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Coupling of Fast and Alfvn Modes in Realistic Magnetospheric Geometries 
ANDREW N. WRIGHT 1 

Ast•'onom4t Unit, $cAool o! M•tAem,•ticM Sciences, Q•een M• •nd Westfield 0olle•e, London 

The resonant coupling of linear fast and Alfvtn modes is considered in a cold plasma perme- 
ated by a curl-free background magnetic field. The medium is assumed to possess an invariant 
coordinate (e.g., slab or axisymmetric geometry). We present the problem in terms of a set of 
orthogonal wave functions which describe the wave fields. Perturbations are Fourier analyzed 
along the invariant direction with wave number kfi, which is subsequently employed as a second 
expansion parameter with which to expand the governing equations. These equations are then 
solved using time-dependent perturbation theory, familiar in quantum mechanics. Our calcula- 
tions provide generalizations to the results of previous authors, such as the excitation of resonant 
Alfvtn waves and the damping of the fast mode. To test our novel formulation we compare our 
results with numerical solutions of the 'box' magnetosphere. For small azimuthal wave numbers 
(< 3 - 4) our lowest-order estimates of the cavity mode damping rates are in excellent agreement 
with previous calculations. 

1. INTRODUCTION 

In an inhomogeneous medium the coupling of one wave 
mode to another is often inevitable [Wright, 1990; Wright 
and Evans, 1991]. One of the best observed natural wave 
coupling phenomena occurs in the Earth's magnetosphere 
and is thought to be responsible for magnetic pulsations. 
Magnetic pulsations are standing Alfvin waves that have 
been resonantly excited on closed field lines deep within the 
magnetosphere. The force which drives the resonance is the 
magnetic pressure gradient of a fast mode, sometimes called 
the 'cavity' mode. 

It is evident from the coherent and spatially localized 
nature of magnetic pulsations that the driving fast mode 
must have a regular oscillatory time dependence. Assuming 
a time dependence of exp[iwt], resonant Alfvin wave exci- 
tation has been demonstrated in simplified 'box' systems 
incorporating a uniform magnetic field [Southwood, 1974; 
Chen and Hasegawa, 1974]. At first it was thought that 
the regular oscillatory behavior of the fast mode was due to 
convecting Kelvin-Helmholt• vortices at the magnetopause 
[Dungell, 1967]. More recently it has been suggested that 
the buffering of the magnetosphere by the solar wind will 
excite fast cavity modes within the magnetosphere. Slight 
asymmetries in a•imuth may lead to the resonant excitation 
of Alfv•n waves on field lines where one of the natural Alfv•n 

frequencies matches a cavity mode frequency [Kivelson and 
Southwood, 1985; Wright, 1992]. 

Over recent years, considerable effort has been made to 
improve modeling of magnetic pulsations. Some workers 
have studied resonant coupling in more realistic geometries 
than the box model but retained a time dependence e i'•t 
[Inhester, 1986; Allan et al., 1987; Cross, 1988; Mond et 
al., 1990]. Other investigations have relaxed this time de- 
pendence and consider both 'box' magnetospheres [Inhester, 
1987; Zhu and Kivelson, 1988; Southwood and Kivelson, 
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1990] and alternative geometries [Allan et al., 1986a; Al- 
lan et al., 1986b; Lee and Lysak, 1989; Lee and Lysak, 1990; 
Wright, 1992]. With the exception of Southwood and Kivel- 
son [1990] and Wright [1992] the latter work is largely nu- 
merical. 

In this paper we extend the analysis presented by Wright 
[1992] to describe not only the growth of resonant Alfv•n 
waves but also the damping of the fast cavity mode which 
loses energy to the Alfvin resonance [ghu and Kivelson, 
1988]. The paper is structured as follows: õ2 introduces the 
magnetic coordinate system, presents the wave equations 
for the fast and Alfvin modes, and discusses the decoupled 
eigenmodes. The time evolution of the coefficients in a sum 
over eigenmodes is addressed in õ3, where it is also shown 
that considerable simplification can be introduced by ex- 
panding these coefficients as a Taylor series about kfi = 0. In 
õ4 our formalism is applied to modeling magnetic pulsations. 
The first-order Alfv•n solution represents the resonant exci- 
tation of standing Alfvin waves, while the second-order fast 
mode solution represents damping of the original fast cavity 
mode. Our results are compared with exact solutions (for 
simple geometry) in õ5, and we discuss the convergence of 
our series solution. õ6 summarizes and concludes the paper. 

2. Gov•.P•NmG EQUATIONS 

The coordinate system used throughout this paper is an 
orthogonal curvilinear one Based upon the magnetic geom- 
etry. We define three spatial coordinates (c•,fi, 7) and let S 
be parallel to the local background magnetic field direction 
everywhere. The transverse coordinates (c•,fi) are constant 
on any background line of force and are similar to Euler 
potentials or Clebsch variables. The background magnetic 
field is assumed to be solenoidal and irrotational, requiring 

= 

= 

where f and g are arbitrary functions of their arguments 
and the scale factors hi are equal to l/Vi, where i = a, fl, 7. 
A physical interpretation of the scale factors may be re- 
alized by noting that a real space element dr is equal to 
&h,,da + [•h•dfl + Sh•d7. These results are stand,•rd 
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properties of such a coordinate system [Davis and Snider, 
1979]. Similar coordinate systems have facilitated earlier in- 
vestigations of related problems [Singer et al., 1981; South- 
wood and Hughes, 1983; Walker, 1987; Wright, 1990; Wright 
and Smith, 1990]. We shall assume that the magnetospheric 
cavity is invariant in the • direction and has an arbitrary 
cross section in the (a,-•) plane; see Figure 1. The bound- 
ary surface of the magnetospheric cavity may be defined in 
terms of the pair of functions c•l('•) and c•2('•), where 
and a•. are the lower and upper values of a at which the line 
-• = const crosses the boundary. (Of course, these functions 
may be inverted to give 71 (a) and 7•-(a), which are the lower 
and upper values of -• at which the line a = const crosses 
the boundary.) 

