric par-
allel pressure gradient that supports the majority of �Ek.
Additionally, we found that although the precipitating
electrons carry the field‐aligned current it is the mirroring
population that actually balances the majority of �Ek which
accelerates the precipitating population. The mirroring pop-
ulation, being more abundant, is crucial for quasi‐neutrality
considerations.
[30] Related studies by Vedin and Rönnmark [2005, 2006,

2007] find the main contribution to the parallel electric field
is from thermal effects consistent with Hull et al. [2003a,
2003b] and in general agreement with our calculations
within the potential jump and in the postjump region. In
general, the contribution from the magnetic inhomogeneity
is comparatively smaller but still significant [Vedin and
Rönnmark, 2005]: This is echoed in our postjump calcula-
tions, particularly as the outer magnetosphere is approached.
Inertial effects [Rönnmark, 1999;Wright et al., 2002;Wright
and Hood, 2003] have also been suggested as an important
contributor to the electric field. In a cold plasma [Wright
and Hood, 2003], electron inertia must dominate �Ek; for
a warmer plasma, such as in Earth’s magnetosphere, our
results show that it is no longer dominant. Previously the
role of �Ek and U in overcoming the mirror force experi-
enced by precipitating magnetospheric electrons has been
stressed. Whilst this is still an accurate statement, in this
paper we have shown that it is the more plentiful electrons,
that do not contribute to the current, that are responsible

for the variation of U along the field line, and hence
determine where electron acceleration occurs.

Appendix A: Table of Quantities

[31] Table A1 shows the dimensional quantity (x), its
nondimensional counterpart (x̂) and its characteristic value
(x0) such that x̂ = x/x0.

Appendix B: Calculation of Pressure Terms
B1. Magnetospheric Electrons

[32] For the magnetospheric electrons the relevant integrals
are evaluated over the appropriate areas in Figure 1. First the
parallel pressure,Z
A1þ2A2

u2k�fMdu ¼
Z

A1þA2

u2k�fMduþ
Z
A2

u2k�fMdu

¼ �1 þ �2 ðB1Þ

where

�1 ¼
Z∞

Wk¼0

Z∞
W?¼0

u2k�fMdu�
ZU�UM

Wk¼0

ZWk�UþUM
�=�M�1

W?¼0

u2k�fMdu

¼ eU�UM

2
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U � UM

p� �� s�3=2ffiffiffi
�

p D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s U � UMð Þ

p� �

þ �M
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U � UM

�

r
ðB2Þ

where D(x) is Dawson’s Integral, and

�2 ¼
ZU�UD

Wk¼0

Z∞
W?¼

Wk�UþUM
�=�M�1

u2k�fMduþ
Z∞

Wk¼U�UD

Z∞
W?¼

Wk�U
��1

u2k�fMdu

¼ e�k �M � 1

�

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U � UD

�

r"

þ t

2

�3=2

et U�UDð Þerfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t U � UDð Þ

p� �

� s�3=2ffiffiffi
�

p D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s U � UDð Þ

p� �	
ðB3Þ

where s = z/(zM − z), t = z/(z − 1) and UD = (1 − 1/z)UM/
(1 − 1/zM). The contribution from the precipitating elec-
trons is given by

�pmag;p
k ¼

Z
A1

u2k �fMdu� N�u2k ¼ �1 � �2 ðB4Þ

and the contribution from the mirroring electrons is

�pmag;m
k ¼

Z
2A2

u2k�fMdu ¼ 2�2 ðB5Þ

Figure 12. Contributions to �Ek
mag from the moments of the

magnetospheric electron distribution. These correspond to
the parallel pressure gradient (dashed), the electron fluid
acceleration (dotted), the magnetic inhomogeneity (dash‐
dotted), and �Ek

mag (solid). Contributions are plotted as a
function of y in the postpotential jump region, where the
magnetospheric parallel pressure gradient is the primary
contributor to �Ek.
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Secondly, the perpendicular pressureZ
A1þ2A2

