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The resonant excitation of Alfv•n waves is considered in a cold plasma embedded in a uniform 
magnetic field B•. All wave fields are assumed to vary as exp[i(Ay- cot)], and the background 
medium is invariant in y. The background density distribution po(x,z) is otherwise completely 
arbitrary. Regular and singular solutions for the waves are derived systematically in the vicinity of 
a resonance by considering a generalized Frobenius series, and we are able to recover many results 
found in earlier studies. Some new features of our work include a generalization of the overlap 
integral determining the efficiency with which any resonance may be excited, and the possibility 
that •y cx 1Ix N (N - 1, 2,3...) at the resonance. Hitherto only the solution with N - I has 
been considered. 

1. INTRODUCTION 

The coupling of different MttD wave modes is of interest 
to many plasma physicists. The resonant coupling of fast 
and A]fv•n waves is an important mechanism for heating 
laboratory plasmas [Hasegawa and Chen, 1976] and could 
play a significant role in heating the Sun's chromosphere. 
In a magnetospheric context it is thought that magnetic 
pulsations may be understood in terms of resonant wave 
coupling [Southwood, 1974; Chen and Hasegawa, 1974a]. 

Over recent years considerable efforts have been made 
to improve our understanding and modelling of coupling 
phenomena. Early studies concentrated upon steadily 
driven one dimensional systems [Southwood, 1974; Chen and 
Hasegawa, 1974a] and required the treatment of resonant 
singularities in ordinary differential equations. These sin- 
gularities occur at the location of the resonant field line. 
(The solution at the singularity can always be derived in 
the form of a series by employing the method of Frobenius 
[e.g., Bender and Orszag, 1978].) 

More recent studies have tried to generalize the early re- 
sults by considering a two-dimensional medium [Inhester, 
1986; Southwood and Kivelson, 1986; Lee and Lysak, 1990; 
Mond et al., 1990; Wright, 1991; Wright, 1992a]. Some of 
the recent progress has been due to numerical solutions. In 
this paper we develop analytical methods more fully. Our 
aims are similar to those of Mond et al., [1990]. In their 
paper they adapted the series solution approach that had 
proved successful in early modelling. The more general 
medium considered by Mond et al., [1990] requires the treat- 
ment of resonant field lines in two spatial dimensions rather 
than one. The resulting equations are partial, rather than 
ordinary, differential equations (see also Pao [1975]). 

In contrast to the ordinary differential equation (ODE) 
models, there is no standard method for deriving the solu- 
tion of partial differential equations (PDEs) at a resonance 
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(i.e., singularity). Mond et al., [1990] investigated a gener- 
alized series solution approach for the latter problem. Their 
calculation employed much physical insight, gained from 
earlier studies, to order the magnitudes of various pertur- 
bation quantities and enabled them to deduce the leading- 
order behavior of the singular solution - cf. Chen and Cow- 
ley [1989]. (Second-order resonance problems have two so- 
lutions, one regular and one singular.) General boundary 
conditions will produce a solution that can always be ex- 
pressed as a sum of the regular and singular solutions. Thus 
the singular solution alone can not describe the details of 
resonance problems adequately. 

The analysis presented in this paper provides a system- 
atic procedure which will generate the singular and regular 
series solutions in the vicinity of the resonance. Moreover, 
we can achieve these results without recourse to invoking 
specific orderings of the magnitudes of perturbation quan- 
tities a priori. In addition, our approach does not require 
any restriction on the wave number [Wright, 1992a] nor do 
we require the density variation to be a separable function 
[e.g., Southwood and Kivelson, 1986]. 

Most recently, Schulze-Berge et al. [1992] have considered 
the existence of resonant surfaces within a uniform mag- 
netic field permeating a three-dimensional density variation. 
Their calculation does, however, assume a given ordering of 
the perturbations. 

The paper is structured as follows; In section 2 we de- 
rive the governing equations for a two-dimensional resonance 
problem in a uniform magnetic field (note that the density 
distribution varies in two directions). This system is identi- 
cal to that considered in the "zero pressure" section of the 
paper by Mond et al. [1990], though we tend to follow the 
notation of, for example, Southwood [1974], Southwood and 
Kivelson [1986]. Section 3 derives a generalized Frobenius 
solution across the resonant field line. Section 4 demon- 

strates how the logarithmic terms in the Frobenius series 
may be continued across the resonant layer. Section 5 com- 
pares our results with those of previous studies, and section 
6 concludes the paper. 
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2. GOVERNING EQUATIONS 

Throughout this paper we employ the linearised ideal 
MHD equations for a cold plasma in a uniform magnetic 
field B = B•,. The equilibrium plasma density p0(x, z) is in- 
variant in the •r direction, but otherwise general. We assume 
that all perturbations have.a dependence on y and time t of 
the form exp[i(Ay- ,•t)], the dependence upon (x,z)is to 
be determined. 

We shall introduce the Alfvdn wave operator œ, which is 
defined as the differential operator 

œ _- B 2 0 2 •z 2 + luopo(x,z)03 •' . (1) 
The momentum and induction equations may be combined 
with Amp•re's and Ohm's laws to yield the following equa- 
tions governing the transverse plasma displacement (•, 
and the compressional field component b•, 

c• - •0• (2•) 

,• = _ 0• _ ix•. (2•) B Ox 

In earlier studies, where the density was independent of z, it 
was possible to derive a single ODE for b, and then use the 
conventional Frobenius treatment of the resonance. That is, 
the solution was developed as a power series in x, with the 
inclusion of a suitable logarithmic term to treat the singu- 
larity at the resonant field line [Bender and Orszag, 1978]. 
This is not possible in our more general model, however, 
we can simplify matters slightly by eliminating b, from the 
above equations 

i 0•G • = iX 0x 
0• 

We shall find it useful to expand the Alfvdn wave operator 
E as a Taylor series in the x coordinate [cf. Mond et al., 
1990]. Without loss of generMity we choose x = 0 to be the 
x-coordinate about which the expansion is performed. (The 
origin of x can always be redefined to study the solution on 
different field lines.) 