In the cold plasma limit the entire wave field can be de- 
scribed in terms of the transverse plasma displacements 
and f•. The linearized momentum and integrated induction 
equations may be combined to give the following inhomoge- 
neous wave equations: 

-a"a" V ' at'- = ' 

malized by representative values of the background medium. 
(For example, lengths can be divided by the equatorial 
standoff distance of the magnetopause. Magnetic fields, ve- 
locity fields, and plasma density can be measured relative 
to the field strength, Alfvln speed, and density at the nose 
of the magnetopause.) 

We shall now show that when 0/•/• = 0 there exist a com- 
plete orthogonal set of eigenfunctions for both the Alfvln 
and fast modes. These special functions provide a suitable 
basis with which the wave fields can be described during 
time-dependent coupling. 

,Fast Cavity Eigenmodes 

In order to calculate the fast, or cavity, eigenmodes we set 
&/&• = 0 in (3a) and assume the mode f•,ii(a, 7) oscillates 
with an eigenfrequency •,i•. The functions f•i• are two- 
dimensional eigenfunctions analogous to the displacement 
of a nonuniform drum skin. (Note that the plasma displace- 
ment in the fast eigenmodes is confined to planes • = const 
and is oriented perpendicular to B.) The two indexes ij re- 
flect this two dimensionalfry and in a uniform medium would 
correspond to the number of nodes in a and 7 directions. In 
a nonuniform system such a simple nodal description is not 
always appropriate [Lee and œysak, 1990]; nevertheless, we 
retain two indexes to describe the two degrees of freedom of 
the fast cavity eigenmodes. The eigenmode equation is 

(3b) 
where V is the Alfvln speed. Evidently if 0/0•8 = 0, the fast 
and Alfv•n modes alecouple, the fast mode being described 
by the plasma motion •,, confined to a meridian plane while 
• represents axisymmetric toroidal Alfvln waves. 

Some of the analysis techniques employed throughout this 
paper are simplest when applied to nondimensional quanti- 
ties. For this reason we shall assume all quantities are nor- 

Magnetosphel ic Cavity Boundary 

2 B 

In Appendix A we show that under suitable boundary condi- 
tions (e.g., f•, = 0 on the cavity boundary) any two different 
fast eigenmodes, say f•,i• and f•i,•', are ortho$on• and may 
be norm•zed according to 

[''•'[•(') B • 
The h•ts 7•i, and 7•. represent the extreme 7 vMues of 
the magnetospheric cavity. 

Following See and $ysak [1990] we may write the • com- 
ponent of any disturbance • a sum over the f•t eigenmodes, 

½, t) = (,,, (6) 
When we write •a u a sam over the catty eigenmodes the 
problem of describing the evolution of a f•t mode distur- 
b•ce becomes the problem of determining the time depen- 
dence of the set of f•t mode coeffidents 

Al•dn Wave Eigenrnodes 

In contrast to the fast, or cavity, eigenmodes, which are 
analagous to the normal modes of a nonuniform drum skin, 
the Alfvtn eigenmodes are similar to waves on a nonuniform 
string. Alfvln eigenmodes have received considerable atten- 
tion in previous investigations of terrestrial magnetic pul- 

Fig. 1. The cross section of the magnetospheric cavity in the (a, 
plane. The bold line represents the boundary of the magneto- 
spheric cavity (the shaded region). Magnetic field lines are de- sations [Dungey, 1954; Dungey, 1967; Ratioski, 1967; Cum- 
picted with arrows to denote their direction, and are labeled by mings et al., 1969; Warner and Orr, 1979; Singer et 
lines of constant a. The remaining lines are contours of constant 1981; Southwood and Hughes, 1983] and waves in Jupiter's 
.•. The boundary of the cavity is described by the pair of func- 
tions a•(-•) and a2('0, which give the two values of a for which magnetosphere [Glassmeier et al., 1989; Smith and Wright, 
the line -• =const crosses the boundary. These may be inverted 1989; Wright and Smith, 1990]. The latter study notes that 
to give the complementary functions 7• (a) and 72(a). the eigenmode equation is of the Sturm-Liouville form when 
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suitable boundary conditions are applied (e.g., in = 0 on 
the boundary of the magnetospheric cavity). The eigen- 
mode equation for the nth eigenmode inn, which has a real 
eigenfrequency •nn, is 

For each value of a (i.e., each magnetic field line) there is a 
corresponding eigenmode equation like (7). Thus each mag- 
netic field line has its own set of eigenmodes {fn,(a, 7)} and 
elginfrequencies {•n,,(a)}. The Alfvln eigenmodes can be 
thought of as a set of one-dimensional normal modes which 
vary with 7, the field aligned coordinate. (The coordinate 
a enters as a parameter to define the field-line of interest.) 

