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ULF pulsations driven by a randomly varying
magnetopause displacement
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Abstract. A magnetospheric cavity with a two-dimensional profile in Alfvén
speed has been driven with a nonmonochromatic source. Detailed numerical results
show that the magnetospheric cavity filters the random driving signal and excites
preferentially the fast modes whose eigenfrequencies lie within the driving spectrum.
These fast modes may also couple to the Alfvén mode, provided &, # 0 and their
eigenfrequencies lie within the Alfvén continuum. The resulting Alfvén modes
and the position of the resonant field lines can be predicted to high accuracy by
calculating the natural fast and Alfvén frequencies of the undriven system. A
preliminary investigation into the seismology of the magnetosphere has also been
undertaken. The ratio of the energy density in the two resonant field lines depends
only on the equilibrium of the cavity and not on the nature of the driving source
(e.g., initial condition, impulsive excitation, or random forcing). Good agreement
is found with the ratio predicted by an approximate analytical treatment based
upon the eigenfunctions of the equilibrium magnetosphere. The new seismological

technique may prove to be a useful diagnostic tool in future studies.

1. Introduction

The coupling of fast and Alfvén waves has received
considerable attention from magnetospheric researchers
le.g., Southwood, 1974; Chen and Hasegawa, 1974; Allan
et al., 1986]. The Alfvén frequency w4 (r) is the natu-
ral frequency of an Alfvén wave on a field line. For a
cavity that is inhomogeneous, w 4 (r) is constant along a
field line, but it varies with position throughout the cav-
ity. The fast mode extends throughout the entire cavity
and, unlike the Alfvén mode, is not confined to an in-
dividual field line. The coupling between the fast and
Alfvén modes depends upon the “azimuthal” wavenum-
ber k,, with no coupling arising when ky, = 0.

Over the last decade, studies have considered wave
coupling in two-dimensional (2-D) equilibria analyti-
cally in terms of normal modes [Southwood and Kivel-
son, 1986; Thompson and Wright, 1993; Wright and
Thompson, 1994]. Progress has also been made on 2D
time-dependent wave coupling [Lee and Lysak, 1991;
Wright, 1992a, b], and these studies indicate that a sin-
gle fast mode may establish several Alfvén resonances;
one on each field line where a natural Alfven frequency
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matches the fast frequency. The numerical model em-
ployed in the present paper is also two-dimensional and
demonstrates how one fast mode can drive two Alfvén
resonances. We also show how the relative amplitudes
of the resonances may be used to study the structure of
the equilibrium magnetosphere seismically through its
normal modes.

Most previous time-dependent studies have employed
initial conditions (which are similar to an impulse)
or monochromatic forcing. In this paper we use a
novel random magnetopause displacement driving con-
dition. A random driver may be more realistic than
the monochromatic drivers considered by some previ-
ous studies, since the buffeting of the magnetospheric
cavity by the turbulent magnetosheath is unlikely to
result in a monochromatic driving source.

Wright and Rickard [1995] give two criteria for driv-
ing an Alfvén resonance through a boundary random
motion. They considered a cavity with an Alfvén speed
inhomogeneity in one direction with linear disturbances
under the cold plasma approximation. The driver was
found to excite the fast eigenmodes which lie within the
frequency spectrum of the driver. Therefore, for a fast
mode to be excited its frequency must lie within this
spectrum. Second, for the fast mode to drive an Alfvén
resonance the fast mode eigenfrequency must lie within
the Alfvén continuum. The principal result from Wright
and Rickard [1995] illustrated that Alfvén waves can be
resonantly excited even when the cavity is driven by a
nonmonochromatic source. In this chapter we extend
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their work by examining randomly driven fast waves in
a 2-D inhomogeneous cavity.

Observations of the magnetopause [Chen et al., 1993;
Chen and Kivelson, 1993, and references therein] show
how the magnetopause is often disturbed and can sup-
port nonsinusoidal fluctuations with an amplitude of
about 0.0 Rg and typical period of 5 min. There is
substantial circumstancial evidence that such bound-
ary motions can drive field line resonances with similar
periods (i.e., Pc 5 pulsations) through the intermediary
of the fast mode. However, direct observations of such
fast modes have remained elusive. Allan et al. [1997]
suggest that the search for a clear monochromatic fast
mode signature like that seen in modeling will be un-

successful, and at best one may see the suggestion of

a narrowband driver over a small range of L shells in
satellite data. Rickard and Wright [1995] treated the
magnetosphere as an open-ended cavity (or waveguide)
and found that the dispersive nature of the fast mode
would obscure any clear monochromatic signature. For
these reasons is seems the best signature of magneto-
spheric fast modes is the indirect evidence of field line
resonances.

