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Coupling of Fast and Alfvén Modes in Realistic Magnetospheric Geometries

ANDREW N. WRIGHT!
Astronomy Unit, School of Mathematical Sciences, Queen Mary and Westfield College, London

The resonant coupling of linear fast and Alfvén modes is considered in a cold plasma perme-
ated by a curl-free background magnetic field. The medium is assumed to possess an invariant
coordinate (e.g., slab or axisymmetric geometry). We present the problem in terms of a set of
orthogonal wave functions which describe the wave fields. Perturbations are Fourier analyzed
along the invariant direction with wave number kg, which is subsequently employed as a second
expansion parameter with which to expand the governing equations. These equations are then
solved using time-dependent perturbation theory, familiar in quantum mechanics. Our calcula-
tions provide generalizations to the results of previous authors, such as the excitation of resonant
Alfvén waves and the damping of the fast mode. To test our novel formulation we compare our
results with numerical solutions of the ‘box’ magnetosphere. For small azimuthal wave numbers
(< 3 — 4) our lowest-order estimates of the cavity mode damping rates are in excellent agreement

with previous calculations.

1. INTRODUCTION

In an inhomogeneous medium the coupling of one wave
mode to another is often inevitable [ Wright, 1990; Wright
and Evans, 1991]. One of the best observed natural wave
coupling phenomena occurs in the Earth’s magnetosphere
and is thought to be responsible for magnetic pulsations.
Magnetic pulsations are standing Alfvén waves that have
been resonantly excited on closed field lines deep within the
magnetosphere. The force which drives the resonance is the
magnetic pressure gradient of a fast mode, sometimes called
the 'cavity’ mode.

It is evident from the coherent and spatially localized
nature of magnetic pulsations that the driving fast mode
must have a regular oscillatory time dependence. Assuming
a time dependence of exp[iwt], resonant Alfvén wave exci-
tation has been demonstrated in simplified ‘box’ systems
incorporating a uniform magnetic field [Southwood, 1974;
Chen and Hasegawa, 1974]. At first it was thought that
the regular oscillatory behavior of the fast mode was due to
convecting Kelvin-Helmholtz vortices at the magnetopause
[Dungey, 1967]. More recently it has been suggested that
the buffeting of the magnetosphere by the solar wind will
excite fast cavity modes within the magnetosphere. Slight
asymmetries in azimuth may lead to the resonant excitation
of Alfvén waves on field lines where one of the natural Alfvén
frequencies matches a cavity mode frequency [Kivelson and
Southwood, 1985; Wright, 1992].

Over recent years, considerable effort has been made to
improve modeling of magnetic pulsations. Some workers
have studied resonant coupling in more realistic geometries
than the box model but retained a time dependence e*“*
[Inhester, 1986; Allan et al., 1987; Cross, 1988; Mond et
al., 1990]. Other investigations have relaxed this time de-
pendence and consider both ‘box’ magnetospheres [Inhester,
1987; Zhu and Kivelson, 1988; Southwood and Kivelson,
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1990] and alternative geometries [Allan et al., 1986a; Al-
lan et al., 1986b; Lee and Lysak, 1989; Lee and Lysak, 1990,
Wright, 1992]. With the exception of Southwood and Kivel-
son [1990] and Wright [1992] the latter work is largely nu-
merical.

In this paper we extend the analysis presented by Wright
[1992] to describe not only the growth of resonant Alfvén
waves but also the damping of the fast cavity mode which
loses energy to the Alfvén resonance [Zhu and Kivelson,
1988]. The paper is structured as follows: §2 introduces the
magnetic coordinate system, presents the wave equations
for the fast and Alfvén modes, and discusses the decoupled
cigenmodes. The time evolution of the coeflicients in a sum
over eigenmodes is addressed in §3, where it is also shown
that considerable simplification can be introduced by ex-
panding these coefficients as a Taylor series about kg = 0. In
§4 our formalism is applied to modeling magnetic pulsations.
The first-order Alfvén solution represents the resonant exci-
tation of standing Alfvén waves, while the second-order fast
mode solution represents damping of the original fast cavity
mode. Our results are compared with exact solutions (for
simple geometry) in §5, and we discuss the convergence of
our series solution. §6 summariges and concludes the paper.

2. GOVvERNING EQUATIONS

The coordinate system used throughout this paper is an
orthogonal curvilinear one based upon the magnetic geom-
etry. We define three spatial coordinates (a, 8,v) and let 4
be parallel to the local background magnetic field direction
everywhere. The transverse coordinates (a,3) are constant
on any background line of force and are similar to Euler
potentials or Clebsch variables. The background magnetic
field is assumed to be solenoidal and irrotational, requiring

Bhahps = f(a, ) 1)

Bhy = g(7) (2)

where f and g are arbitrary functions of their arguments
and the scale factors k; are equal to E/Vi, wherei = o, 8, 7.
A physical interpretation of the scale factors may be re-
alized by noting that a real space clement dr is equal to
&hoda + Bhpdf + Hh,dy. These results are standard
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properties of such a coordinate system [Davis and Snider,
1979]. Similar coordinate systems have facilitated earlier in-
vestigations of related problems [Singer et al., 1981; South-
wood and Hughes, 1983; Walker, 1987; Wright, 1990; Wright
and Smith, 1990]. We shall assume that the magnetospheric
cavity is invariant in the B direction and has an arbitrary
cross section in the («,v) plane; see Figure 1. The bound-
ary surface of the magnetospheric cavity may be defined in
terms of the pair of functions a1(y) and az(y), where as
and a3 are the lower and upper values of o at which the line
4 = const crosses the boundary. (Of course, these functions
may be inverted to give 73 () and 72(a), which are the lower
and upper values of v at which the line a = const crosses
the boundary.)