It is a well-known property of Sturm-Liouville systems 
that the eigenmodes form a complete orthogonal set [Morse 
and Feshbach, 1953]. On any given field line, two (normal- 
ised) modes will satisfy 

72(a) B 2 (8) 

We are also able to synthesize any •n disturbance from a 
suitable sum over the eigenmodes 

•n(a,f•, 7, f)= Z ann(a,f•, f)•nn(a, 7) (9) 

In a similar fuhion to the discussion above, we can also 
construct an equation governing the evolution of the Alfvtn 
wave coefficient ant,, for any Alfvtn wave eigenmode on any 
field line (i.e., any a): Substitute the series expansions for • 
and in (equations (6) and (9))into the inhomogeneous wave 
equation for in (equation (3b)). The field-aligned deriva- 
tives may be removed by recalling the definition of the eigen- 
modes (equation (7)). In order to select the coefficient of a 
particular mode, we multiply the resulting equation by the 
mode in question times h•B and integrate along the field 
line of interest. Finally, the orthonormality condition leads 
us to the following equation, 

d2 ann •n ann dr2 + = 

ikn /7'(a) Bh.• O ( ) 

The above equation shows how magnetic pressure gradients 
in the • direction (due to plasma compression from both • 
and •n motions) will drive the transverse plasma displace- 
ments •n. 

The two sets of equations (10) and (11) represent a highly 
Once again, our problem is how to determine the set of coupled system and are formidable to solve as they stand. 
coefficients {ann} and is addressed in the next section. A simplification which enables us to proceed further is to 

3. COUPLED COEFFICIENT EQUATIONS 

To include coupling between the fast and Alfv•n modes 
we need to introduce some dependence on the f/coordinate 
in the wave fields. For the remainder of this paper we shall 
assume that all waves vary according to exp[iknf/]. Thus 
the • dependence of all the coefficients {aai)} and {an, } 
defined in (6) and (9) is also exp[iknf•], although from here 
on we shall not write this dependence explicitly. 

The equation governing the evolution of any fast mode 
coefficient can be determined by the following manipulation: 
Substitute the eigenfunction expansions for •a and •n (equa- 
tions (6) and (9)) into the inhomogeneous wave equation for 
•, (equation (3a)). The spatial derivatives on the ldt-hand 
side of (3a) may then be removed by recalling the definition 
of the elginfunctions (equation (4)). Finally, the coefficient 
of any fast mode may be found by multiplying the resulting 
equation by the mode in question times hnB and integrating 
over the (a, 7) plane. Invoking the orthogonal property (5), 
we find that the coefficient a•i• is governed by 

dt • + •o•a• = ik n [•i•hnB 

. 

Evidently, when k n = 0, the time dependence of any cavity 
mode coefficient, aaij, is simply oscillatory with the natural 
frequency for that mode. When k n •/ 0, any transverse 
Alfvtn waves that are present will act as a driver for the fast 
mode coefficients, which is denoted by •'(t). Of course, the 
fast mode (in addition to being driven by the Alfvtn fields) 
will also drive the Alfvln wave equation (3b). 

expand the sets of coefficients {am,)} and {an,• } as Taylor 
series about k n = O, 

+ + + 

We are employing t n as a second expansion parameter, the 
first being the ampUtude of the wave fields (•) which wu 
used to Unearize the sovern•s equations (3a) and (3b) at 
the very besinn•S of the paper. 

Some care must be taken when c•culatin S the higher- 
order terms in the seges (12). For example, we can only 

hish,-o,d, o,,tion, (a up to 
an order ln(•)/•(k•). Terms beyond th• order are sm•er 
than the second-order terms (• •) that were neglected • the 
initiM •nead•ation of (3). For the reminder of th• paper 
the 'order' of a term means the order in k•, unless stated 
otherwise. 

It • important to know how quic•y the seges • (12) 
converge and how many terms need to be calculated to de- 
termine the coefficients to a presc•bed accuracy. We address 
these questions at the end of section 5. 

Our an•ysis cont•ues via the use of 't•e-dependent 
perturbation theory' fam•ar in quantum mecha•cs [Schiff, 
1968]: Substituting the expansion (12) into equation (10) 
for the coefficient a•ii, we •nd that the ruth term • the 
expansion evolves accord•g to 
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The above relation shows how a(•,"'.•(t) is completely deter- 
mined by the set of lower-order Alfvtn coefficients 
Indeed, the lower-order (in k/j) Alfvln modes can be thought 
of as drivers for the next order in the fast mode wave field. 

In a similar fashion we can write down the ruth order of 

equation (11), 

d • ag'•.) + • a(•'•. ) = 

f•(a) B•h•h'•l(-,-•) I - 

The above equation shows how a given term in the a/jn ex- 
pansion is driven by both lower-order terms in that series 
and lower-order terms in the fur mode expansion series for 

The two equations (13) and (14) permit a much eas- 
ier analysis than the coupled relations (10) and (11). We 
have manipulated the coupled equations into a hierarchy of 
recoupled equations in which each sucessive order is com- 
pletely determined by lower orders. 