• = •0 + •1 + •2•2 + .... (4) 

The operator œ0 and the functions œ•, œ2 .... are defined as 

Z;o(•) - B 2 02 b-7z • + •'•0p0(0, z) 
[0•0l c•(•) - •o,o •- t 0• J•=0 

03 2 

c•(.,) - •o• [ ø•pø Ox n ] x=o 
The operator œo is the Alfvdn wave operator for the field 
line located at x - 0. For the remainder of this paper we 
shall assume that the magnetic field lines are frozen in to 
dense perfectly conducting boundaries at z = 0 and z = œ, 
so that •x, •y and bz all vanish at z = 0, t•. This is the 
"box model" of Southwood [1974] but with density having 
a general dependence upon x and z. Under these bound- 
ary conditions the wave operator is of the Sturm-Liouville 
form, and any solution to the operator may be written as a 

sum over the eigenmodes (or "harmonics") of the resonant 
field line. We shall denote the n tn Alfvdn wave eigenmode 
by the function •b•(0, z), with n = I corresponding to the 
fundamental mode. The first argument of •b,•(0, z) denotes 
that this is an eigenmode of the field line at x - 0: we shall 
require eigenmodes of other field lines in section 4. (Un- 
less stated explicitly, •b• refers to the eigenmodes at x = 0, 
e.g., in sections 2,3 and the appendices.) The eigenmodes 
and their associated eigenfrequencies 03•(x = 0) satisfy the 
relation 

• •- ø•'• •- (0, z)O• -0 (6) Oz 2 + 03,•luopo ; 
and it is simple to calculate the effect of operating upon any 
eigenfunction with œo(03)' 

Co(•)•(o,•) = •0p0(0,•)(.• •- -.•)•(0,•). (7) 

The condition for resonance may be regarded as being that a 
field line is driven at one of its natural eigenfrequencies, say 
the rth eigenfrequency 03r. Then the resonant eigenfunction 
•brwill satisfy œ0(03•)•b•(0, z) = 0. 

Because the eigenfunctions •b,• form a complete orthog- 
onal set, any function f(z) may be written as a sum over 
these functions weighted with appropriate coefficient f•: 

s(•) = Y• i•o•(0,•). 
r•--0 

The eigenmodes are orthogonal in the sense that when the 
product of two different modes is weighted by the density 
and integrated in z along the resonant field line the result is 
zero, 

(o,t) (po•n•n') ---- po•n•n' dz -- O, n •: n'. (9) 
J(0,0) 

In the following sections we shall see that it is often necessary 
to invert the operator œ0. For example, suppose we need to 
solve œ0 f(z) - g(z) for f(z) when g(z)is a known function. 
Writing f as the sum in (8), the inversion problem amounts 
to determining the set of coefficients (f•). Employing (7) 
and (8), œ0 f(z) - g(z) may be written 

ju0p0(0, z) •-'•'•,(032 _ 03•)•f• _ g(z). (10) 
r•----0 

The coefficient of any mode may be isolated by multiplying 
(10) by the relevant mode, and integrating along the x = 0 
field line. Recalling the orthogonal property (9) we find 

•0(• •- - •})(p0(0, •)•.•.)i• = (g(•),.) (11) 

and hence, provided 03• •: 03, 

(g(•)•.) 
2 . (12) f•- •0(.• •' -.•)(p0(0, •)•) 

This defines the solution f of œof = g, and hence the in- 
verse operator œ•-•, in the case when 03 is not equal to any 
of the eigenfrequencies of the x - 0 field line. In this paper, 
however, we are interested principally in the resonant case, 
when the driving frequency 03 is equal to 03• for some r. In 
this case, it is evident from (11) that f• cannot be deter- 
mined, although all of the other coefficients are still defined 
by (12). Indeed, when considering the resonant coefficient 
(n -- r) we see that the function g cannot be completely 
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arbitrary if a solution f is to exist (see equation (11)): a 
solution f of œ0 f(z) = O(z) only exists if O(z) satisfies the 
solvability condition [SC] 

(g(z)•,,(O,z)) = O. (13) 

The solution f(z) obtained by inverting œ0 has an unspeci- 
fied amount of the resonant eigenfunction present. Thus the 
inversion of œof(z) = g(z), where g satisfies the SC (13) •nd 
co is equal to the natural frequency cot(0), yields 

(g(•)•") •.(o,•) + • /(•) = •]] (• - •.)(•o(O, •)•.•.) 2 ' 

(14) 
where 7 is an arbitrary constant. We shall write the right- 
hand side of equation (14) as being identically equal to 

œ;•g + 7•r, (15) 

thus defining the operator œ•)'• in the resonant case. 

3. GENERALIZED FROBENIUS SOLUTION 

In this section we outline the generalized Frobenius pro- 
cedure for solving equations (3). To illustrate the method 
we develop the nonresonant solution in some detail and then 
indicate the main differences in the method when the x - 0 

field line is driven at a resonant frequency. Full details are 
deferred to Appendices A and B. 

Having expanded the operator • (equation [5]) as a series 
in x we seek solutions •cx and •c• to equations (3) by similarly 
writing these functions as series expansions in z. Guided by 
the Frobenius solution to ordinary differential equations, we 
allow for the possibility of a logarithmic term and therefore 
posit the following ansatz 

•x -- X a Z an(z)xn -[- xa In x • Cn(Z)X n (16a) 
n----0 

• - •-••(•)• + •'•n•••(•)•.(•6•) 
n•--0 

Here the an, bn, Cn and dn, which are to be determined, 
are functions of z, in contrast with the ODE case where 
they would be constants. In order to make tr (which thus 
far is also unknown) definite; we may assume that at least 
one of a0, b0, co and do is not identically zero. Moreover, 
the functions an, bn, Cn and dn must satisfy the boundary 
conditions at z = 0 and z = 1. Upon substituting the ex- 
pansions (16) and (4), into the equations (3), we obtain two 
equations in both of which the terms in z n+• and z n+• In z 
must separately balance. From the lowest-order terms tr can 
be determined (cf. the indicial equation in the application 
of the Frobenius method to ODEs): the algebraic details 
may be found in Appendix A. We distinguish two cases. In 
the nonresonant case, by which we mean that the externally 
imposed driving frequency co matches none of the eigenfre- 
quencies COn of the z = 0 field line, only tr = 0 is permissible. 
In the case when co = co• for some r, which we shall call the 
resonant case, both tr - 0 and a = -1 are possible. In both 
resonant and nonresonant cases, all the coefficients Cn and 
dn are identically zero if tr = ß and so there is no logarith- 
mic term' hence this is the regular solution. The tr = -1 
solution contains a logarithmic term and hence we call it the 
singular solution. 