The format of this paper is as follows. We begin by
describing our model and governing equations. Then
we give an outline of the numerical scheme for solving
the ideal MHD equations and also the algorithm for ob-
taining a random driving source. Our results are then
described. First, we calculate the fast mode eigenfre-
quencies of the cavity and also the upper and lower fre-
quencies of the Alfvén continuum. The temporal form
of the random driver and its Fourier transform is then
illustrated. The response of the cavity to the random
driver is then discussed, and the coupling between the
fast and Alfvén modes is also examined. Applications
of this work to the seismological study of the magneto-
sphere is given, and finally our work is summarized.

2. Governing Equations and Equilibrium

The aim of this paper is to study ULF waves in
the Earth’s magnetosphere. To undertake this inves-
tigation, we begin with the magnetospheric box model
[e.g., Southwood, 1974]. The cavity is illustrated in Fig-
ure 1; its width is L (0 < z < L), and its height is 2L
(=L < z < L). In this paper we take the magnetic pres-
sure to dominate over the plasma pressure, i.e., the cold
plasma approximation. In addition, the magnetic field
is assumed to be straight and uniform and is situated
between the northern and southern ionospheres (located
at z = £L). The z and y axes represent the radial
and azimuthal directions, respectively. The inhomo-
geneity in Alfvén speed (and density) is taken to vary
in both the z and z directions and so is a generalisation
of Southwood’s [1974] model, which was governed by an
ordinary differential equation (ODE). The more general
density variation employed here results in a partial dif-
ferential equation (PDE) problem. The magnetopause
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Figure 1. Sketch of the MHD cavity used in our simu-
lations. A uniform magnetic field B = Bgé; permeates
the cavity. The driver is situated along the z = L field
line. On the three boundaries z = +L and /L = 0
we employ perfectly reflecting boundary conditions for
the fast mode (u, = 0). We take uy equal to zero at
z==L.

is taken to lie along the z = L field line. The governing
MHD PDEs are solved by a numerical scheme originally
developed by Wright and Rickard [1995].

The ideal MHD equations governing the (linear) small-
amplitude velocity (u =(ug, uy,0)) and magnetic field
(b = (bg, by, b)) perturbations in the low-3 approxima-
tion are given by

2

2
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where the square of the Alfvén speed is given by v} =
B2/ pop, Bo is the magnitude of the equilibrium mag-
netic field, and the plasma density is denoted by p. We
have taken the magnetic field to be uniform; B = Bjé,.
Under the cold plasma approximation the fast and
Alfvén modes are present and the slow mode is absent.
When the wavenumber ky is small, the fast mode is
approximately given by ug, b;, and b,, whereas the
Alfvén mode is characterized by wu, and b, [Wright,
1992a). The Alfvén speed profile v4 (z, z) is assumed to
be a separable function: v4 (z,2) /va0 = X (z) Z(2).
Specifically, we use

x
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(6)



SMITH ET AL.: RANDOM MAGNETOPAUSE DRIVING

7
Z(z) = 3-—2cos (T) . )
Here, vaqo is the Alfvén speed at (z/L=0,z/L =0),
and the cavity width is L. In our work we consider
the dimensionless frequency of oscillation, defined to
be wL/va0. The Alfvén speed functions X and Z are
plotted in Figure 2.

3. Eigenmodes and Eigenfrequencies

We now calculate the frequencies associated with
both the Alfvén continuum and the fast modes, which
are of importance for our numerical work. When k,
is small, but nonzero, the fast eigenfrequencies may be
estimated by calculating the eigenfrequencies when £k,
is set to zero. Wright [1994] shows how the fast eigen-
frequency (w;) is approximately independent of k, for
small ky: Owy/Okylr,=0 = 0, ie., wi(ky) ~ wi(ky =
0)+O(k?2). Therefore, to calculate the eigenfrequencies
in our coupled system, we take k, < 1 and compute
the decoupled frequencies. We impose perfectly reflect-
ing boundary conditions for calculating the decoupled
eigenfunctions and eigenfrequencies: & = § = 0 at
z==xL,andé; =0atxz=0,L.
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Figure 2. Plot of the Alfvén speed profile used in our
study. We take the Alfvén speed v4 (z,2) to be a sep-

arable function written as X (z) Z (z). Specifically, we
take X (z) = 1—(x/1.3L) and Z (2) = 3—2cos (wz/L).
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Table 1. Properties of the
Fast Eigenmodes.