u2?�fMdu ¼
Z

A1þA2

u2? �fMduþ
Z
A2

u2?�fMdu

¼ 	1 þ 	2 ðB6Þ

where

	1 ¼
Z∞

Wk¼0

Z∞
W?¼0

u2?�fMdu�
ZU�UM

Wk¼0

ZWk�UþUM
�=�M�1

W?¼0

u2? �fMdu

¼ eU�UM erfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U � UM

p� �� �M
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U � UM

�

r

þ 2ffiffiffiffiffi
s�

p 1þ �M
2�

� U � UM
�
�M

� 1

 !
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s U � UMð Þ

p� �
ðB7Þ

and

	2 ¼
ZU�UD

Wk¼0

Z∞
W?¼

Wk�UþUM
�=�M�1

u2?�fMdu þ
Z∞

Wk¼U�UD

Z∞
W?¼

Wk�U

��1

u2?�fMdu

¼ e�k 1� �M
�

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U � UD

�

r"

þ et U�UDð Þffiffi
t

p 1� U

� � 1
þ 1

2�

� �
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t U � UDð Þ

p� �

þ 2ffiffiffiffiffi
s�

p 1� U � UM
�
�M

� 1
þ �M

2�

 !
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s U � UDð Þ

p� �i
ðB8Þ

The contribution from the precipitating electrons is given by

�pmag;p? ¼
Z
A1

u2?�fMdu ¼ 	1 � 	2 ðB9Þ

and the contribution from the mirroring electrons is

�pmag;m? ¼
Z
2A2

u2? �fMdu ¼ 2	2 ðB10Þ

B2. Ionospheric Electrons

[33] Following the same mantra we consider the iono-
spheric electrons. First the parallel pressure

Z
A5þ2A6

~u2k�fId~u ¼
Z

2 A5þA6ð Þ

~u2k�fId~u�
Z
A5

~u2k�fId~u

¼ 2
1 � 
2 ðB11Þ

where


1 ¼
Z∞

~Wk¼0

Z~Wk�U=�

��1

~W?¼0

~u2k �fId~u ¼ �e
U
�

2
� �e

tU
�

2t3=2
ðB12Þ

[34] Since area A5 is identical to area A1 with potentials
scaled by t, g2 can be found by substituting U = U/t, UM =
UM/t and UD = UD/t into h1 − h2 (given in equations (B2)
and (B3)) and multiplying by neUM/t due to the difference in
�f M and �f I to give


2
�
¼ e

U
�

2
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U � UM

�

r !

� s�3=2ffiffiffi
�

p e
UM
� D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

�
U � UMð Þ

r� �
þ e

UM
�
�M
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U � UM

��

r

� �M � 1

�

� �
e
tUD
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U � UD

��

r

� t�3=2

2
e
tU
� erfc

ffiffiffi
t

�

r
U � UDð Þ

 !

þ s�3=2e
tUD
� D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

�
U � UDð Þ

r� �
ðB13Þ

The perpendicular pressure isZ
A5þ2A6

~u2?�fId~u ¼
Z

2 A5þA6ð Þ

~u2?�fId~u�
Z
A5

~u2? �fId~u

¼ 2�1 � �2 ðB14Þ

Table A1. Important Quantities Used in the Preceding Worka

Quantity Nondimensional Form Characteristic Value Description

vk,? uk,?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTM=m

p
Magnetospheric parallel (perpendicular) guiding center velocity

vk,? ~uk,?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTI=m

p
Ionospheric parallel (perpendicular) guiding center velocity

(mvk,?
2 )/2 Wk,? kBTM Magnetospheric parallel (perpendicular) kinetic energy

(mvk,?
2 )/2 ~W k,? kBTI Ionospheric parallel (perpendicular) kinetic energy

� U kBTM/e Electric potential normalized to magnetospheric plasma temperature
� ~U kBTI/e Electric potential normalized to ionospheric plasma temperature
Ek �Ek kBTM/(REe) Parallel electric field

j i n0e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTM=m

p
Current density

Pk,?
mag �pk,?

mag (kBTMn0)
−1 Parallel (perpendicular) magnetospheric pressure

pk,?
iono �pk,?

iono (kBTIn0)
−1 Parallel (perpendicular) magnetospheric pressure

fM �f M n0(kBTM/m)
−3/2 Magnetospheric electron distribution function

fI �f I n0(kBTI/m)
−3/2 Ionospheric electron distribution function

n N n0 Number density, n0 is the magnetospheric source number density

aTM, magnetospheric plasma temperature; TI, ionospheric plasma temperature; RE, radius of the Earth; kB, Boltzmann constant.
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where

�1 ¼
Z∞

~Wk¼0

Z~Wk�U=�

��1

~W?¼0

~u2? �fId~u ¼ � e
U
� þ e

tU
�ffiffi
t

p U=�

� � 1
� 1� 1

2�

� � !