Nonresonant Case 

To illustrate the way in which the Frobenius solution is 
developed, let us consider the nonresonant case. Then, as 
has already been stated and as is proved in Appendix A, 
er = 0 and the cn and dn are identically zero. Thus equations 
(16) become 

, •C• = bnz n . 
n----0 

Substituting these expansions and the expansion (4) into 
equations (3) gives 

For the lowest-order terms (x ø) to balance in each equation 
requires that 

Co,,o =/-•(Co• + C•o), (Co - •,•s•)•o = -i•s•; 
(18) 

for the x • terms to balance we must have 

œ0aa + œaa0 = •(œ062 -[- œ161 -I- œ2b0) , 
(œo - A eBe)b• + œ•bo = -2lAB ea2 ; (19) 

and so on. In this solution a0 and b0 are arbitrary functions 
(except that they must satisfy the boundary conditions). 
Since the governing equations are linear, we may consider 
the two solutions a0 • 0, b0 = 0 and b0 • 0, a0 = 0 sepa- 
rately. Recalling that in the nonresonant case, the inverse of 
œ0 is well-defined (equation (12), it is readily apparent that 
the pairs of equations (18), (19) (and so on) determine the 
functions an and bn for n = 1,2, .... Thus one deduces (see 
Appendix A for details) that the solution in the nonresonant 
case is a linear combination of the solution generated by a0 
and the solution generated by b0' 

1 (œo - ,•2B•)boz • = ao iXB• 

+ [_ 1 ,•2B 2 i 1 b0] h-•(•0- )•0 + •x•; • • 
+ o(• •) (20.) 

• = •o + [i•.o - c;'C,•o] ß 

_ [1 • 
1 (•o - A •B•)bo] • +• 

+ o(•), (2o•) 
where a0 and b0 are arbitrary functions of z. Furthermore, 
from equation (2b), 
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bz • 

Resonant Case 

Regular Solution. Henceforth we restrict attention to the 
2 for some r). Let us consider first resonant case (0½ 2 = wr 

the regular solution (or = 0). Equations (19) and (20)still 
hold: the difference is that now Co is invertible only if the 
solvability condition is satisfied. Once ag•n ao is arbitrary; 
and bo is arbitrary except for a single restriction. The first 
of equations (18) can be rewritten as 

Co(io - = 

and it follows from the solvability condition (13) that this is 
only solvable for b• if (4•E•b0) = 0. Once ag•n the solutions 
for a0 • 0, b0 = 0 and b0 • 0, a0 = 0 can be considered 
separately and then combined in any linear combination. 
For example, in the case b0 = 0 it follows from equation 
(21) that 

b• = iAao + 7• , (22) 

where the constant 7 is (as yet) undetermined. The constant 
is determined by going to the next order: the solvability 
condition applied to the first of equations (19) gives 

1 iA(• a0) (23) 
and hence, using equation (22), 

-i&(4•K•ao) (24) * = ' 

Continuing this procedure (see Appendix A for details), the 
regular solution in the resonant case is 

•y 

with 

Also, from equation (2b), 

= Cobo + c0a0 + 
The functions ao(z) and bo(z) are arbitrary except that 
{•b•œ•b0} must be zero. 

Singular Solution. The singular solution (or = -1) is a 
little more complicated algebraically because the coefficients 
c, and d, of the logarithmic terms are no longer identically 
zero. The details are given in Appendix A. Substituting the 
expansions (16)in equations (3) (cf. equations (Aa)), and 
balancing terms of order z •-•, one obtains 

crao q- co = 0 , crœobo q- œo do = 0; 

and balancing the z •-• In z terms yields 

ac0 =0, aœ0d0 =0. 

Since • •: 0 for the singular solution, these equations imply 
that a0 = co = 0 and œ0b0 = œ0d0 = 0, i.e., b0 and do are 
multiples of the resonant eigenfunction q;•. But at the next 
order one finds that 

œ0d• q- œ•d0 = 0; 

from which (using the solvability condition) one finds that 
do = 0. Hence the only nonzero coefficient at lowest order 
is b0 = fl0q;• (where ft0 is an arbitrary constant). From the 
remaining equations at this order, and proceeding to higher 
orders, one finds that 

• = -iAfl0q;• In z + O(z, a? In z) (26a) 

= 1 - 

+ 5 •o4•xlnx + O(x,x•lnz) (26b) 
+ in (26) b• = tAB 

The logarithmic n•ture of the singularity is in •ccord with 
the results of previous studies [Pao, 1975; Southwood, 1974; 
Kivelson and Southwood, 1986; Chen and Cowley, 1989; 
Mond et al., 1990; W•ght, 1991]. 

It is possible to derive recursion formu]• for the coef- 
ficients in the generalized Frobenius solutions. The details 
are given in Appendix B. 

4. CONTINUING THE SOLUTION ACROSS THE SINGULARITY 

To complete the singular solution it is necessary to de- 
termine how to continue the solution across the singularity. 
One way to do this is to allow the boundaries (at z = 0, l) to 
be weakly absorptive [Kivelson and Southwood, 1986; Mond 
et al., 1990]. In our approach, which is based upon that 
of Mond et al. [1990], we consider that the boundaries 
are not absorptive but rather that the system is weakly 
driven, so that the time dependence is exp(-iwt), where 
now a• = a•a + ia•z (a•a real, wz > 0). The growth time, 
which is of order 2w/w•, is assumed to be much greater 
than any Alfv•n or fast mode transit time of the system. 
Here wa is the real driving frequency that was written in 
previous sections without a subscript. Thus w• is equal to 
the square of the rth eigenkequency of the • = 0 field line, 

2 viz, • = w•(0). 
When w is complex, there is no longer an exact resonance 

at • = 0 (or any other real •). In a formal sense, the reso- 
nance now lies instead at a complex position • -0 + izi. 
Of cSurse, zi is a function of w•. (Note that at this stage zi 
may be complex.) We seek to determine the dependence of 
xi upon w•, most importantly its sign. 