Mode wZIL/vao Symmetry
2.520
4.216
4.395
5.869
6.014

6.132

S U WD
B0 » e n W0

The lowest six eigenfrequencies (and the associated
eigenfunctions) are calculated by using the eigenvalue
code described by Oliver et al. [1996; see also Smith et
"al., 1997]. To obtain these frequencies, we set k, = 0
and use the Alfvén speed profile (equations (6) and (7))
with a uniform magnetic field B = Byé, and a reflecting
boundary (u; = 0) at /L = 1. Table 1 gives the dimen-
sionless frequencies and also denotes whether the modes
are symmetric (S) or asymmetric (A) about z/L = 0.
Asymmetric and symmetric modes are characterized by
anode and antinode, respectively, in u;, along z/L = Q.
Note that only one asymmetric mode exists (mode 3)
in the frequency range 0 < wL/vap < 6.

We now calculate the upper (w4 ) and lower (w_) fre-
quencies of the Alfvén continua for the Alfvén speed
profile used in our study. Consider the second-order
ODE governing the decoupled (k, = 0) Alfvén wave,

d?¢

dz?

4G

V2 (z,2)

=0. (8)

Here, ¢ is the Alfvén wave eigenfunction. When we
write the Alfvén speed as v4 (z,2) = X (2) Z (2), equa-
tion (8) becomes

26 Q2
=t e ©)

where we have defined Q% (z) = w%/X?2. Equation (9)
is solved numerically by applying the boundary condi-
tions uy = 0 at z = =L. Equation (9) determines the
eigenvalues Q2, QZ, ... of the Alfvén mode. The fre-
quencies of the Alfvén continuum are then calculated
by

¢$=0,

whi (2) = X2 (2) Qf . (10)

In addition, to calculate the position of the resonant
field lines, we set

(11)

where wy is the fast mode eigenfrequency and x,; is the
position of the resonant field line.

Table 2 gives the lower and upper frequency limits of
the first five Alfvén continua, w_ L/vae and wyL/v40, "
repectively. In addition, the fast modes from Table
1 that have frequencies within each continuum range
and possess the same symmetry as the Alfvén mode are

w} = “-’?4;’ = X? (:Br,')Q? ,
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Table 2. Alfvén Continua Limits and Resonant Fast
Modes.

Harmonic w_L/vao wiL/vao Fast mode
1 0.5291 2.2928 -
2 15834  6.8613 3,6, ... (A)
3 2.4419 10.5814 1,2,4,5, ... (S)
4 3.2645  14.1462 3,6,...(A)
5 40765  17.6647 2,4, 5, ... (S)

given. We also denote whether these modes are sym-
metric (S) or asymmetric (A).

To proceed further, we shall focus on the asymmetric
modes. We notice from Table 2 that the third fast mode
(which is asymmetric) will couple to both the second
and fourth Alfvén harmonics. From equation (11) we
calculate that the second and fourth Alfvén harmonics
will have frequencies equal to the third fast mode at
locations z,o = 0.467L and z,4 = 0.896L, when driven
by the third fast mode with w;L/vg0 = 4.395.

4. Time-Dependent Solutions

Previous time-dependent studies of MHD wave cou-
pling in a cavity model have employed a variety of driv-
ing conditions. Some have used an impulsive stimulus
[Allan et al., 1986; Lee and Lysak, 1991], which, fol-
lowing the driving phase, is very similar to an undriven
initial condition solution [Mann et al., 1995]. These
studies show how a set of fast eigenmodes are excited,
which then go on to drive a set of field line resonances
in the manner described by Kivelson and Southwood
[1985]. Other modeling has employed monochromatic
driving, which drives solutions that asymptote to nor-
mal modes (with frequency equal to that of the driver)
if dissipation is present. In one such study, Steinolfson
and Davila [1993] note that when the cavity is driven at
a natural fast eigenfrequency the efficiency with which
energy is absorbed from the driven boundary is maxi-
mized.