4. APPLICATION TO MAGNETIC PULSATIONS 

In order to illustrate the behavior of the equations given 
in the previous section we shall apply our results to mag- 
netic pulsations. Let us specify our initial conditions: For 
simplicity, we shall say that at t = 0 there is a single fast cav- 
ity mode (denoted by a•c). All the other fast cavity mode 
coefficients {a•i•;ij •! c} and transverse Alfvtn coefficients 
{a/j,} are sero at t = 0, but may evolve at later times due 
to the influence of the cavity mode 

Zeroth-Order Cavity Mode Solution 

Under the initial conditions stated above, the lowest- 
order (m = 0) cavity mode equation becomes a simple har- 
monic oscillator equation for a•/)•. For modes ij •/ c the 
solution is simply a•2•(t ) = 0, whilst the coefficient of our 
initial cavity mode (for t > 0) is governed by 

a• ) = a,,o sin(•ct) ß ß ik/j/j (15) 
where a,,co is the amplitude of the cavity mode. Thus to' 
lowest order the cavity mode simply oscillates at its natural 
frequency. The solution (15) can be inserted into the m = 1 
equation (14) and will enable us to calculate the first-order 
Alfvtn response of the field lines to the cavity mode a (ø) 

First-Order Alfodn Mode Solution 

The solution of this problem has been discussed by 
Wright [1992] for a variety of driving terms, including a 
steady harmonic driver like that in (15). (Readers should 
note that these calculations did not use the plasma displace- 
ment eigenfunctions, but the related magnetic field eigen- 
modes. Thus the a/j,,'s used in this paper, although simply 
related to those of Wright [1992], are not identical.) 

The first-order Alfvtn wave coefficients evolve according 
to 

--_-- C'(•)(t) = C'•lo ) sin(•,ct) (16) 
Since everything in the driving term is known, equation 
(16) completely determines the first-order Alfvln wave re- 
sponse. The parameter CY(n• represents how effectively the 
initial cavity mode can drive the first-order coefficient of the 
nth Alfvtn wave eigenmode. Wright [1992] shows how the 
largest-amplitude Alfv•n waves were excited on field lines 
where one of the natural Alfvtn frequencies matched the 
cavity mode frequency. Let us assume that this resonant 
condition is satisfied on the field lines at /x = /xr by the 
rth Alfvtn mode (i.e., •0/jr(/Xr) '- -t-0•,c). Since the eigen- 
frequencies are functions of/x, the resonant response will be 
localized in the/x direction. 

We shall draw on the results of Wright [1992] which de- 
scribe the growth of the Alfvln resonance. The amplitude 
of the resonant Alfvtn wave eigenmode (a•12) grows linearly 
with time on the resonant field line (c•r), •nd a peak begins 
to form. The width of the pea.k, expressed in terms of c•, can 
be related to the width in frequency via the function 
Both of these widths were shown to be proportional to 1/t. 
Thus we are led to an approximate description of a/jr: Since 
the height of the peak of a/jr is proportional to t, and the 
width proportional to l/t, we may approximate a/jr as a 
delta function after a few cycles. In Appendix B it is shown 
that the appropriate delta function is 

4,)( = cid. ½o.(,,.,0. a,, . = 
,•hu and Kivelsor& [1988] show how this Alfv•n resonance 
acts as a steady sink of cavity mode energy. We can see this 
feature in our model by considering the magnetic energy of 
the resonant field lines at c• = c•r' In a crude fashion we 
could estimate the resonant magnetic energy by integrating 
b• across the resonant peak. Since the height of the peak 
squared is proportional to t 2 and the width is proportional 
to l/t, we would expect the resonant magnetic field energy 
to be proportional to t, representing a steady drain on the 
cavity mode energy. In Appendix B we calculate the mag- 
netic energy (per unit/•) quantitatively and find 

ß 

The increuing energy of the Alfvtn resonance damps the 
cavity mode [Zhu and Kivelson, 1988] and is described by 
a second-order correction to the cavity mode coefficients. 
(The first-order correction is identically sero if there is no 
setorb-order f/j field at t = 0.) 

Second-Order Cavity Mode Solution 

The second-order cavity mode coefficients _(2) •i• are gov- 
erned by equation (13) when rn = 2, 
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toa n(a) 

The coup•n8 coe•c•ent •)(f) may •e •te8•ated •y parts 
to yield the •ternative expression 

To simp•fy matters we can neglect • first-order Alfv•n 
wave coe•ents with the exception of the resonant coef- 

even though we need only consider a single nonzero •fv•n 
wave coe•cient in (20), t• coe•cient w• drive • of the 

, (•) 
cavity mode coe•dents l•} • principle. Indeed, a sim- 
ple consideration of energy flux shows that th• •s inevitable: 
T•e second-order terms in t•e cavity mode expansion series 
must direct a net Poyntin8 flux toward t•e resonant mas- 
netic field •nes where energy 
K•o•, 1988]. It •s not possible for a single cavity eisen- 
mode to accomp•h such energy transport, •ut a combi- 
nation of different cavity ei8enmodes w•th t•me-dependent 
coe•c•ents can produce the required Poyntin8 flux. 