In this section we shall write 

B 2 0 2 + 
(cf. equation (1)); E has an implicit z dependence, which 
should be understood. As before, the operator • can be 
expanded in a Taylor expansion about the resonant position: 

Now g(•, •) c•n in turn be expressed as • T•ylor expan- 
sion •bout the original resonance: 
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C(•, •) = C(•,, 0) + i•,C• (•, 0) + i•, • ;•,,0• 
(•) 

The choice of driving frequency determines both the po- 
sition Zres of the resonance and the form of the resonant 

eigenfunction ;fires, where 

œ(W, Xr•s)4r•s = 0. (30) 

We can write ;br•s in terms of the eigenfunction ;br at x -- 0 
with eigenfrequency cot as 

•res- •r -•- A•res ß (31) 

Using expression (29) up to first order in small quantities for 
œ(W, Xr•s) and expression (31) for •bres, equation (30) yields 

0L] + L(•,0)•,• - 0, i•,L• (•, o)• + i•,• • (•,o) 
(32) 

using œ(Wr,0)•br = 0. Multiplying by •br and integrating 
with respect to z at x = 0, we find 

<4r 0œ/0Wl(•r,0)4r) (33) 
where the operators Oœ/Ow and œ• are evaluated at w = oar 
and x = 0. Note that the final step is possible because A;br•s 
satisfies the same perfectly reflecting boundary conditions 
as ;fir at z - 0,1. If the boundaries were weakly absorptive, 
there would be an additional term in equation (33). For our 
differential operator, equation (33) may be rewritten as 

2•, <•1•:0•> (34i Zi -- 

here p and Op/Ox are evaluated at x = 0. Note that equation 
(34) implies that zi is real to this order. 

The Frobenius series solutions in the weakly driven case 
are the same as before, except that instead of being ex- 
pansions of powers of (z- 0) and its logarithm, they are 
expansions in powers of (z- Zr•s) -- (z- izi) and its loga- 
rithm. Consider then the argument of ln(z-izi) as one goes 
from Re[x] ( 0 to Re[x] ) O. If zi is positive, arg(z- izi) 
increases; whereas if zi is negative it decreases. Finally we 
let wz -• 0: arg(z-izi) increases/decreases by •r on moving 
from z - 0- to z - 0 + and this determines how to con- 
tinue the solution across the resonance in the case of a real 

driving frequency. 
Having taken the limit wz -• 0, the z component of the 

plasma displacement is found to be •x •- -iAfiorfir In [z[ at 
x - 0- and •cx •_ -iAfi0•br(ln Ix[-]-i7rsign[xi]) at x - 0 +. 
(Of course, we mean sign[x/], sign[wz] to be evaluated 
before taking the limit.) Now the x component of the 
Poynting flux, $•, which will not time average to zero is 
po -• B Re[bz exp i(Ay-wt)]Re[v• exp i(Ay-wt)], where v• is 
the plasma velocity in the x direction. After averaging with 
respect to time this is equivalent to iBw(•bz- •b•)/(4p0) 
where the perturbations in this expression have no implicit 
time dependence; i.e., they are the functions given in (20) 
and (25). An effect of the change in phase across the reso- 
nance is that the Poynting flux is discontinuous there: the 
difference between Sx (integrated along the x - 0 field line) 
on the two sides of x - 0 is 

--71' 2 

<&(o-)> - <&(o +)> - 2•000•1/•01 <•C•br>sign[z,], (35) 
by equations (26). At the end of this section we show that 

the difference in the above energy fluxes is positive, so the 
resonance absorbs energy. (The regular solution gives a con- 
tinuous contribution to the Poynting flux and so does not 
affect this calculation.) 

In the previous studies of ODE resonance problems 
[Southwood, 1974], it is clear that the change in phase of 
the argument of the logarithm depends solely upon the gra- 
dient of the rth Alfv•n eigenfrequency at the resonance. The 
choice of sign of the phase change means that the resonance 
absorbs energy, rather than radiates energy. It is not evi- 
dent from our mbre general analysis (see (33) and (34)) how 
zi depends on do.,•(z)/dz. For example, is it possible to 
specify an œ which will.yi•ld an arbitrary eigenfrequency 
gradient across the resonance? The factor (•rœ•br) enters 
many of our expressions (e.g., equation (33)), and it is worth 
developing an interpretation for it. Let the rth eigenmode 
and eigenfrequency satisfy equation (6) at z = 0. Now con- 
sider the change in eigenmode and eigenfrequency on an 
adjacent field line at z = /•z (/•z real). The change to the 
density, eigenfrequency and eigenmode relative to those on 
z = 0 are/•p0 = •z(Opo(z,z)/Oz)o, 5w• = •z(dw•/dz)o and 
• = 5x(Od•(x,z)/Ox)o respectively, all the derivatives be- 
ing evaluated at x - 0. Substituting these changes in to a 
Taylor series expansion of E• = 0 about x - 0 we find the 
terms linear in 5x satisfy 

0• + • + •0p0(0 •) • •:0 •0 • •:0 ' ' 
(36) 

Multiplying equation (36) by • and integrating along the 
background field line x = 0 we find the simple relation 

= - (37) 
dx •:0 p0(4•p04•) ' 

Recalling the definition of • it is clear from (34) and (3•) 
tnt = Thu, woud anticipate, the 
sense of the phase change of the log terms across the reso- 
nance is determined by the gradient of the resonant eigen- 
frequency. 

Note that the signs of zi, wz and dw•/dz are related by 
sign[dw•/dz] = sign[z/], since w• is by •sumption positive. 
Employing this relation (35) and (37) may be combined to 
yield an expression for the power absorbed over the length 
of the resonant field line, per unit length in the y direction 

<&(0-)> - <&(0+)) = •71•01•<4•04•)I dw• •10 (38) 
The above energy flux is positive definite: thus the reso- 
nance absorbs energy, which is in accord with the original 
o•e-dimensional cMculations [Chen and Hasegawa, 1974b; 
Southwoo4 197•]. 