The basis of the numerical code employed in this
chapter is described fully by Wright and Rickard [1995].
Their one-dimensional code has been modified to inves-
tigate ULF wave propagation in a 2-D inhomogeneous
cavity. The numerical scheme we employ is Zalesak’s
[1979] leapfrog-trapezoidal algorithm, which is second-
order accurate in both space and time. In our simu-
lations, 480 grid points were used in the z direction,
and 240 points were used in the z direction. The time
step was chosen to be 0.05 of the minimum propagation
time across a cell. Energy conservation was satisfied to
within 1 part in 10%, and the maximum V-b was 10~1°,
The velocity and magnetic field perturbations are found
by updating u and b at every grid point according to the
governing equations (1)-(5), except where the driver is
located (along = L). Tables 1 and 2 indicate that the
third fast mode (which is asymmetric) may drive second
and fourth harmonic Alfvén resonances. To focus upon
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these asymmetric modes, the driving motion at the
boundary z/L = 1 has an asymmetric variation with
z (i.e., a node of u; at z = 0). For 0 < z/L < 0.5 the
displacement of the boundary is described by the enve-
lope function F' (z/L) =sin(xz/L). For z/L > 0.5 the
function is given by F'(z2/L) = 0.5(1 — cos(27z/L)).
Since the driving condition will excite only asymmetric
modes of the system, it is necessary to solve only in the
region z > 0, while applying the symmetry conditions
Ug = Uy = b, = 0by/0z = 0by/0z = 0 at z = 0.
In' addition, along the edges of the cavity «/L = 0
and z/L = 41, we apply perfectly reflecting boundaries
(uz =0), and uy is also set to zero at z = L.

4.1. Random Driver

The algorithm to obtain the random driving source is
described in detail by Wright and Rickard [1995]; here
we only give a brief outline. A random set of data for
the z displacement of the boundary is obtained at dis-
crete times t,. Two time intervals are specified, A¢;
and Aty (> At1). A random number generator gives a
value for the boundary displacement between —1 and 1.
The time is then determined by ¢, =t,_1 + A¢, where
the interval At is given by either Aty or Aty. The prob-
ability that At; is chosen over Ats is taken to be 90%.
If Aty is chosen, the next two time steps are given by
Aty. A cubic spline is then fitted to the discrete points
to give a continuous expression for the boundary dis-
placement at all times. The x component of velocity
is then obtained by differentiating the continuous func-
tion of the boundary displacement. For the simulations
undertaken in our work we take At; =1 and At¢, = 10.
We measure times in terms of the Alfvén transit time,
ta =tvao/L.

At t4 = 0 we impose that both the boundary dis-
placement and its first and second time derivatives are
zero. This condition removes any transient effects when
the boundary motion starts and is achieved by creating
a symmetrical set of data points about t4 = 0.

Figure 3a shows the variation of the random driving
velocity ug (z = L, z =0.15L) with normalized time
T =ty = tvgo/L. In Figure 3b we show the Fourier
transform of the velocity in Figure 3a. The driver
has a broadband frequency spectrum lying in the range
0 < wL/vao < 6, and there is no preferred driving fre-
quency. The dashed line in Figure 3b denotes the fre-
quency of the only asymmetric mode, wy L /v40 = 4.395,
which exists within the frequency range of the driver. It
is important to note that the driver does not favor this
frequency. From Table 2 we expect this fast mode to
be important in our simulations, along with the second
and fourth Alfvén harmonic resonances.

4.2. Cavity Response

In this section we investigate how the cavity responds
to the random driving motion when we set k,L = 0.01.
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Figure 3. (a) Temporal form of the random driver and
(b) Fourier transform of Figure 3a. The velocity u, is
measured at ¢ = L, z = 0.15L. Notice that the driving
source is a broadband spectrum with frequencies lying
in the range 0 < wL/v40 < 6. The dashed line denotes
the position of the only asymmetric mode that exists
within this frequency range. Note that the driver does
not favor this frequency.