ðB15Þ

[35] As in the parallel integral case, we can find d2 simply
by substituting U = U/t, UM = UM/t and UD = UD/t into
m1 − m2 (found in equations (B7) and (B8)), and multiplying
the answer by ne

UM
� to obtain

�2
�
¼ e
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� erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�

r !
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� � � 1ð Þ � 1� 1

2�

� �
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t

�
U � UDð Þ

r !
ðB16Þ

[36] Since the ionospheric temperature is small in com-
parison to the magnetospheric temperature, the integrals
over region A5 tend to zero and no ionospheric electrons
surmount the potential barrier.

[37] Acknowledgments. C.R.S. gratefully acknowledges funding
from the UK Science and Technology Funding Council (PP/E001122/1).
The authors would like to thank the anonymous referees whose valuable
feedback helped to improve this manuscript.
[38] Robert Lysak thanks the reviewers for their assistance in evaluat-

ing this paper.

References
Alfvén, H., and C. G. Fälthammer (1963), Cosmical Electrodynamics,
2nd ed., Clarendon, Oxford, UK.

Block, L. P. (1972), Potential double layers in the ionosphere Cosmic Elec-
trodyn., 3, 349–376.

Boström, R. (2003), Kinetic and space charge control of current flow and
voltage drops along magnetic flux tubes: Kinetic effects, J. Geophys.
Res., 108(A4), 8004, doi:10.1029/2002JA009295.

Boström, R. (2004), Kinetic and space charge control of current flow and
voltage drops along magnetic flux tubes: 2. Space charge effects, J. Geo-
phys. Res., 109, A01208, doi:10.1029/2003JA010078.

Chaston, C. C., A. J. Hull, J. W. Bonnell, C. W. Carlson, R. E. Ergun,
R. J. Strangeway, and J. P. McFadden (2007), Large parallel electric fields,
currents, and density cavities in dispersive Alfvén waves above the aurora,
J. Geophys. Res., 112, A05215, doi:10.1029/2006JA012007.

Chiu, Y. T., and M. Schulz (1978), Self‐consistent particle and parallel
electrostatic field distributions in the magnetospheric‐ionospheric auroral
region, J. Geophys. Res., 83, 629–642.

Comfort, R. H. (1988), The magnetic mirror force in plasma fluid models,
inModelingMagnetospheric Plasma,Geophys.Monogr. Ser., vol. 44, edi-
ted by T. E. Moore and J. H. Waite Jr., pp. 52–53, AGU, WAshington,
D. C.

Ergun, R. E., C. W. Carlson, J. P. McFadden, F. S. Mozer, and R. J. Stran-
geway (2000), Parallel electric fields in discrete arcs, Geophys. Res. Lett.,
27, 4053–4056.

Ergun, R. E., Y. J. Su, C. W. Carlson, J. P. McFadden, F. S. Mozer, D. L.
Newman, M. V. Goldman, and R. J. Strangeway (2001), Direct observa-
tion of localized parallel electric fields in a space plasma, Phys. Rev.
Lett., 87, 045003, doi:10.1103/PhysRevLett87.045003.

Ergun, R. E., L. Andersson, D. S. Main, Y. J. Su, C. W. Carlson, J. P.
McFadden, and F. S. Mozer (2002a), Parallel electric fields in the upward
current region of the aurora: Indirect and direct observations, Phys. Plasmas,
9, 9, 3685–3694, doi:10.1063/1.1499120.

Ergun, R. E., L.Andersson,D.Main, Y. J. Su, D. L.Newman,M.V.Goldman,
C. W. Carlson, J. P. McFadden, and F. S. Mozer (2002b), Parallel electric
fields in the upward current region of the aurora: Numerical solutions,
Phys. Plasmas, 9, 3695–3704, doi:10.1063/1.1499121.