5. DISCUSSION 

It is instructive to compare our results with those of pre- 
vious workers, who have in the main concentrated on the sin- 
gular solution. Southwoad and Kivelson [1986] and W•yht 
[1992a,b] have viewed the magnetic field perturbation b• as 
driving the system given by equations (2a, b). From our so- 
lutions in (25c) and (26c) it is evident that the leading-order 
of b• is O(xø), which we shall denote as b•o(z). We can relate 
the leading-order singular solution for •, namely •0d•/x, to 
b•0 by considering the expanded form of (2b). Multiplying 
by d• and integrating in z we find 
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rio =iAB (qbrbzo} _-iAB (•brbz0} (dco• -x (39) 
(The second equality uses equation [37].) Note how the p•- 
r•meter fi0 depends upon the overlap integral of b•0 •nd the 
resonant eigenfunction; fi0 represents the •mp]itude of the 
singular (or resonant) response, •nd is evidently sensitive to 
the v•ri•tion of b•0 •1ong the resonant field line. This prop- 
erty •ffirms previous results [Southwood and K•velson, 1986; 
Chen and Cowle•, 1989; W•ght, 1991]. It is instructive to 
note here that while the singular solution dominates the dis- 
placement • near the resonance •nd h•s the z dependence 
of the resonant eigenfunction, there is no such restriction on 
the z dependence of b•: since both the singular •nd regular 
solutions for b• start •t order z ø b• m•y h•ve •ny z de- 
pendence on the resonant field line. (Note though that the 
p•rt of b• which comes from the regular solution m•kes no 
contribution to fi0, •s m•y be verified by substituting the 
le•ding-order regular solution (25c) into the right-hand side 
of equation (39).) Thus if, for example, the resonant eigen- 
function is •n even function •bout the centre of the field line, 
but b•0 is •n odd function, then there will be no resonant 
excitation of Alfv6n waves since {•b•0} = 0. In general the 
f•ctor (•b•0) represents the efficiency of coupling between 
the b• (i.e., the f•st mode) •nd the Alfv•n resonance [South- 
wood and Kivelson, 1986; W•ght, 1992a]. Indeed Southwood 
and Kivelson [1986] suggested that in some density distri- 
butions the f•st mode (with • fundamental field •ligned de- 
pendence) m•y couple most efficiently to the third h•rmonic 
Alfv•n mode. (Note that in the c•se where the density is 
independent of z, such • f•st mode could only couple to the 
fundamental Alfv•n mode.) 

Now that we h•ve derived •n expression for fi0 we m•y 
write • final expression for the Poynting flux •bsorbed by 
the resonant l•yer. Substituting for fi0 in equation (38) gives 

(S•(0-)) - (S•(0 +)) = • Be [(•b•ø)le ]dw• [-• (40) 
The expresion •bove demonstrates m•ny features found in 
previous studies, such •s the dependence on •2 the squ•re of 
the overlap integral representing the efficiency of coupling, 
•nd the inverse dependence upon d•/dz (see, for example, 

Some previous studies h•ve been •ble to deduce the le•d- 
ing behavior of • •nd • for the singular solution. Although 
our method enables us to determine the behavior •t •]] or- 

ders for these displacements, we list the le•ding order terms 
here to f•cilit•te comparison with existing results. From 

2p0• (•p0•) k dz 0 

0 ß 
b• • b•0 (41c) 

Note that these expressions •re for quite •rbitr•ry density, 
e0(, 

Southwood and K•velson [1986] produced • similar ex- 
pression to our (41b) when they imposed the simplification 
of h•ving • density distribution that w•s • separable func- 
tion of z •nd z. To compare with their results we sh•]l write 
•0(•,•) = •(•)•(•). •om th• ,t•,a,• o• th• 

equation it follows that the nth eigenfrequency (which will 
be a function of z) will be determined by the variation of 
px(z); The quantity w. px is the pseudo-eigenvalue for the 
operator B202/Oz 2 + [w2, p•,]pop,,(z) and is independent of 
z. Thus, from 

const (42) 
we deduce that 

2 dp• dco•_ co, (43) 
dx p• dx 

For the resonant eigenmode we shall require - 
Recalling the definition of the operator œ• (equation[5]) and 
employing the relation (43), œ• may be expressed in the form 

[dco•] (44) •------pop•(z)px(O) L dx Jx=o ' 
By defining [dcore/dx]0 = (core(x)-co•)/x in the limit x --* 0, 
we find 

2 co2 C•.---laoPz(z)px(O) cot(x)- ; (45) 
and equation (41b) gives the leading behavior of •y as 

i)•B ( q3•b•o ) q3• (46) 2 ' - 
The •bove expression is identical to equation (34) of South- 
wood and Kivlson [1986], if we •ssume that their norm•lised 
eigenfunctions satisfy (•p•(z)•) = 1. Thus we •re •ble to 
recover the existing results of Southwood and Kivlson [1986] 
by t•king the •ppropri•te limit of our more general •n•lysis. 

Note that the •mplitudes of the singular solution fields 
in equations (41a) •nd (41b) •re inversely proportional 
to ]dw•/dz], suggesting that our singular solution •n•lysis 
breaks down when 

d•r[ = 0. (47) dz x=0 

This is indeed the c•se. When the •bove relation is s•tisfied 

we conclude that not only is the field line •t z - 0 reso- 
nant, but field lines dose to z = 0 •ppe•r, •t lowest order, 
to be resonant too. It should be noted that the proof of 
e = -1 for the singular solution (Appendix A) relied upon 
the property (•E•) • 0 when we invoked the solv•bil- 
ity condition. When considering the situation in which (47) 
is lid, qutio, (37)implies that -'0 
•nd hence we c•nnot •ssume that e = -1 for the singular 
solution. The method set down in Appendix A might be 
extended to this c•se. However, it is instructive instead to 
deduce the new singular index vMue in the following m•nner, 
provided we •ssume that the lowest-order behavior of b• is 
,till o• o•d• 1 (,•y, •0(•), •i,). exp•,din• • •o•din• 
to (5), •nd integrating the product of • with equation (2b) 
•1ong the field line •t z = 0 we find b•l•ncing powers of z 
will •rise from the following terms 

+ + +...)) 
= 

where we have used the property that b0 = •0•br(0, z) if 
a • 0 (see (A5)). Evidently, when (•b•œ•b•) • 0, the 
term that is O(1) on the right-hand side of equation (48) 
is balanced by a term on the left-hand side which requires 
tr = -1. However, when (ckrœ•ckr) = 0, balancing terms on 
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both sides requires that er - -2; but then only provided 
that {•r[œ• b• + œ2b0]q•r) is nonzero. If this factor were zero, 
we would have to try and balance terms with er- -3. 

In the case where equation (47) holds and the singular so- 
lution has an index of-2, we find the leading order behavior 
of •u to be 

,;t,,. (49) • •/•0•. 
while from equation (2c) the behavior of • is 

• • i•0 •. (50) 
For example, such a circumstance would arise in the box 
model [Southwood, 1974] if Op/Ox vanished at the resonant 
field line (provided O•p/Ox • did not also vanish). In that 
case, the solutions for •, •y and b• contain no logarithmic 
terms and hence no Poynting flux is absorbed by the layer. 
It is easy to investigate the character of the singular solution 
of the one-dimensional box model (governed by an ODE). 
More generally, we find that if the first nonzero derivative of 
the density is the Nth, then there are no logarithmic terms 
in the singular solution when N is even, and no energy ab- 
sorption at the resonance (• • 1/x•-•; •u • 1/x•) ß When 
N is odd there is a logarithmic term in the singular solution 
and a net absorption of energy by the resonant field lines 
(• • 1Ix •-•... + In(x); •y • 1/x•). It would appear that 
energy absorption at a resonance is dependent upon having 
a monotonic change in natural Alfvdn frequency across the 
resonance. 