The reason for choosing a small value of kL is that
the fast mode frequency will be close to the ky = 0
values given in Table 1. Figure 4a shows the evolu-
tion of the £ component of the velocity (u,) at a fixed
point (z/L = 0.93, z/L = 0.45) within the cavity as a
function of time. The velocity is much more coherent
than the driving motion (compare with Figure 3a), as
shown in the Fourier transform of u, (Figure 4b). The
presence of a preferred frequency of oscillation within
the cavity is now evident. It is interesting to note
that this frequency agrees well with the (k, = 0) third
fast mode eigenfrequency calculated from the eigenvalue
code [Oliver et al., 1996]. Notice that the sixth fast
mode frequency, w¢L/vaq = 6.132, is not excited, since
it lies outside the frequency range of the driver (see Fig-
ure 3b).

Since ky is small, Figure 4a essentially gives the tem-
poral variation of the fast mode at a fixed location
within the cavity. It is evident that the cavity filters
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the random driving source and frequencies that are not
eigenfrequencies of the cavity are suppressed. The cav-
ity oscillates in a quasi-monochromatic fashion, since
it is dominated by power in a very narrow frequency
range.

The fast eigenmodes in the cavity are excited pro-
vided their eigenfrequencies lie within the spectrum of
the driver and they share the same field-aligned symme-
try as the driver. This finding is in agreement with the
results of Wright and Rickard [1995]. This result may
be understood by considering physical analogies, for ex-
ample, blowing air across an empty bottle or playing a
wind instrument. Even though the source of the sound
is broadband, the instrument or bottle enhances char-
acteristic frequencies.
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Figure 4. (a) The a-component of velocity
(characteristic of the fast mode) at the location
(z/L =0.93, z/L = 0.45) in the cavity. Notice that
the oscillation is more coherent than the driving motion
(Figure 3a). (b) Fourier transform of Figure 4a. The
dashed line shows the frequency of the first asymmetric
mode at a dimensionless frequency of w¢ L/vao = 4.395.
The frequency of the fast mode within the cavity is
equal to wyL/vao. The cavity therefore acts as a filter,
suppressing frequencies that are not eigenfrequencies of
the system, allowing cavity eigenmodes to dominate the
solution.
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To summarize, we have driven a cavity with a broad-
band spectrum 0 < wL/v49 < 6. Within this frequency
range we have calculated that one asymmetric frequency
exists (wyL/vao = 4.395). The cavity extracts this
eigenfrequency from the driver, suppressing all other
frequencies. Having seen that a nonmonochromatic
driver is able to excite a quasi-monochromatic fast
mode, we now examine how this mode may couple to
an Alfvén wave.

4.3. Fast and Alfvén Mode Coupling

If ky = 0 the fast and Alfvén modes are decoupled,
whereas if k, # 0 there is coupling between the two
modes. The condition for the fast magnetoacoustic
mode to drive an Alfvén resonance is that the frequency
must lie within the Alfvén continuum. From the Alfvén
speed profile we employ, two resonant field lines are ex-
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Figure 5. The Alfvén energy E4 (= 5pul +b2/2p0)
at z/L = 0.05 at times (a) t4 = 5 and (b) 14 = 20,
using ky = 0.01. The period of the waves is 1.43a/v40.
The dashed lines denote the locations of the calculated
resonances assuming a monochromatic driver. Notice
that as time increases, the Alfvén wave energy becomes
more localized about the resonant field lines. These are
located at z,2 = 0.467L and z,4 = 0.896L, correspond-
ing to the second and fourth harmonics of the Alfvén
mode, respectively.
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Figure 6. The (a) second and (b) fourth harmonics
of the Alfvén wave eigenfunction ¢. The solid line de-
notes uy along each resonant field line, calculated from
the time-dependent code, measured after 20.0 Alfvén
times. The eigenfunction calculated by solving the ordi-
nary differential equation (equation (8)) is shown by di-
amond symbols. The agreement between the two cases
is excellent.

7.0

pected to exist within the cavity. These correspond to
the fast mode eigenfrequency wyL/v40 = 4.395, occur-
ring at locations #,o = 0.467L and z,4 = 0.896L. Here
the subscripts 2 and 4 refer to the second and fourth
harmonics of the Alfvén mode, respectively. The sixth
fast mode, with a frequency of wy L/vao = 6.132, is not
excited, since it lies outside the driving spectrum (see
Figure 4b). Therefore we do not expect this fast mode
to drive any Alfvén resonances.