In th• paper we sh• o•y c•culate a second-order cor- 
rection to our •iti• cavity mode, •. The re,on • t•at 

ß 
of oad ß 

amp•tude resGnat growth of the coe•c•ent •. Since the 
growth of this coe•c•ent w• represent damping of our ini- 
ti• cavity mode, we w• •e able to estimate t•e decay rate 
(or damping t•e) of the cavity mode due to resonant •fv•n 
wave a•sorption. C•culation of these decay rates w• •ow 
us to comp•e our resets with those of previous studies. 

In order to c•c•ate the • response we must first c•- 
c•ate t•e d•vin8 term •)(f). If we only consider t•e effect 
due to the resonant Alfv•n coe•cient • (equation (17)), 
and •sume that either • or • • zero on the masnet• 
spheric cavity •oundary, then (20) simp•fies to yield 

i _ .... 

-- 
After a few cycles of the above driver, a?c ) wffi be donated 
by a sec•ar term •ke 

Sabstitating the solation• given in (15) •d (22) for • •nd 
• •to the •efie• expansion (12) we h•ve 
d•mped solution fo• the initi• c•vity mode. An e•tim•te 
fo• the no•m•ed d•mping •te • • found f•om 

•lJ•)l 

RecMllng the definitions or'co •) (equation (21)), C(n• (equa- 
tion (16)) and s?• ) (equation (15)), the normalized damping 
rate can be calculated explicitly • 

. 

4•ac d•r ar 

The above expression fo• the dampin5 •ate h dete•ned 
by the 5eomet•y of the masheric fidd and the decoupled 
eisenfun•tions • and •p•. These eisenhn•tions a•e b• 
sic p•ope•ties of the masnetosphefic cavity and a•e e•y to 
c•culate numefic•y, even fo• compricared 5eometfies. 
course, • s•pfified systems (tike the box masnetosphe•e) 
•p• h usury a trigonometric o• hypedboric function. 
some modeh it h •o possible to estimate the structure 
the f•t mode from W KB theory. 

It is inte•estin5 to note that the secular nature of 
means that fo• larse t the first three te•ms in the series 
pansion (12) w• not 5ire an accurate appm•mation. T• 
p•oblem •an be •i•umvented eithe• by •ulatin5 
te•ms in the expansion series o• by •e•sin5 that we 
at fibe•ty to expand the f•t mode osc•ation hequency • 
series in powers of kp a•ound the alecoupled eisenhequency 
•. Both of these methods a•e equivalent, the fo•me• 
•esentin5 a series expansion of the exponenti• function that 
the latter appro•h would introduce [Ke•orkian and 

5. 

In the p•evious section we showed how ou• novel 
tion of wave •oup•5 w• able to •ep•odu•e qu•tatively the 
behavio• demonstrated in ea•fie• studies (e.5., the 5•owth 
an A•v•n •esonance and the damping of the cavity mode). 
In o•de• to test ou• model quantitatively we sh• 
the no•m•sed dampin5 •ate siren • (24) fo• the box model 
masnetosphe•e and •ompa•e with the •esults of p•evious au- 
thors [•ku and K•elson, 1988]. 

Ou• •esults may be used to •eproduce those of the box 

5eomet•y, k, • k u • k• • 1.) The masnetosphefic cavity 
employed by Ehu and Kivehon h• the pl•mapause at z 
0.1 and the masnetopause at z • 10.0. •o•eove•, they only 
conside• modes which have a •undamentd cha•te• •on5 
the field fines (• •), i.e., the Alfv•n modes •u• and the cavity 
modes 

Zhu and Kivehon •hoose to norm•ze quantities •elative 
to the backs•ound quantities at z • 1.0, except lensths 
w•ch a•e mdtipfied by the wave numbe• in the • direction. 
In addition, the maSheric fidd h uniform wh•e the den- 
sity varies • p • 1/z. WitCh t• model the fundament• 
•v•n f•equen•y (no•m•zed by the hndament• •equen•y 

= 
and consequently 

d• 

= 27/ 
Finally, noting that z integration in (24) introduces a multi- 
plicative factor of •r/2, and that the normalization condition 
(8) dictates •u•(z)-- V/2/•rz, we find the following expres- 
sion for the damping rate, 
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TABLE 1. Parameters Characterizins the Resonant Dampins of the Fast Mode in the Box Magnetosphere 

M0•, •.• •.• (zK) =• [•.• / •=]=• F•, n, (ZK) 
I 0.4228 0.415 5.594 0.0431 0.0444 0.0536 
2 0.5402 0.521 3.427 0.0544 0.0377 0.0440 
3 0.6612 0.633 2.287 0.0694 0.0358 0.0409 

The table lists parameters governing the decay of fast cavity modes. All of the waves have a fundamental character along the 
backKround field lines. The first column specifies the variation of the fast cavity mode across the field lines (1, 2, 3; fundamental, 
second, or third harmonic). The second column sires the lowest-order estimate of the cavity mode frequency from our model, which 
is compared with the value found by Z]• •g Ki. elso• [1988] (in the low I or ]• limit) listed in the third column. The position of 
the Alfvtn resonance is siren in the fourth column, while the next column sires the lowest-order compression of the plasma at the 
resonant field line. The quantity Fil is our estimate of the slope of the line in Fi&mre 2 and may be compared with the same quantity 
deduced from Z]• •g Ki•elso•'• calculations (in the low I or ]• limit) listed in the final column. 