6. CONCLUSIONS 

We have presented a systematic method for determining 
the regular and singular solutions at the singularity in a par- 
tial differential equation describing the resonant excitation 
of Alfv6n waves. Future work will generalize this analy- 
sis and enable us to consider more general magnetoplasmas 
(e.g., curl-free magnetic fields, force-free magnetic fields, or 
warm plasmas). 

Previous authors [Southwood and Kivelson, 1986; Chen 
and Cowley, 1989; Wright, 1991; Wright, 1992a] have 
demonstrated the importance of the "overlap integral" 
{bzoqSrl which describes how efficiently the fast mode may 
drive a resonance. This quantity appears quite naturally 
in our series solution. It may be noted that our derivation 
does not impose any of the simplifications of earlier studies: 
namely that p0 is a separable function of x and z, or that 
the wave number A is small. 

Note added in proof. During publication of this paper an 
article by Hansen and Goertz (Phys. Fluids 4{, 2713, 1992) 
appeared which called into question the validity of the "field 
line resonance" (FLR) expansion. This refers to the method 
of solution employed by, for example, Chen and Cowley 
[1989] and Mond et al. [1990]. Hansen and Goertz argue 
that the FLR expansion leads to an inconsistent solution. 
Hansen and Goertz substantiate their claim by using a sim- 
ilar generalised Frobenius series to ours (their equation (31); 
we note, however, that in that equation they omit terms - 
presumably because they are regular- which nonetheless 
should be included because they would contribute in later 
equations at the same order as terms which they have con- 
sidered). Our present paper solves explicitly for the coeffi- 

cients in this series, which Hansen and Goertz did not do. 
We demonstrate the existence of a singular solution with 
leading order variation along the resonant field line of the 
resonant eigenfunction, in contradiction to the conclusions 
of Hansen and Goertz. 

APPENDIX A: GENERALIZED FROBENIUS SOLUTIONS FOR 

THE REGULAR AND SINGULAR SOLUTIONS 

For completeness we restate the governing coupled equa- 
tions that we wish to solve: 

-1 A2B2 ix• (• - •) (AIa) 

Oœfu = iAœfx (Alb) 0x 

(cf. equations (3)). We assume that the solution can be 
written as an expansion of the form 

• _ • •(•) • • •(•) b,,(z) + In x d•(z) x •Y n=O n=O 
(•) 

(cf. equations (16)). 
For definiteness in determining a, at least one of a0, b0, 

c0 and d0 must be nonzero. Substituting the expansion (A2) 
in•o equations (A1) yields 

-ix• • [(•.0 + •0)• •-• + ((• + •).• + •)• 
+((a+2)a•+c•)x •+• +...] - tAB •lnx [acox •-• 
+(a + 1)c•x • + (a + 2)c,x •+• +... ] 
= (r0 - x•),0• + {(r0 - ••),• + r•,0} •+• 
+... + lnx [(•0 - A2B2)dox • 
+ {(r0 - x•)• + r•0} •+• +... ] (•aa) 

[(•0,0 + r0•0)• •-• + {(• + •)(r0,• + r•,0) 
+(r0a• + r• a0)} • + {(• + 2)(r0• + r•,• + r•,0) 

+(r0• + r• + r•0)} •+• + ... ] 
+ In x [(aEodo)x •-• + (a + 1)(E0d• + E•do)x • 
+(• + 2)(r0• + r• + r•0)• •+• +... ] 
= ix [(r0•0)• • + (r0• + r•0)• •+• +... ] 
+ iAlnx [(E0c0)x • + (E0c• + E•co)x •+• + ... ] (A3b) 

In the nonresonant case, E0f - 0 implies that f - 0, and 
E0f - g can always be inverted to infer f in terms of g. In 
the resonant case, on the other hand, there exists a resonant 
eignenfunction • such that •0• - 0. In this case, the 
equation •0 f - g is not always solvable for f, as has already 
been noted in section 2: in fact it is only solvable if (•g) - 
0, in which circumstance we adopt the definitions (14) and 
(15) for the inverse operator. 

Throughout this paper we have to invert equations of the 
form •0 f + •• - 0. The solvability condition, equation 
(13), requires that 

7(•1•) - 0. (a4) 

At the end of section 4 it is shown that (••) • 0 is 
equivalent to stating [d•(x)/dx]o • O, which we would 
expect to be true for most media. The consequences of 
[d•(x)/dx]o - (••) - 0 are discussed further in sec- 
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tion 5. For the principal calculation in this paper we shall 
assume that (q•rœ•4r) :/: 0: hence equation (A4)implies 
that 7 = 0. 

Allowable values of the indez a 

Balancing x •-• terms and x •-• In x terms in equations 
(A3) requires that 

aao =0, aœobo=0, co=0 and œodo=0. 
(A5) 

Nonresonant case. In this case, œo is invertible. Thus, if 
a •= 0, equations (A5) imply that ao: bo: co = do = 0, 
which contradicts the assumption that these functions are 
not all identically zero. Hence in the nonresonant case a 
must be zero. 

Resonant case. Suppose that a •= 0 and a =/= -1. Equa- 
tions (A5) then imply that ao = co = 0 and œobo = œodo = 
0. Thus bo and do are proportional to •br. Balancing the x ' 
terms and x ' In x in equations (A3) then gives 

(• + •)(CoO. + C. Oo) + (Con. + C. ao) = 
(• + •)(Coa. + C. ao) = 

0 (A6a) 
O, (A6b) 

which (since we are supposing that a =/= -1) implies 

(œob• +œ•bo) = 0 (A7a) 
(œod• +œ•do) = 0. (A7b) 

The solvability condition (SC) then implies that bo = do = 
0, which contradicts the assumption that at least one of no, 
bo, co and do must be nonzero. Therefore, in the resonant 
case, • must take the value 0 or -1. 

As will become evident, a = 0 and a = -1 provide the 
regular and singular solutions respectively. 

Absence of Logarithmic Terms in the Regular (a- O) Solu- 
tion 

Consider a = 0. Balancing the x "-• In x terms in equa- 
tions (A3) yields 

iAB a nc. 

nœod. 