In Figure 5 we plot the Alfvén wave energy E4
(= $puZ + b2/2p0) as a function of z/L for z/L = 0.05
at two times. Figures 5a and 5b illustrate E4 at times
ta = 5 and t4 = 20, respectively. The dashed lines
denote the positions of the two predicted resonant field
lines at z,2 and z,4 (assuming a fast mode frequency
of wgL/vao = 4.395). At early times (Figure 5a) the
Alfvén energy density is broad, although it is primarily
located around the resonant field lines. As time in-
creases, the resonances becomes much sharper and oc-
cur along the predicted field lines (Figure 5b). (The
width of the resonances is expected to be proportional
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to 1/t4 [Mann et al., 1995].) It appears that the ran-
dom driving motion can excite a fast eigenmode, which
can then drive an Alfvén resonance in much the same
way as a monochromatic driver.

This result can be confirmed by examining the Alfvén
mode eigenfunctions. In Figures 6a and 6b we show uy
calculated from our time-dependent simulations (solid
line) for the field lines at 2,5 and z,4, respectively, mea-
sured after 20.0 Alfvén times. In addition, we have
overplotted the Alfvén continuum eigenfunction ¢ cal-
culated by solving the ordinary differential equation
(9) along each resonant field line with a Runge Kutta
scheme. The agreement between the time-dependent
calculation with the random driver and the continuum
eigenmode confirms the excitation of two Alfvén reso-
nances even if a random driver is used.

4.4. Relation to Observétions

It is worth comparing the frequencies observed in
data with those generated in our model. The lowest-
frequency Pc 5 waves on the flanks have a frequency of
the order of 1 mHz. The lowest eigenfrequency of our
system is (see Table 1) 2.52 v40/L. To get a dimen-
sional frequency from this, we need to specify values for
the radial extent of the cavity and the Alfvén speed.
By assuming L = 15 Rg we can turn this calculation
around by asking what the implied Alfvén speed is in
the equatorial plane just inside the magnetopause if our
eigenfrequency of 2.52 corresponds to 1 mHz. The im-
plied Alfvén speed (calculated with the aid of Figure 2)
is about 60 km/s, which is a little low. However, this
underestimate is in keeping with other models which
have had to enhance the magnetospheric density (i.e.,
depress the Alfvén speed) in order to get agreement
with observations.

How the magnetosphere generates such low-frequency
oscillations is still an outstanding problem, and an im-
portant one. It may be that our simple uniform field
model, which neglects the curved geometry of the mag-
netospheric field and its variation with radius, is too
crude. Alternatively, it may be that the boundary con-
ditions we are applying at the magnetopause and inner
magnetosphere are not appropriate.

The absence of clear ¢avity mode signatures in data
has caused some concern recently. As we mentioned in
section 1, this can probably be explained quite naturally
in terms of the waveguide nature of the magnetospheric
flanks or the finite lifetime of drivers in a dissipative or
leaky cavity.

5. Seismology of the Magnetosphere

We now give details about how the work described
in this chapter may extend the seismological study of
the magnetosphere. For each Alfvén resonance we cal-
culated the Alfvén wave energy per unit area perpen-
dicular to the resonant field line
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Ed'i = / EAdZ

2T

(12)

E; is proportional to the amplitude squared of the
Alfvén wave and is convenient to work with as it does
not oscillate in time. In Figure 7 we plot the ratio
E42/E4 as a function of time for the random driver
(Figure 7a), a monochromatic driver (Figure 7b), and
an initial condition (Figure 7c). In Figure 7b the
monochromatic driver has a frequency equal to the fast
eigenfrequency (4.395) and was ramped up over half a
cycle so that u, = Ou, /0t = 0 at t4 = 0. In Figure 7c
we read the initial u, from the eigenvalue/eigenfunction
code [Oliver et al., 1996] employed in the ky = 0 mode
calculations described earlier. The boundary # = L is
held as a reflecting boundary (uz = 0) in Figure 7c. In
all parts of Figure 7 we use kyL = 0.1. The three cases
show that the energy ratio is independent of the driving
source. The initial transient stage does exhibit differ-
ences, but after only four cycles ({4 = 6) all three cases
show the energy ratio to be approximately equal to 3.5.