' 4W=il Z• 
Table I summarizes our results following a simple numerical 
integration of the alecoupled fz eigenmode equation. (The 
shooting method was employed to solve for the first three 
eigenmodes and eigenfrequencies, f=il and •v=i•; i = 1, 2, 3.) 
Once the cavity mode eigenf•equency has been determined, 
we can find the location of the resonant Alfvln waves z• by 
requiring the fundamental Alfvin fxequency (25) be equal 
to the cavity eigenfxequency. Once we know the position 
of the resonance, our numerical solution can be used to find 
gf=i•/gz[=,. The values in Table I calculated by this method 
axe accurate to at least three significant figures. 

It is interesting to compare the oscillation frequencies for 
the cavity mode predicted by our analysis and that employed 
by Zhu ant Kivelson [1988]. In the small ]• (or)•) limit our 
'alecoupled' eigenfrequencies listed in Table agree with the 
real part of the 'damped' eigenfxequencies calculated by Zhu 
and Kivelson to better than 4%. The good agreement rein- 
forces our expectation that to lowest order the fast mode os- 
ciliates as a alecoupled eigenmode. Although Zhu and Kivel- 

son do not tabulate any values for the location of the Alfvln 
resonance, we can estimate the position f•om their Figure 
8. As far as it is possible to compare our predictions for the 
resonant field line location (z•) with Zhu and Kivelson'•, we 
find no appaxent difference. 

In order to compare our damping rates with those of Zhu 
and Kivelson we can equate our k• with theix ),, whilst our 
I' is equivalent to •0i/0• in their notation. Figure 2 is re- 
produced from Zhu and Kivelson [1988] and now includes 
three lines representing our estimates for the damping rates 
of the first three cavity modes. As one would expect, the 
agreement is very good when k• (or),) is small. The slope 
of these lines is the parameter Fi• defined in equation (27) 
and listed in Table 1. The table also includes the Zhu and 

Kivelson estimate for Fi• (inferred f•om their Table 1), and 
these agree to 15% or better. 

Our lowest-order estimates of the damping rates are prob- 
ably slightly different to those of Zhu and Kivelson, in the 
small k• or ), limit, because of our approximation of the 
resonant Alfvln wave coefficient as a delta function and the 

neglect of nonresonant Alfvln coefficients l•. = 0; • • r}. 
Inspection of Zhu and Kivelson's [1988] Figure 4b suggests 
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Fig. 2. The dependence of the cavity mode damping rate (for the fundamental (0), first (1), and second (2) har- 
monics) on the wave number ]• (or I in Z]•..-g Ki•el.o.'. [19881 notation). The three curved lines represent 
the results of •1• •g Ki. el•o• [1988], from which the orisinal fi&mre is taken. The three straisht lines are the 
approximate lowest order estimates of the dampins rate• from our model, which is valid for small ]• (or 1). This 
fi&mre is adapted from Fil•tre 6 of •1• •g Ki. elso• [1988]. 
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that the delta function approximation is more suitable the 
higher the cavity mode harmonic (since the Alfvtn fields oc- 
cupy a thinner peak with little disturbance away/•om the 
resonance). Indeed, we find that the discrepancy between 
our damping rates and those of Zhu and Kivelson is less for 
the higher harmonic cavity modes. 

The discrepancy between our damping estimates and 
those of Zhu and /fivelson beyond 0.25-0.35 on the hori- 
zontal axis of Figure 2 can be attributed to our neglect of 
higher-order terms in the expansions (12). Including higher- 
order corrections should extend the range of agreement be- 
tween the two calculations. 

The interval 0.25-0.35 on the horizontal axis of Figure 
2 c•n be converted into a k• interval of 0.33-0.38, which is 
equivalent to an azimuthal wave number in an axisymmetric 
geometry of 3-4. When the wave number becomes this large, 
our lowest-order solution begins to deviate from the exact 
solutions of Zhu and/{'ivelson. Hence our lowest-order so- 

lution (including the delta function approximation and the 
neglect of nonresonant Alfvtn waves) is correct to 15% or 
better for azimuthal wave numbers less than 3-4. 

Now consider the convergence of the series expansions for 
the fast and Alfvln coefficients in (12). These expansions are 
Taylor series and will always give a good approximation to 
the true coefficients if sufficiently many terms are calculated. 
In the present paper we have calculated the first three terms. 
To calculate higher-order terms is harder work, and if we 
wish to go beyond a• order nonlinear terms 
must be included in the governing equations. Evidently it 
is desirable to estimate how well a truncated series solution 

represents the true coefficient. 
A series is convergent if the magnitude of each term in 

the series is less than that of the previous term. Since we 
have not derived general expressions for the coefcients here, 
we cannot make firm statements about the ultimate conver- 

gence of the series. However, we can compare the mag- 
nitudes of the first few terms and get a good idea of the 
accuracy of a truncated series solution. 

The condition that k•a(•)•/a(•)• < I can be reformulated 
using (15), (•1), (22), and (24) to yield w,,t•, < 1. The 
latter inequality reflects the fact that the exponential decay 
of c,,ity mod mpntud well represented 
by the series solution ([1- •,t]) for small t only. (See the 
end of õ4, also.) One might be inclined to think that a 
truncated aai• expansion is always a good approximation 
regardless of the value of k•. Clearly this is not the case 
according to Figure 2. The resolution of the problem lies in 
realising that although k•i)•/a(•)• < I when wactI', (1, 
it is not necessarily true that ]•/z(4.)./k•/z•i)• < I The latter 
condition is sensitive to the value of k•. 