= -(œod.-i q-... '4- œn-ldO) 
+AaB•'d._i (A8a) 

---- -n(œ1dn-1 q-... q- œndo) 
+i•(Co•,_1 +... + Cn-l•O) (A8•) 

for n > 1. Moreover, from equations (A5) co = œodo = 0. 
We now prove by induction that the functions c,, d, are all 
identically zero. 
Proof. Suppose that c, = 0 for all n < N, that d, - 0 for 
all n < N- 1 and that œodiv = 0. (This is certainly the case 
for N = 0.) Then we shall show that civ+• = 0, that div= 0 
and that œodiv+• = 0. Setting n = N + 1 in equation (ASa) 
yields civ+• = 0. In the nonresonant case div= 0 follows 
trivially from œodiv = 0; and setting n = N + 1 in equation 
(ASb) yields œodiv+• = 0. In the resonant case, setting 
n = N + 1 in equation (ASb) gives, for the regular solution 
(,, =o), 

œodiv+l q- œ1div = 0; 

hence from the solvability condition dN: 0 and œodN+•: 

0, as required. Thus by mathematical induction all the c, 
and d, are zero, if a = 0. QED 
This justifies our use of the term "regular" to describe a = 0 
solutions. 

Solutions in Nonresonant Case: Lowest Order Terms 

When a = 0, (so that co - do = 0) balancing the x ø 
terms in equations (A3) yields 

-iABaa• = (•o- AaBa)bo (A9a) 
œo(b• - iAao ) = -œ• bo, (A9b) 

and balancing the x • terms yields 

-2iAB a aa = (œo - A a Ba)b• + œ• bo 
= -A aBabi + iAœoao (A9c) 

Co(2ba - iaaa) = -2(C•b• + Cabo) + iAC•ao. (A9d) 

In the nonresonant case, ao and bo are arbitrary functions 
of z. Since the governing equations are linear, we may con- 
sider the two solutions ao • 0, bo = 0 and bo • 0, ao = 0 
separately: the general solution is a linear combination of 
these two. 

Solution with bo - 0. Since Eo is invertible in the non- 

resonant case, equations (A9a) and (A9b) give 

a• = O, b• - iAao, 

and equations (A9c) and (A9d) give 

-i(Eo_AaB a , -iA__• .• - • ).o • = •So (•.o). 
So•.tio• •ita •o = 0. Equations (A9a) and (A9b) give 

-• (•o - *•)•o • - -•f(•Oo), a• = iABa , 
and it follows kom equations (A9c) and (A9• that 

1 

,• = •i,• • (• •o), 

1 (œo - A aBa)bo • = c• • (c•c•C•o - &•o) - • . 
Regular (a = O) Solutions in Resonant Case' Lowest Order 
Terms 

In this case the equations (A9a)-(A9d)still apply. We 
supplement these with two further equations, obtained by 
balancing x a terms in equations (A3): 

-3iABaa3 

œo(363 - iaaa) 

: (œo -- AaB2)ba q- œ• b• q- œabo 
1 

= -,•• + •,(Co.• + C•.o) (^s•) 
= -3(œ1ba +œabi + Lsbo) 

+iA(œ• a• + œaao). (A9f) 

Once again the function ao is arbitrary. From (A9b) and 
the soNability condition, bo must satisfy (•b•œ•bo) = 0; but 
otherwise it is arbitrary. As in the nonresonant case, we can 
consider the cases ao - 0 and bo = 0 separately. By linearity, 
the general regular solution is a linear combination of these 
two solutions. 
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Solution with b0 = 0. It follows from equations (A9a) 
and (A9b) that 

a• = 0, b• = iAao + l• 

where • is a constant that has yet to be determined. From 
equation (A9d) and the solvability condition we deduce that 

0 = (•C• (•.• - i•ao)) 

whence 

-ix(•œ•ao) 
• = 2(•c•) ' 

Equation (A9c) gives 

-1 (œo - A2B a 1 
and equation (A9d) yields 

• = -•c•(c•(i•o +•.•)) + •. 
Note that • was defined in a manner such that the inverse 
E• is well-defined in this equation. (The inverse operator is 
defined by equations (14) and (15).) The constant •2 follows 
from equation (A9f) and the solvability condition: 

•o•{on •{• ao = 0. We recMl lh•l •o is •rbilr•ry excepl 
for the single restriction 

<•,•o) = 0. 

E•u•ions (•) •n• (•)im•l• • 

where lhe consl•nl 7• is delermined from •pp]yin• lhe solv- 
•bilily condilion lo equ•lion (A9•): 

Singular (•r =-1) Solution: Lowest Order Terms 

In the case •r = -1, equations (A5) give 

a0=0, b0=•0•r, c0=0, d0=•0•,, (A10) 

where •0 and •0 are constants. Equation (A6a)still holds; 
and hence by the solvability condition (noting that •r + 1 = 0 
and once again assuming (•brœ•br) • 0), $o = 0 •nd so 
do - 0. (One can also get this from the x • In x term in 
equation [A3a], without invoking the SC.) The constant •0 
is undetermined. 

The only remaining nontrivial equations that come from 
balancing x • terms and x • In x terms in equations (A3) are 

- iABaci = -AaBabo , œ0dl = 0; (All) 
whence 

c• = -iA•0•b,, d• = • •br (A12) 

(with $1 still to be determined). The function al is unde- 
termined. But al in the singular solution is the coefficient 
of x0 in •, as is a0 in the regular solution. Since a0 in the 
regular solution is quite arbitrary, we may without loss of 
generMity set al here to be zero: this corresponds to adding 
a chosen amount of regular solution to the singular solution. 

Going to the next arder we obtain 

œod• + œ•(•) 

= (œo - •,aBa)b, 
+•oœ•b, (A13a) 

= -AaBa(•) (AlZb) 
= 0 (AlZc) 
= 0. (A13d) 

The SC and (A13c) imply that • = 0; so d• = 0. Thus 
(A13b) and (A13c) yield ca = 0 and da = •a•b•. The SC and 
(A13d) give 

(A14) 

It is convenient to write b• in terms of two contributions, 
one of which is proportional to •br 

b• = fl• + Ab• (A15) 

where 

(•b•œa•b•) (A16) 
and Ab, is arbitrary except that it must satisfy (C•rœ, Ab,) = 
0. Note that this is precisely the condition that is satisfied 
by the otherwise arbitrary b0 of the regular solution (see 
above), so choosing a different Ab• simply means adding 
a different amount of the regular solution onto the singular 
solution. Note also that a0 and b0 in the regular solution are 
independent, so that we may independently choose a• and 
Ab• in the singular solution to be whatever we like. We shMl 
generally take Ab• to be zero unless otherwise indicated. 