For the case shown in Figure 7 we may use analytical
results obtained by Wright [1992a] to find that the ratio
of Alfvén energy densities E4 (integrated along the field
lines) for the two resonant field lines tends to a constant
value for increasing time. The energy ratio of the two
resonant field lines is given by

Bay _ X2 (2r2) [ Jop, @ (@r2) (95 /02)d2 2
Bas ~ X2 (zra) | [, ¢ (zra) (065 /02)d2
« Lo, (@r (zr4) /Z)? dz
f$r2 (¢r (l'rz) /Z)2 dz’

(13)

where the subscripts 2 and 4 denote the second and
fourth harmonics, respectively. In addition, X and Z
are the separable functions that determine the Alfvén
speed profile, given by equations (6) and (7). The func-
tion @, is the Alfvén wave eigenfunction (defined in (9)),
and €, is the fast mode displacement.

Inserting the appropriate quantities into this equa-
tion, we obtain a ratio that is too large by a factor of 2.
It is encouraging that the numerically and analytically
derived energy ratios are in rough agreement, although
it is desirable to improve the analytical result.

That the energy ratio is independent of the nature
of the driver is perhaps surprising but may be under-
stood as follows: The three types of driver (random,
monochromatic at the fast eigenfrequency, and an ini-
tial condition corresponding to the fast eigenmode) all
establish a fast mode in the cavity whose structure is
predominantly that of the fast eigenmode. This was
confirmed by producing contour plots of b, and u, for
the three drivers in the large time limit and compar-
ing them with the corresponding decoupled eigenmode
plots (ky = 0). Once it is realized that each driver ex-
cites the same fast mode structure, it is then natural for
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Figure 7. The energy ratio of the the Alfvén mode
Fa4s/E44 in the two resonant field lines at z,, and z,4.
The ratio of the energy of the second harmonic to the
fourth harmonic is plotted as a function normalized
time with k, = 0.1 using (a) a random driver, (b) a
monochromatic driver (constant frequency), and (c¢) u,
obtained from the eigenvalue code (section 3) as the
initial condition. In all three cases the energy ratio ap-
proaches the same constant value. The energy ratio
is therefore independent of the nature of the driving
source and depends only on the equilibrium of the cav-
ity.
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each driver to excite Alfvén resonances with the same
relative amplitudes and energy densities.

The fast mode established by all the drivers is pre-
dominantly the decoupled fast eigenmode and thus is
determined solely by the equilibrium of the magneto-
sphere and appropriate boundary conditions. Note that
although the amplitude of any given eigenmode will
depend upon the form of the driving function along
the magnetopause boundary, the structure of the eigen-
mode was found to be very insensitive to it, particularly
when the mode had achieved a significant amplitude
and the magnetopause became an approximate node of
the eigenmode. Consequently, all the functions and po-
sitions in (12) are determined by the equilibrium mag-
netosphere. Hence changing the equilibrium model will
modify the energy ratio, and this quantity may be used
as a diagnostic of the equilibrium field and density dis-
tributions.

It is worth noting that if dissipative ionospheric bound-
ary conditions are introduced the energy ratio of the two
resonances will change. The resonances are still excited
by the fast mode supplying a given (different) time-
averaged energy flux to each resonance. The dissipative
resonances will not grow secularly but will saturate at
an amplitude where the time-averaged ionospheric en-
ergy dissipation balances the fast energy supply. The
energy ratio now depends upon the height-integrated
Pederson conductivity at the foot of each field line, in
addition to the equilibrium magnetosphere structure.

6. Summary

In this paper we have investigated the effects of a
random driver on an MHD cavity. We have shown that
a broadband driver excites the fast magnetoacoustic
modes whose eigenfrequencies lie within the frequency
range of the driver. The fast modes may couple to
an Alfvén mode, provided the fast mode frequency lies
within the Alfvén continuum and the wavenumber ky, is
nonzero. The position and eigenfunction of the Alfvén
resonance may be accurately calculated by taking the
driving frequency to be monochromatic.

A preliminary investigation into the seismology of the
magnetosphere has also been undertaken. The ratio
of the field line Alfvén wave energy density of the two
resonant field lines tends to a constant value. This value
is independent of the driving mechanism and depends
only on the equilibrium of the cavity.
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