In the cold plasma limit the entire wave field can be de-
scribed in terms of the transverse plasma displacements {a
and {s. The linearized momentum and integrated induction
equations may be combined to give the following inhomoge-
neous wave equations:

ha B (eahpB)) +

) o ( hy 0
2 2= L2 Z(¢.hsB
oy (hph., oy et (hahp 9a (éahs ))

B 6%. 0 (h 0
—haby 7 - B =" 3a (m . ﬁ(fﬂhuB)) (3a)
o (ke B 8%
a (hah—, ‘ E (fﬁth)) - hﬁh‘vﬁ ' W
a2 h [} (] h a
=-35 (ﬁ . x(fahpB))—% (h_a;l'_ﬂ . %(fﬂhaB))

. (3b)
where V is the Alfvén speed. Evidently if /88 = 0, the fast
and Alfvén modes decouple, the fast mode being described
by the plasma motion {. confined to a meridian plane while
¢p Tepresents axisymmetric toroidal Alfvén waves.

Some of the analysis techniques employed throughout this
paper are simplest when applied to nondimensional quanti-
ties. For this reason we shall assume all quantities are nor-

Fig. 1. The cross section of the magnetospheric cavity in the («,7)
plane. The bold line represents the boundary of the magneto-
spheric cavity (the shaded region). Magnetic field lines are de-
picted with arrows to denote their direction, and are labeled by
lines of constant a. The remaining lines are contours of constant
~. The boundary of the cavity is described by the pair of func-
tions a1 (v) and aa(), which give the two values of o for which
the line v =const crosses the boundary. These may be inverted
to give the complementary functions ; («) and ¥2(«a).
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malized by representative values of the background medium.
(For example, lengths can be divided by the equatorial
standoff distance of the magnetopause. Magnetic fields, ve-
locity fields, and plasma density can be measured relative
to the field strength, Alfvén speed, and density at the nose
of the magnetopause.)

We shall now show that when 9/98 = 0 there exist a com-
plete orthogonal set of eigenfunctions for both the Alfvén
and fast modes. These special functions provide a suitable
basis with which the wave fields can be described during
time-dependent coupling.

Fast Cavity Eigenmodes

In order to calculate the fast, or cavity, eigenmodes we set
8/0B = 0 in (32) and assume the mode £ai,(a, v) oscillates
with an eigenfrequency was;. The functions {.:; are two-
dimensional eigenfunctions analogous to the displacement
of a nonuniform drum skin. (Note that the plasma displace-
ment in the fast eigenmodes is confined to planes 8 = const
and is oriented perpendicular to B.) The two indexes 37 re-
flect this two dimensionality and in a uniform medium would
correspond to the number of nodes in o and ¥ directions. In
a nonuniform system such a simple nodal description is not
always appropriate [Lee and Lysak, 1990]; nevertheless, we
retain two indexes to describe the two degrees of freedom of
the fast cavity eigenmodes. The eigenmode equation is

8 ((ha 8, 8 ( hy
a (hﬁh,’ . 8‘7 (eauhpB)) + da (hahﬂ

B
+U:i,hch1ﬁ +€aiy =0

. % (éaishsB ))

(4)

In Appendix A we show that under suitable boundary condi-
tions (e.g., £a = 0 on the cavity boundary) any two different
fast cigenmodes, say £ai; and £,i/,, are orthogonal and may
be normalized according to

/“Ymaz 02(7Y)
Ymin a1(v)
The limits Ym.n and Ymaz represent the extreme v values of
the magnetospheric cavity.

Following Lee and Lysak[1990] we may write the {4 com-
ponent of any disturbance as a sum over the fast eigenmodes,

ea(av ﬁl Y, t) = Z aﬂ'J (ﬂr t)fm‘: (al 7) (6)
i
When we write £, as a sum over the cavity eigenmodes the
problem of describing the evolution of a fast mode distur-
bance becomes the problem of determining the time depen-
dence of the set of fast mode coefficients {84, }.

B2
fciafai’J"'ahﬁhw Wdad'Y = ;i1 8,y (5)

Alfvén Wave Eigenmodes

In contrast to the fast, or cavity, eigenmodes, which are
analagous to the normal modes of a nonuniform drum skin,
the Alfvén eigenmodes are similar to waves on a nonuniform
string. Alfvén eigemmodes have received considerable atten-
tion in previous investigations of terrestrial magnetic pul-
sations [Dungey, 1954; Dungey, 1967; Radosks, 1967, Cum-
mings et al., 1969; Warner and Orr, 1979; Singer et al.,
1981; Southwood and Hughes, 1983] and waves in Jupiter’s
magnetosphere [Glassmeier et al., 1989; Smith and Wright,
1989; Wright and Smith, 1990]. The latter study notes that
the cigenmode equation is of the Sturm-Liouville form when
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suitable boundary conditions are applied (e.g., (s = 0 on
the boundary of the magnetospheric cavity). The eigen-
mode equation for the nth eigenmode {s,, which has a real
eigenfrequency wgn, is

0 ( hs

07 \ ke hy
For each value of « (i.e., each magnetic field line) there is a
corresponding eigenmode equation like (7). Thus each mag-
netic field line has its own set of eigenmodes {¢sn(a,v)} and
eigenfrequencies {wgn(a)}. The Alfvén eigenmodes can be
thought of as a set of one-dimensional normal modes which
vary with v, the field aligned coordinate. (The coordinate
« enters as a parameter to define the field-line of interest.)