Finally at this order, (A13a) and (A13d)imply that 
-1 

• = ixa• {(c0 - x•a•)•, + •0c,•,} (A•V•) 
• = -C•'(C,b, + •oC•,) + •, . (A•7•) 

At the next order we find 

-iABa(aa3 + ca) 

-aiABac3 

•. (Co•3 + c, (•)) 
2 (œ063 + œ• ba + œabl 

+/•0œ•) 
i a 

= -•A •0œ•b• (AlSd) 
- we have used the fact that cl = -iA•0•b•. From the SC 
and (A18c) one finds that •a 1 a = i A •0; thus da and C3 are 
determined. Moreover, the SC and (A18d) determines •a 
and hence ha' 

ba • { -• •o + (•,c, cf'[(•,c, + •0c•)•,]) 
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APPENDIX B: RECURSION FORMULAE FOR THE 

COEFFICIENTS OF THE GENERALIZED FROBENIUS 

SOLUTIONS 

In this appendix it is demonstrated explicitly that the 
coefficients in each generalized Frobenius series (i.e., for the 
nonresonant case and for both regular and singular solutions 
in the resonant case) are expressible in terms of lower-order 
coefficients in the series, so that finding the series is a well- 
defined procedure once the first few terms are known. 

Nonresonant Case 

In this case er - 0 and the c. and d. are all identically 
zero (see Appendix A). It then follows from equations (A3) 
that for n > 0 

-iABa(n q- 1)a.+l = Z œ._,.b,. - AaBab,• (B1) 
and 

n-]-I n 

+ ß 
m=O m--O 

(B2) 

Since œ0 is invertible in the nonresonant case, equation (B2) 
can be rewritten 

. 

m----0 

+ n + 1 œD'1 œ._,•a,• . (B3) 

bn+l -- 

It is readily apparent from equations (B1) and (B3) that 
a,+l and b,+l are determined by the previous a,•'s and 
bm's' thus all the coefficients are determined once a0 and b0 

(which are arbitrary) have been chosen. 

Resonant Case: Regular Solution 

As in the nonresonant case, a- 0, the c, and d, are all 
identically zero and the coefficients satisfy equations (B1) 
and (B2). The difference now is that œ•-1g is only defined 
if <•g) - 0 (the solvability condition SC) and even then 
is only defined up to an arbitrary additive multiple of 
Clearly equation (B1) determines a,+l in terms of b0,..., b,. 
It remains to be shown that b,+l is determined by a0,..., 
and b0,..., b,. Consider then equation (B2) for n = 0: 

œ061 + œ1b0 = iAœ0a0 . (B4) 

Using the solvability condition this implies that b0 must sat- 
isfy (•œ1b0) = 0 (but in fact is otherwise arbitrary) and 
that bl = iXao- œ•-1 œ1 b0 +/•1 •, where/•1 has yet to be de- 
termined. We now proceed to prove that b,+l is determined 
by the previous a's and b's using mathematical induction. 
Proof. Suppose that a0,...,aN-1 and b0,...,bN-1 are al- 
ready determined and that bN is also determined except for 
the constant /•N: 

bN = •N(a0,...,aN-l,b0,...,bN-1) q-/•N•,-. (B5) 

Note that we know this to be true for N = 1, once a0 and 
b0 have been chosen. We shall demonstrate that fin can 
be determined in terms of the a,,'s and b,,'s for m < N 

and that equation (B5) with N replaced by N + 1 then 

follows. The constant /•N is obtained from equation (B2) 
with n- N: it is useful first to rewrite this as 

- N +----•a•v) + •Nœ1•r -- 

--œ1•N- E œN-m+lbm 
N--1 

q- N + i E œN-mam ß (B6) 
m--0 

Applying the SC to this determines fiN, in terms of the a,• 
and b,• for m < N only. Note that fin doesn't depend on 
aN. Thus bN is completely determined; and aN can also be 
found from the previous b's. Finally, having determined fin 
to satisfy the SC, equation(B6) can be solved to find bN+l in 
terms of am, b,• (m = 0,..., N) and an as yet undetermined 
constant fiN+l, in the form of equation (B5). This completes 
the proof by induction. QED 

Resonant Case: Singular Solution 

In this case a - -1, and it follows from equations (A3), 
balancing both x •+" terms and x•+" ln z terms that for 
n> i 

n 

-i,•.B2(nan+l q-Cn+l)---)?j•2bn q- E œn-mbm (n7a) 
m--0 

-i)•Banc"+l - Bad"" + E œ,_•d• (B7b) 
m--O 

These may be re-arranged in the more convenient form 

-iABanaa,+l - -AaBa(nbn - d,) 

+ (Bsa) 
•r•--0 

-iABanc.l - -A•B•d. + • E._•d•(B8b) 
m=O 

n œ.-m+lbm 

.+1 

n Z œ.-,.+ldm 
m--O 

= i)• • œ,_•(na• - c,•) (BSc) 
m--0 

: 
•r•-- 0 

In addition, it follows (see Appendix A) from balancing the 
lower-order terms in equations (A3) that 

a0 = co = do = 0, b0 = fl0(•r, ½1 = -i.kbo, dl = •l(•r ; (B9) 

with f{0 and al arbitrary. Also (which comes from applying 
the SC to (BSc) 

(•b•œab0) •b• + Abl (B10) 
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(Appendix A), where Ab• satisfies (•b•œ•Ab•) but is other- 
wise arbitrary. Equation (BSc) can now be solved for ha, 
except that ba contains an (as yet) undetermined additive 
multiple of the resonant eigenfunction. It is clear from (BSa) 
and (BSb) that > •re determined once bm 
and dm (m < n) are known. Now equation (BSd) is essen- 
tially the same as equation (B2), with am and bm replaced 
by Cm and din; furthermol e, we know do, bo and co and do 
and d• is known to within an additive multiple of •b•. Hence 
the induction proof of the previous section shows that d,+• 
(n _> 0) is determined once the c,• (m < n) are known. 
The same induction argument can be apphed to equation 
(BSc) for the case of b,+•, as do,..., do, a•,..., d• can now 
be taken as known and ba is of the required form of being 
known except for an additive multiple of d•. 
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