Ergun, R. E., L.Andersson,D.Main, Y. J. Su, D. L.Newman,M.V.Goldman,
C. W. Carlson, J. P. McFadden, and F. S. Mozer (2004), Auroral particle
acceleration by strong double layers: The upward current region, J. Geo-
phys. Res., 109, A12220, doi:10.1029/2004JA010545.

Hull, A. J., J. W. Bonnell, F. S. Mozer, and J. D. Scudder (2003a), A sta-
tistical study of large‐amplitude parallel electric fields in the upward cur-
rent region of the auroral acceleration region, J. Geophys. Res., 108(A1),
1007, doi:10.1029/2001JA007540.

Hull, A. J., J. W. Bonnell, F. S. Mozer, J. D. Scudder, and C. C. Chaston
(2003b), Large parallel electric fields in the upward current region of the
aurora: Evidence for ambipolar effects, J. Geophys. Res., 108(A6), 1265,
doi:10.1029/2002JA009682.

Knight, S. (1973), Parallel electric fields, Planet. Space Sci., 21, 741–750.
Langmuir, I. (1929), The interaction of electron and positive ion space
charges in cathode sheaths, Phys. Rev., 33, 954–989.

Miller, R. H., and G. V. Khazanov (1993), Self‐consistent electrostatic
potential due to trapped plasma in the magnetosphere, Geophys. Res.
Lett., 20, 1331–1334.

Mozer, F. S., and A. J. Hull (2001), Origin and geometry of upward parallel
electric fields in the auroral acceleration region, J. Geophys. Res., 106,
5763–5778.

Persson, H. (1963), Electric field along a magnetic line of force in a low‐
density plasma, Phys. Fluids, 6, 1756–1759.

Persson, H. (1966), Electric field parallel to the magnetic field in a low‐
density plasma, Phys. Fluids, 9, 1090–1098.

Rönnmark, K. (1999), Electron acceleration in the auroral current circuit,
Geophys. Res. Lett., 26, 983–986.

Stern, D. P. (1981), One‐dimensional models of quasi‐neutral parallel elec-
tric fields, J. Geophys. Res., 86, 5839–5860.

Vedin, J., and K. Rönnmark (2004), A linear auroral current‐volatge rela-
tion in fluid theory, Ann. Geophys., 22, 1719–1728, doi:1432-0576/ag/
2004-22-1719.

Vedin, J., and K. Rönnmark (2005), Electron pressure effects on driven
auroral Alfvén waves, J. Geophys. Res., 110, A01214, doi:10.1029/
2004JA010610.

Vedin, J., and K. Rönnmark (2006), Particle‐fluid simulation of the auro-
ral current circuit, J. Geophys. Res., 111, A12201, doi:10.1029/
2006JA011826.

Vedin, J., and K. Rönnmark (2007), Parallel electric fields: Variations in
space and time on auroral field lines, J. Plasma Phys., 74, 53–64,
doi:10.1017/S0022377807006538.

Whipple, E. C., Jr. (1977), The signature of parallel electric fields in a col-
lisionless plasma, J. Geophys. Res., 82, 1525–1531, doi:10.1029/
JA082i010p01525.

Wright, A. N., and A. W. Hood (2003), Field‐aligned electron acceleration
in Alfvén waves, J. Geophys. Res., 108(A3), 1135, doi:10.1029/
2002JA009551.

Wright, A. N., W. Allan, M. S. Ruderman, and R. C. Elphic (2002), The
dynamics of current carriers in standing Alfvén waves: Parallel electric
fields in the auroral acceleration region, J. Geophys. Res., 107(A7),
1120, doi:10.1029/2001JA900168.

A. P. Cran‐McGreehin, C. R. Stark, and A. N. Wright, Solar and
Magnetospheric Group, School of Mathematics and Statistics, University
of St Andrews, Saint Andrews KY16 9SS, UK. (craig@mcs.st‐and.ac.uk)

STARK ET AL.: PARALLEL ELECTRIC FIELD A07216A07216

13 of 13



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