It is a well-known property of Sturm-Liouville systems
that the eigenmodes form a complete orthogonal set [Morse
and Feshbach, 1953]. On any given field line, two (normal-
ized) modes will satisfy

% (eﬁﬂhGB)) + Ugnhph-,% . fﬁn =0 (7)

(8)

Spnt

Y2() B?

L7 tontomhabotn iy =
T(x)

We are also able to synthesize any £g disturbance from a

suitable sum over the eigenmodes

ta(cnB,1,8) =) apn(e, B )eon(e7)  (9)
Once again, our problem is how to determine the set of
coefficients {agn} and is addressed in the next section.

3. CouPLED COEFFICIENT EQUATIONS

To include coupling between the fast and Alfvén modes
we need to introduce some dependence on the g coordinate
in the wave fields. For the remainder of this paper we shall
assume that all waves vary according to exp[tkgf]. Thus
the S dependence of all the coefficients {aai;} and {asn}
defined in (6) and (9) is also exp[ikgfB], although from here
on we shall not write this dependence explicitly.

The equation governing the evolution of any fast mode
coefficient can be determined by the following manipulation:
Substitute the eigenfunction expansions for {, and s (equa-
tions (6) and (9)) into the inhomogeneous wave equation for
£a (equation (3a)). The spatial derivatives on the left-hand
side of (3a) may then be removed by recalling the definition
of the eigenfunctions (equation (4)). Finally, the coefficient
of any fast mode may be found by multiplying the resulting
equation by the mode in question times hsB and integrating
over the (a,~) plane. Invoking the orthogonal property (5),
we find that the coefficient a.i; is governed by

+ Wiy 8ai; = ikp / j [éaishsB

d?aai 3
di?

3 ( Bh, .
(G Somton el =

Evidently, when kg = 0, the time dependence of any cavity
mode coefficient, aaij, is simply oscillatory with the natural
frequency for that mode. When kg # 0, any transverse
Alfvén waves that are present will act as a driver for the fast
mode coefficients, which is denoted by T;,(t). Of course, the
fast mode (in addition to being driven by the Alfvén fields)
will also drive the Alfvén wave equation (3b).
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In a similar fashion to the discussion above, we can also
construct an equation governing the evolution of the Alfvén
wave coefficient agn for any Alfvén wave eigenmode on any
field line (i.e., any a): Substitute the series expansions for {a
and {g (equations (6) and (9)) into the inhomogeneous wave
equation for {s (equation (3b)). The field-aligned deriva-
tives may be removed by recalling the definition of the eigen-
modes (equation (7)). In order to select the coefficient of a
particular mode, we multiply the resulting equation by the
mode in question times h.B and integrate along the field
line of interest. Finally, the orthonormality condition leads
us to the following equation,

d?
d:f" + Whnapn =
T2(x) Bh
ikﬁ f 3 X fﬁn (hﬂB Z aaueai:’) d‘Y
@) P i

Y2(@) p2
—"?3/ B ,’:;h" €pn (Z “ﬁnfﬁn) dy =Ca(t) (11)

N(a)

The above equation shows how magnetic pressure gradients
in the 3 direction (due to plasma compression from both £a
and s motions) will drive the transverse plasma displace-
ments {s.

The two sets of equations (10) and (11) represent a highly
coupled system and are formidable to solve as they stand.
A simplification which enables us to proceed further is to
expand the sets of coefficients {aay;} and {asn} as Taylor
series about kg = 0,

Qayy = a.gz + kpaf,“-} + k,%aff,’, +.. (12a)
apn = a5) + kpal) + k2al) + .. (128)

We are employing kg as a second expansion parameter, the
first being the amplitude of the wave fields (¢) which was
used to linearise the governing equations (3a) and (3b) at
the very beginning of the paper.

Some care must be taken when calculating the higher-
order terms in the series (12). For example, we can only
calculate the higher-order corrections (in kg) reliably up to
an order In(e)/In(kg). Terms beyond this order are smaller
than the second-order terms (in €) that were neglected in the
initial linearisation of (3). For the remainder of this paper
the ‘order’ of a term means the order in kg, unless stated
otherwise.

It is important to know how quickly the series in (12)
converge and how many terms need to be calculated to de-
termine the coefficients to a prescribed accuracy. We address
these questions at the end of section 5.

Our analysis continues via the use of ‘time-dependent
perturbation theory’ familiar in quantum mechanics [Schiff,
1968]: Substituting the expansion (12) into equation (10)
for the coefficient a.ij, we find that the mth term in the
expansion evolves according to

d%a (m)
dt” +w GIJ an / / [ea‘JhpB

ai (Bh’ Z ""“’fpn) dady] = T{M (1)
(13)
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The above relation shows how a&’:"-)

mined by the set of lower-order Alfvén coefficients {ag,':—l)}.
Indeed, the lower-order (in ks) Alfvén modes can be thought
of as drivers for the next order in the fast mode wave field.

In a similar fashion we can write down the mth order of
equation (11),

(t) is completely deter-

dza(',':)
g+ Whnagn) =
LN hey P —_y
' '[Vl(a) ks Epnx (’lpB Z Gaiy fm’:) dvy
)

V(@) g2p p., ( (m—2) ) — im)
—[71(a) hs Eon zﬂ:%ﬂ éon |dy=Ci™(2)
(14)

The above equation shows how a given term in the apgn ex-
pansion is driven by both lower-order terms in that series
and lower-order terms in the fast mode expansion series for
Gaij.