Earlier in this section it was shown that the truncated 

approximation for azimuthal wave numbers less than 4. For 
larger wave numbers we must include higher order terms to 
obtain a good approximation: The sets of coefficients •a(•x•)) 

r (.•) 

can be used to calculate •a(•). Including the fourth-order 
term would increde the r•nge of k• in Figure 2 over which 
our solution • ß good representation of the exit solution. 
•We would model the beginning of the curve • ß par•bol• 
r•ther th• ß str•ght •ne.) 

CONCLUDING 

In this paper we have developed a novel model for describ- 
ing the coupling of fast and Alfvtn waves in a cold, inhomo- 
geneous, current-free background medium. Given suitable 
boundary conditions it is possible to calculate a set of or- 
thogonal eigenfunctions which may be used to represent any 
wave fields via a weighted sum. Employing techniques from 
quantum mechanics (time-dependent perturbation theory) 
we can deduce equations governing the coefficients in such 
a sum. These coefficients are highly coupled and difficult 
to solve for. If the medium has an invariant direction, we 
may Fourier analyze the wave fields in the invariant coordi- 
nate, e.g., exp[{k•]. If the coefficients are expanded as a 
Taylor series in k•, the equations simp•fy to • alecoupled hi- 
erarchy. In f4 we demonstrate how such • formulation can 
describe the excitation of an Affvtn resonance, •ke those 
in magnetic pu•&tions (see W•ght [1992] •so). Moreover 
we are able to examine the effect of the Alfvtn resonance, 
and we find (u one wo•d expect) that energy • removed 
from the f•t mode. The quOtatire features of our model 
are identic• with the type of behavior described in previous 
investigations. (Note that we have not restricted ourselves 
to any particular magnetic field geometry. Thus our con- 
clusions are good for any tw•dimension• solenoid• back- 
ground magnetic field.) 

It should be borne in mind that the eigenmode descri• 
tion of wave coup•ng developed in t• paper, •d summ• 
r•ed in equations (12)-(14), gives a complete and accurate 
account of the wave fields for • times. The fact that our 

results are in $ood, but not exact, a$reement with previous 
stu•es (in the •mit t• • 0) can be attributed to two sim- 
p•fications introduced in f4. The first simp•fication w• to 
appro•mate the •fvln response of the medium to s•ply 
a resonant response, and neglect • other nonresonant c• 
efficients, {• = 0; n • r}. The second appro•mation w• 
to treat the resonant Alfvtn coefficient • a delta function 

(equation (17)). The hct that these simp•fications intr• 
duce a d•crepancy between our results and those of pre- 
vious workers of 15% or less (for azimuth• wave numbers 
less th• •-4) suggests that we have employed rexonahie 
,ppro•mations. If our equations (12)-(14) are solved with- 
out simphfication, we would expect to reproduce previous 
results ex•tly. 

APP•.N• A 

In this appendix we shall investigate the orthogonalfry 
of the fast cavity eigenmodes. One eigenmode (•ail) and 
eigenfrequency (wai•) are defined by equation (4). Let us 
consider a second eigenfunction (fai'•') which has a different 
eigenfrequency (wai,•,), defined by' 

O h., O (•,,•,•, h•B) +,,,,v•,h.a., •. •,,•,•, = o + •aa hah• ' Oa 
(A1) 

If we take equation (4) and multiply it by ia•,•,h½,B, then 
subtract from it equation (A1) times •ai•h•B, the result 
may be written 
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B h ,,, a ] 

(A•.) 

If we integrate the above equation over the cross section of 
the magnetospheric cavity (see Figure 1), we find 

hv /•7 7•(c•) 

+ d7 [•,,ui,' '• 9/m•r, 

B 2 

xh•h•h• ß •dad'r = 0 (AS) 

Recall that c•('r) and c•('r) are the upper and lower val- 
ues of c• for which the line • =const crosses the boundary 
of the magnetospheric cavity. (These may be inverted to 
give the complementary functions 71(c•) and 72(c•).) The 
upper and lower bounds of the coordinates on the boundary 

n• •el•tion quoted • equation (5), we need to conside• the 
boundary conditions on the sud•ce of the m•gnetospheric 
c•vity. Fo• example, • the decoupled eigenmode pl•m• d• 
phcement •i• w•shes on the boundary, then the •st two 
•tegr• • equation (A3) •re •e•o, •d so we h•ve proved 
(5). Such ß bound•y condition would be •ppwpfi•te • the 
pl•m• density in the boundary w• much l•ge• th• the 
density throughout the c•vity (e.g., • ionospheric bound- 
ary). 

Alternatively, the first integr• • (A3) w• va•sh if 
($/•7)(••) = 0 on the cavity •oun•ary. This cor- 
responds to the eigenmo•e having zero &• perturbation 
on the Boundary. The secon• integr• is •o zero • 
($/$m)(••) = 0 on the Boundary, correspon•g to 
zero compression• fieM perturbations there. Of course, it • 
possible to have a suitable comB•ation of •erent Bound- 
ary conditions on •fferent sections of the Boundary an• st• 
ar•ve at the orthogon• pzoperty given in (5). 