The two equations (13) and (14) permit a much eas-
ier analysis than the coupled relations (10) and (11). We
have manipulated the coupled equations into a hierarchy of
decoupled equations in which each sucessive order is com-
pletely determined by lower orders.

4. APPLICATION TO MAGNETIC PULSATIONS

In order to illustrate the behavior of the equations given
in the previous section we shall apply our results to mag-
netic pulsations. Let us specify our initial conditions: For
simplicity, we shall say that at ¢ = 0 there is a single fast cav-
ity mode (denoted by aasc). All the other fast cavity mode
coefficients {aaij;$j # c} and transverse Alfvén coefficients
{asn} are zero at t = 0, but may evolve at later times due
to the influence of the cavity mode aqc.

Zeroth-Order Cavity Mode Solution

Under the initial conditions stated above, the lowest-
order (m = 0) cavity mode equation becomes a simple har-
monic oscillator equation for a?&-. For modes 15 # ¢ the
solution is simply af:.-),(t) = 0, whilst the coefficient of our
initial cavity mode (for t > 0) is governed by

(0) _

Gac = Gaco si.n(w.gt) . Cikﬁﬁ

(15)
where aaco is the amplitude of the cavity mode. Thus to
lowest order the cavity mode simply oscillates at its natural
frequency. The solution (15) can be inserted into the m =1
equation (14) and will enable us to calculate the first-order

Alfvén response of the field lines to the cavity mode a£.°2.

Pirst-Order Alfvén Mode Solution

The solution of this problem has been discussed by
Wright [1992] for a variety of driving terms, including a
steady harmonic driver like that in (15). (Readers should
note that these calculations did not use the plasma displace-
ment eigenfunctions, but the related magnetic field eigen-
modes. Thus the asn’s used in this paper, although simply
related to those of Wright [1992], are not identical.)

WRIGHT: COUPLING OF FAST AND ALPVAN WAvVES

The first-order Alfvén wave coeflicients evolve according

to
dza(l) 72(“) B a
Br 3 o) _ Bhy _( © )
FT0 +wpnts, ‘[71(41) ke fﬁﬁaa hsBagcéac ) dy

=C(t)=Clsin(wact)  (16)

Since everything in the driving term is known, equation
(16) completely determines the first-order Alfvén wave re-
sponse. The parameter cl) represents how effectively the
initial cavity mode can drive the first-order coefficient of the
nth Alfvén wave eigenmode. Wright [1992] shows how the
largest-amplitude Alfvén waves were excited on field lines
where one of the natural Alivén frequencies matched the
cavity mode frequency. Let us assume that this resonant
condition is satisfied on the field lines at « = o, by the
rth Alfvén mode (i.e., wgr(ar) = twac). Since the eigen-
frequencies are functions of a, the resonant response will be
localised in the a direction.

We shall draw on the results of Wright [1992] which de-
scribe the growth of the Alfvén resonance. The amplitude
of the resonant Alfvén wave eigenmode (a(;,)) grows linearly
with time on the resonant field line («.), and a peak begins
to form. The width of the peak, expressed in terms of «, can
be related to the width in frequency vis the function ws,(a).
Both of these widths were shown to be proportional to 1/¢.
Thus we are led to an approximate description of ag,: Since
the height of the peak of ag, is proportional to ¢, and the
width proportional to 1/t, we may approximate as, as a
delta function after a few cycles. In Appendix B it is shown
that the appropriate delta function is

da

clx
2wa, dwpr

a(;,)(a,t) =— = cos(wact) -

Sa=a,) (17)

Zhu and Kivelson [1988] show how this Alfvén resonance
acts as a steady sink of cavity mode energy. We can see this
feature in our model by considering the magnetic energy of
the resonant field lines at « = a,: In a crude fashion we
could estimate the resonant magnetic energy by integrating
b;‘; across the resonant peak. Since the height of the peak
squared is proportional to ¢ and the width is proportional
to 1/t, we would expect the resonant magnetic field energy
to be proportional to ¢, representing a steady drain on the
cavity mode energy. In Appendix B we calculate the mag-
netic energy (per unit f) quantitatively and find

W4 o Ch0 (ar )tk
(1) = oot
(-1

da
dwar

Ay

Y2(atr) 2
hs ( )
X . _(eﬁrhaB)) d"/
[YJ (@r) haoh, oy
The increasing energy of the Alfvén resonance damps the
cavity mode [Zhu and Kivelson, 1988] and is described by
a second-order correction to the cavity mode coefficients.

(The first-order correction is identically sero if there is no
seroth-order §5 field at t =0.)

(18)

Second-Order Cavity Mode Solution

The second-order cavity mode coefficients al®.

aij are gov-
erned by equation (13) when m = 2,
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d’a (2)

cn,

de?
//&mhﬂB (BMZ (l)fp,.)dad'y T-‘(Jz)(‘)

(19)

The coupling coefficient Tf: )(i) may be integrated by parts
to yield the alternative expression

TP () =i / d'r{ [e..-, B?h, 2”: aL’,zep..]

). =

atj =

+ Q‘j

a2

g

~ [ 2 CerboB) BT inia} (a0

n

To simplify matters we can neglect all first-order Alfvén
wave coefficients with the exceptlon of the resonant coef-
ficient a,,.) defined in (17); {a‘,,l = 0;n # r}. Note that
even though we need only consider a single nongero Alfvén
wave coefficient in (20), this coefficient will drive all of the
cavity mode coefficients {af:‘),} in principle. Indeed, a sim-
ple consideration of energy flux shows that this is inevitable:
The second-order terms in the cavity mode expansion series
must direct a net Poynting flux toward the resonant mag-
netic field lines where energy is being absorbed [Zhu and
Kivelson, 1988). It is not possible for a single cavity eigen-
mode to accomplish such energy tranmsport, but a combi-
nation of different cavity eigenmodes with time-dependent
coeflicients can produce the required Poynting flux.

In this paper we shall only calculate a second-order cor-
rection to our initial cavity mode, a$2). The reason is that
the driving function (T£?) in (19) will oscillate with a fre-
quency of wac (see (17)), and so we would expect a large-
amplitude resonant growth of the coefficient ¢{?). Since the
growth of this coefficient will represent damping of our ini-
tial cavity mode, we will be able to estimate the decay rate
(or damping time) of the cavity mode due to resonant Alfvén
wave absorption. Calculation of these decay rates will allow
us to compare our results with those of previous studies.

In order to calculate the aL) response we must first cal-
culate the driving term 72 (). If we only consider the effect
due to the resonant Alfvén coefficient ag, (equation (17)),
and assume that either £ac or s, is sero on the magneto-
spheric cavity boundary, then (20) simplifies to yield

Ya(ar) 1)
Wi [ 2 (tacheB). Bl Ghor | da
T(ar) aa 2w..¢ dwp'
x€rdy cos(Wact) = T2 cos(wact) (1)

After a few cycles of the above driver, u(“) will be dominated
by a secular term like
2)
@ T o
ac

(22)

Substituting the solutions given in (15) and (22) for a{%) and
$) into the series expansion (12) we have an oscillatory
damped solution for the initial cavity mode. An estimate

for the normalized damping rate I’ is found from

—k3 (2)
Tem —Fo- dloac] (23)
Uacla(a | dt
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Recalling the definitions of T%2) (equation (21)), C& (equa-
tion (16)) and a{’) (equation (15)), the normalised damping
rate can be calculated explicitly as

[ Y2(Qy) a

1(01 )

B,

(€achﬁB)

Eﬂr dy

(24)
The above expression for the damping rate is determined
by the geometry of the magnetic field and the decoupled
eigenfunctions {a. and £s,. These eigenfunctions are ba-
sic properties of the magnetospheric cavity and are easy to
calculate numerically, even for complicated geometries. Of
course, in simplified systems (like the box magnetosphere)
{sr is usually a trigonometric or hyperbolic function. In
some models it is also possible to estimate the structure of
the fast mode from W K B theory.

It is interesting to note that the secular nature of a( )
means that for large ¢ the first three terms in the series ex-
pansion (12) will not give an accurate approximation. This
problem can be circumvented either by calculating more
terms in the expansion series or by realising that we are
at liberty to expand the fast mode oscillation frequency as a
series in powers of kg around the decoupled eigenfrequency
Wac. Both of these methods are equivalent, the former rep-
resenting a series expansion of the exponential function that
the latter approach would introduce [Kevorkian and Cole,
1981].

5. DiscussioN

In the previous section we showed how our novel formula-
tion of wave coupling was able to reproduce qualitatively the
behavior demonstrated in earlier studies (e.g., the growth of
an Alfvén resonance and the damping of the cavity mode).
In order to test our model quantitatively we shall calculate
the normalized damping rate given in (24) for the box model
magnetosphere and compare with the results of previous au-
thors [Zhu and Kivelson, 1988].

Our results may be used to reproduce those of the box
magnetosphere if we identify (o, 8,v) with (z,y, 2). (In this
geometry, h: = hy = h, = 1.) The magnetospheric cavity
employed by Zhu and Kivelson has the plasmapause at z =
0.1 and the magnetopause at z = 10.0. Moreover, they only
consider modes which have a fundamental character along
the field lines (in 2), i.e., the Alfvén modes £y; and the cavity
modes §zi1.

Zhu and Kivelson choose to normalize quantities relative
to the background quantities at z = 1.0, except lengths
which are multiplied by the wave number in the 2z direction.
In addition, the magnetic field is uniform while the den-
sity varies as p = 1/z. Within this model the fundamental
Alfvén frequency (normalized by the fundamental frequency
at z=1.0) is

wy(z) =27/ (25)
and consequently
dE _ 3/2
oy | = 2z (26)

Finally, noting that z integration in (24) introduces a multi-
plicative factor of /2, and that the normalization condition
(8) dictates §y1(z) = /2/xz, we find the following expres-
sion for the damping rate,
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TABLE 1. Parameters Characterizing the Resonant Damping of the Fast Mode in the Box Magnetosphere
Mode wai1 wzi1(Z2K) =y [ir /=)=, Fa Fa(ZK)
1 0.4228 0.415 5.594 0.0431 0.0444 0.0536
2 0.5402 0.521 3.427 0.0544 0.0377 0.0440
3 0.6612 0.633 2.287 0.0694 0.0358 0.0409

The table lists parameters governing the decay of fast cavity modes. All of the waves have a fundamental character along the
background field lines. The first column specifies the variation of the fast cavity mode across the ficld lines (1, 2, 3; fundamental,
second, or third harmonic). The second column gives the lowest-order estimate of the cavity mode frequency from our model, which
is compared with the value found by Zhwx and Kivelson [1988] (in the low X or kg limit) listed in the third column. The position of
the Alfvén resonance is given in the fourth column, while the next column gives the lowest-order compression of the plasma at the
resonant field line. The quantity F;; is our estimate of the slope of the line in Figure 2 and may be compared with the same quantity
deduced from Zhw and Kivelson’s calculations (in the low ) or kg limit) listed in the final column.