APPgNDLX B 

In this appendix we consider the growth of the resonant 
Alfvln wave coefficient according to equation (16). This 
problem has already been discussed by Wright [1992], where 
it is shown that the time dependence of the resonant mode 
(•,) fo• • > 0 is 

c(2)(,) 

,•,.(a, •) = O•(a,.)[ 2W•c 

2•ac 

Note that the coordinate c• enters the equations as a param- 
eter which defines the field line of interest. In this sense, 
a• and •0• are functions of c•. On nonresonant field lines 
(• •! a,.: w•,. • w•,), (Bla) • appropriate. As we appro•h 
the reson•t field •ne (• • •,: •, • •ac), (Bla) may 
be shown to yield the second relation (Blb), which e•iMts 
the secular growth fam•ar • resonant systemsß 

In the m• text we discuss the behavior of a• qu•t• 
tively; the coefficient may be appro•mated by a delta func- 
tion at the reson•t field •e. TMs append• deter•nes the 
appropriate magirude of the delta function by integrating 
a•(a) •ross the resonance located at a=a•. Suppose we 
concentrate on the •terv• [a_, a+] wMch cont•s a•. We 
w•h to ev•uate 

_ • •_ 

In the second relation we have changed variables from c• to 
•, since a•, is foremost a function of •. The integration 
interval [w•_,w•+] contains the resonant frequency CU•c 
(which, of course, occurs at 

To perform a detailed evaluation of (B2), it is convenient 
to change variables once more to a frequency A centered on 
the resonance; w• = A + w•, with limits [w•_,w•+] --, 
[-Ao, +Ao]. Employing this substitution and the definition 
of s• given in (B1) we find the integral in (B2) may be 
written 

I ß sin(•,t -t- A0]' + A/w•, + 1 
do• 

dA (B3) 

The peak in a,•,. has a full width (at half maximum) in the 
parameter A of about 8/t [Wright, 1992]. Thus, after a few 
cycles the A interval we need to consider will become very 
small. By expanding the integrand in powers of A and only 
retaining the lowest-order terms the integral may be written 
(following trigonometric manipulation) 

+Ao -Ao 2•acA 

+ cos(•,,t) sin(At)]. dA (B4) 
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Since the peak of air is so highly localized, we may neglect 
the variation of C"(•J(•) and d•/d•f, across the range of 
integration. The first two terms in the square brackets above 
will integrate to Five zero. The thixd term Fives a factor 
proportional to the sine integral [see Gr•dshteyn am/Ryzhik, 
1980, equation 3.7211]. The latter integration introduces 
factor of •r, so that the appropriate delta function to describe 
aft,. is 

In õ4 we also discussed the magnetic energy of the resonant 
field lines. The resonant Alfvtn wave magnetic field pertur- 
bation is defined (via the integrated induction equation) in 
terms of the displacement eigenmode 

1 

By integrating over the volume surrounding the resonance, 
the resonant magnetic energy (I4rr) may be written 

Given the dependence of at, on •, integration with respect 
to • is straightforward. In particular, if we are interested in 
the magnetic energy per unit •, this integration introduces 
a multiplicative factor of 2/•r. Once again, we can appeal 
to the fact that the resonance becomes highly localized in 
c•, which allows us to neglect the dependence of background 
quantities on c•. As a result we only need perform the 
integration along the resonant field line. Combining these 
simplifications we find that the magnetic energy (per unit 
•) i• •ive• b• 

w,. = x da 
d•f,. --A o 

where we have employed the same substitution as used in 
(S3). The integral I((f,., •,.) is defined as 

(a8) 
For the moment we shall concentrate on the integral over A 

(ss,). From the demtio of th,t to 
lowest order in A, 

C? . aft = 

-2 sin(•,,f) sin(•,,f + At)] (B9) 

Expanding sin(•a,t + At)with trigonometric identities we 
can multiply out the contents of the square brackets in (B9) 
to give 

,-,(..,? 
4,. = (]. + 

+ cos'(•a,t) sin'(At)] (B10) 
where we have omitted odd functions of A (since they will 
integrate to give zero). The terms in square brackets from 
(B10) may be manipulated to give 

+cos•(•..t)sin•(At)] = [4sin•(•..t)sin2(At/2) 

+ sin•(At)(cos•(•..t) - sin•(•..t))] (Bll) 
Some final trigonometric manipulations and the introduc- 
tion of the variable A' = At yields the integral over A from 
(B$a) in the form 

C(.,)2 (•)[+•:, [ o . 2 (1 - cos(2•o,,,t)) ß sin2(A'/2) 

+cos(2•,,t). sin•(A') ] dc• dA' (B12) A • ß t ' d•f, 
Employing standard results from Gradshteyn and Ryzhik 
[1980, equation 3.7413] we arrive at our final expression for 
the magnetic energy of the Alfvtn resonance, 

X ß 

ß •7,,•,(a•) h,•h.• •-7 ((f•h"B) d7 (B13) 
This relation demonstrates how the magnetic energy of the 
Alfv•n fields at the resonance increases steadily with time 
and acts as a sink for the cavity mode energy. 
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