Be'vEr (deen)' _ o *B
T = wly, \ d=z zr=Fu'w:£;" @)

Table 1 summariges our results following a simple numerical
integration of the decoupled . eigenmode equation. (The
shooting method was employed to solve for the first three
eigenmodes and eigenfrequencies, {zi1 and wzi; $ = 1,2,3.)
Once the cavity mode cigenfrequency has been determined,
we can find the location of the resonant Alfvén waves z, by
requiring the fundamental Alfvén frequency (25) be equal
to the cavity eigenfrequency. Once we know the position
of the resonance, our numerical solution can be used to find
dézi1/dz|z,. The values in Table 1 calculated by this method
are accurate to at least three significant figures.

It is interesting to compare the oscillation frequencies for
the cavity mode predicted by our analysis and that employed
by Zhu and Kivelson [1988]. In the small ks (or A) limit our
‘decoupled’ eigenfrequencies listed in Table agree with the
real part of the ‘damped’ eigenfrequencies calculated by Zhu
and Kivelson to better than 4%. The good agreement rein-
forces our expectation that to lowest order the fast mode os-
cillates as a decoupled eigenmode. Although Zhu and Kivel-

son do not tabulate any values for the location of the Alfvén
resonance, we can estimate the position from their Figure
8. As far as it is possible to compare our predictions for the
resonant field line location (z,) with Zhu and Kivelson’s, we
find no apparent difference.

In order to compare our damping rates with those of Zhu
and Kivelson we can equate our ks with their A, whilst our
T is equivalent to w;/w, in their notation. Figure 2 is re-
produced from Zhu and Kivelson [1988] and now includes
three lines representing our estimates for the damping rates
of the first three cavity modes. As one would expect, the
agreement is very good when kg (or 1) is small. The slope
of these lines is the parameter F,; defined in equation (27)
and listed in Table 1. The table also includes the Zhu and
Kivelson estimate for Fy; (inferred from their Table 1), and
these agree to 15% or better.

Our lowest-order estimates of the damping rates are prob-
ably slightly different to those of Zhu and Kivelson, in the
small ks or )\ limit, because of our approximation of the
resonant Alfvén wave coefficient as a delta function and the
neglect of nonresonant Alfvén coefficients {a(;,z =0;n #r}.
Inspection of Zhu and Kivelson's [1988] Figure 4b suggests
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Fig. 2. The dependence of the cavity mode damping rate (for the fundamental (0}, first (1), and second (2) har-
monics) on the wave number kg (or A in Zhu and Kivelson's [1988] notation). The three curved lines represent
the results of Zhu and Kivelson [1988], from which the original figure is taken. The three straight lines are the
approximate lowest order estimates of the damping rates from our model, which is valid for small kg (or A). This
figure is adapted from Figure 6 of Zhu and Kivelson [1988].
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that the delta function approximation is more suitable the
higher the cavity mode harmonic (since the Alfvér ficlds oc-
cupy a thinner peak with little disturbance away from the
resonance). Indeed, we find that the discrepancy between
our damping rates and those of Zhu and Kivelson is less for
the higher harmonic cavity modes.

The discrepancy between our damping estimates and
those of Zhu and Kivelson beyond 0.25-0.35 on the hori-
gontal axis of Figure 2 can be attributed to our neglect of
higher-order terms in the expansions (12). Including higher-
order corrections should extend the range of agreement be-
tween the two calculations.

The interval 0.25-0.35 on the horizontal axis of Figure
2 can be converted into a kg interval of 0.33-0.38, which is
equivalent to an azimuthal wave number in an axisymmetric
geometry of 3-4. When the wave number becomes this large,
our lowest-order solution begins to deviate from the exact
solutions of Zhu and Kivelson. Hence our lowest-order so-
lution (including the delta function approximation and the
neglect of nonresonant Alfvén waves) is correct to 15% or
better for azimuthal wave numbers less than 3-4.

Now consider the convergence of the series expansions for
the fast and Alfvén coefficients in (12). These expansions are
Taylor series and will always give a good approximation to
the true coefficients if sufficiently many terms are calculated.
In the present paper we have calculated the first three terms.
To calculate higher-order terms is harder work, and if we
wish to go beyond an order |In(e)/In(kg)| nonlinear terms
must be included in the governing equations. Evidently it
is desirable to estimate how well a truncated series solution
represents the true coefficient.

A series is convergent if the magnitude of each term in
the series is less than that of the previous term. Since we
have not derived general expressions for the coefficients here,
we cannot make firm statements about the ultimate conver-
gence of the series. However, we can compare the mag-
nitudes of the first few terms and get a good idea of the
accuracy of a truncated series solution.

The condition that k2a%2)./al) < 1 can be reformulated
using (15), (21), (22), and (24) to yield wactTe < 1. The
latter inequality reflects the fact that the exponential decay
of the cavity mode amplitude (exp[—T'c?]) is well represented
by the series solution ([1 — T'ct]) for small ¢ only. (See the
end of §4, also.) One might be inclined to think that a
truncated @ai; expansion is always a good approximation
regardless of the value of kg. Clearly this is not the case
according to Figure 2. The resolutxon of the problem lies in
realising that although kgag), /am, < 1 when wq il < 1,

it is not necessarily true that kpaf:‘)J/ k3 a(:& < 1. The latter
condition is sensitive to the value of kg.

Earlier in this section it was shown that the truncated
series solution (up to and including k?,agi) gives a good
approximation for azimuthal wave numbers less than 4. For
larger wave numbers we must include higher order tetms to

obtain a good approximation: The sets of coefficients {a }
and {agl} can be used to solve for {ap,Z} which in turn
can be used to calculate {“m,} Including the fourth-order
term would increase the range of kg in Figure 2 over which
our solution is a good representation of the exact solution.
{(We would model the beginning of the curve as a parabola
rather than a straight line.)
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6. CONCLUDING REMARKS

In this paper we have developed a novel model for describ-
ing the coupling of fast and Alfvén waves in a cold, inhomo-
geneous, current-free background medium. Given suitable
boundary conditions it is possible to calculate a set of or-
thogonal eigenfunctions which may be used to represent any
wave fields via a weighted sum. Employing techniques from
quantum mechanics (time-dependent perturbation theory)
we can deduce equations governing the coefficients in such
a sum. These coefficients are highly coupled and difficult
to solve for. If the medium has an invariant direction, we
may Fourier analyze the wave fields in the invariant coordi-
nate, e.g., exp[ikgB]. If the coefficients are expanded as a
Taylor series in kg, the equations simplify to a decoupled hi-
erarchy. In §4 we demonstrate how such a formulation can
describe the excitation of an Alfvén resonance, like those
in magnetic pulsations (see Wright [1992] also). Moreover
we are able to examine the effect of the Alfvén resonance,
and we find (as one would expect) that energy is removed
from the fast mode. The qualitative features of our model
are identical with the type of behavior described in previous
investigations. (Note that we have not restricted ourselves
to any particular magnetic field geometry. Thus our con-
clusions are good for any two-dimensional solenocidal back-
ground magnetic field.)

It should be borne in mind that the eigenmode descrip-
tion of wave coupling developed in this paper, and summa-
rized in equations (12)-(14), gives a complete and accurate
account of the wave fields for all times. The fact that our
results are in good, but not exact, agreement with previous
studies (in the limit ks — 0) can be attributed to two sim-
plifications introduced in §4. The first simplification was to
approximate the Alfvén response of the medium to simply
a resonant res onse, and neglect all other nonresonant co-
efficients, {a.‘:,,l 0; n # r}. The second approximation was
to treat the resonant Alfvén coeflicient as a delta function
(equation (17)). The fact that these simplifications intro-
duce a discrepancy between our results and those of pre-
vious workers of 15% or less (for aszimuthal wave numbers
less than 3-4) suggests that we have employed reasonable
approximations. If our equations (12)-(14) are solved with-
out simplification, we would expect to reproduce previous
results exactly.

APPENDIX A

In this appendix we shall investigate the orthogonality
of the fast cavity eigenmodes. One eigenmode (£ai;) and
eigenfrequency (waij) are defined by equation (4). Let us
consider a second eigenfunction (§,:/;/) which has a different
cigenfrequency (waqry), defined by

9 ha
a (hph a,' (£a| J'hﬁB))

9 ( My
toa (h he D

If we take equation (4) and multiply it by €a./, ks B, then
subtract from it equation (Al) times £a.,hsB, the result
may be written

(em J’hﬁB)) +uiy J’hch'v V2 faitj* =0

(A1)
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If we integrate the above equation over the cross section of
the magnetospheric cavity (see Figure 1), we find

[+3
maz th d
da 5 —(€ai;hsB
Y2()
Bha 0
—£aij - S a(f«i',"hﬁB)]
n(a)
“Ymaz
Bh. ]
+/ dvy [fa-"," . h_: * 3a £aiihs B)
Bh, @ az(7Y)
~taiy - 5L - 5(avy o B)|
3 hc aa( ' B ) al(‘Y)
2 Ymaz pa2(7Y)
+H(wii; — wlaji) j £aijbaitjr
TYmin ay()
Bz
xhahghy - ﬁdad‘y =0 (A3)

Recall that ai(y) and az(y) are the upper and lower val-
ues of a for which the line ¥ =const crosses the boundary
of the magnetospheric cavity. (These may be inverted to
give the complementary functions 71(a) and 42(a).) The
upper and lower bounds of the coordinates on the boundary
are [@men, @mas] a0d [Ymin, Ymaz]. To arrive at the orthogo-
nal relation quoted in equation (5), we need to consider the
boundary conditions on the surface of the magnetospheric
cavity. For example, if the decoupled eigenmode plasma dis-
placement {ai, vanishes on the boundary, then the first two
integrals in equation (A3) are zero, and so we have proved
{(5). Such a boundary condition would be appropriate if the
plasma density in the boundary was much larger than the
density throughout the cavity (e.g., an ionospheric bound-
ary).

Alternatively, the first integral in (A3) will vanish if
(8/09)(éaiyhsB) = 0 on the cavity boundary. This cor-
responds to the eigenmode having zero b, perturbation
on the boundary. The second integral is also sero if
(8/3a)(€aiyhsB) = 0 on the boundary, corresponding to
sero compressional field perturbations there. Of course, it is
possible to have a suitable combination of different bound-
ary conditions on different sections of the boundary and still
arrive at the orthogonal property given in (5).
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APPENDIX B

In this appendix we consider the growth of the resonant
Alfvén wave coefficient according to equation (16). This
problem has already been discussed by Wright [1992], where
it is shown that the time dependence of the resonant mode
(agr) fort > 0is

age(a, t) = UCS"’ (=) [~ sin(wact)
+22¢ . gin(wprt)] wpr #wae (Bla)
wpr
e (e, 8) = O ) et
- ccos(Wact)] wpr =wac (B1D)

ac

Note that the coordinate a enters the equations as a param-
eter which defines the field line of interest. In this sense,
asr and wpy are functions of a. On nonresonant field lines
(a # ar : wer # Wac), (Bla) is appropriate. As we approach
the resonant field line (a« — oy : wpr — Wac), (Bla) may
be shown to yield the second relation (B1b), which exhibits
the secular growth familiar in resonant systems.

In the main text we discuss the behavior of asr qualita-
tively; the coefficient may be approximated by a delta func-
tion at the resonant field line. This appendix determines the
appropriate magnitude of the delta function by integrating
agr(a) across the resonance located at a=a,. Suppose we
concentrate on the interval [a_, a4] which contains a,. We
wish to evaluate

oy wprs
/ agrda =
o (7 T

In the second relation we have changed variables from a to
wpr, since ag, is foremost a function of wsr. The integration
interval [wsr—,wpr+] contains the resonant frequency wac
(which, of course, occurs at a = ay).

To perform a detailed evaluation of (B2), it is convenient
to change variables once more to a frequency A centered on
the resonance; wpr = A + Wac With limits [wsr—,wsr+] =
[-A.,+A.). Employing this substitution and the definition
of ag, given in (B1) we find the integral in (B2) may be
written

+4, 1)
—'no
[ A, 2Wacl + A
1 .
A/ Wae +1 ) Br A
The peak in ag, has a full width (at half maximum) in the
parameter A of about 8/t [Wright, 1992]. Thus, after a few
cycles the A interval we need to consider will become very
small. By expanding the integrand in powers of A and only
retaining the lowest-order terms the integral may be written
(following trigonometric manipulation)
/+A. _ Cgo)
A, 2UQ¢A

da
dwpr

- agrdwsr (BZ)

- [~ sin(wact)

+ (B3)

: [— sin(wact) + Sin(wa:t) COB(At)

—|dA

(B4)
wpr
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Since the peak of agr is so highly localized, we may neglect
the variation of Cs.f,)(a) and da/dwps, across the range of
integration. The first two terms in the square brackets above
will integrate to give sero. The third term gives a factor
proportional to the sine integral [see Gradshteyn and Ryzhik,
1980, equation 3.7211]. The latter integration introduces a
factor of 7, so that the appropriate delta function to describe
apr is

clx

’ 2weoc

da

dwg,

apr(a,t) = — - co8(wact) - §(a = a,) (B5)

In §4 we also discussed the magnetic energy of the resonant
field lines. The resonant Alfvén wave magnetic field pertur-
bation is defined (via the integrated induction equation) in
terms of the displacement eigenmode ¢g,,

boe = . 2 (¢orhaB) (B6

P hahy By Pr0e )
By integrating over the volume surrounding the resonance,
the resonant magnetic energy (W, ) may be written

W, = k2 a+“2"'—bz' hahsh-dod,
r =Kg * hahghydadBdy (B7)
a_ 2o

Given the dependence of ag, on B, integration with respect
to B is straightforward. In particular, if we are interested in
the magnetic energy per unit 8, this integration introduces
a multiplicative factor of 2/x. Once again, we can appeal
to the fact that the resonance becomes highly localized in
a, which allows us to neglect the dependence of background
quantities on a. As a result we only need perform the v
integration along the resonant field line. Combining these
simplifications we find that the magnetic energy (per unit
B) is given by
+4,

W, = k;I(Ep,-, a,.) X / a?s' .

—4A,

do

T |42

(B8a)

where we have employed the same substitution as used in
(B3). The integral I(¢g., ar) is defined as

1 72(“1') hp

I(eﬁr- ar) = (% (fprhaB)) dvy

B8b
For the moment we shall concentrate on the integral oser A)
in (B8a). From the definition of as, in (B1) we find that to
lowest order in A,
1)2

4“’,'” X [sin® (wact) + sin*(wact + At)

THho  Jyi(ar) hahy

@, =
—2sin(wact) sin(wact + At)] (B9)

Expanding sin(wact + At) with trigonometric identities we

can multiply out the contents of the square brackets in (B9)

to give

clz

402 A®

a3, = . [sin’(w“t) (1+ cos’(At) — 2cos(At))
+ cos® (wact) sinz(At)] (B10)

where we have omitted odd functions of A (since they will
integrate to give sero). The terms in square brackets from
(B10) may be manipulated to give
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[sin® (wact) (2(1 — cos(At)) — sin*(At))
+ o8’ (wact) sin?(At)] = [4sin® (wact) sin®(At/2)

+sin’(At)(cos’ (wact) — sin’ (wact))] (B11)

Some final trigonometric manipulations and the introduc-
tion of the variable A’ = At yields the integral over A from
(B8a) in the form

05.1)2 . +alt sin?(A’/2
ﬁ“—l 2(1 - con(2uact)) - 2012 ¢
ac -Alt
sin?(A’) da
+cos(2wact)-A_a.t N Zopr dA'  (B12)

Employing standard results from Gradshteyn and Ryzhik
[1980, equation 3.7413] we arrive at our final expression for
the magnetic energy of the Alfvén resonance,

W n G50 (ar)xth} | da
" 4”0“’:: d(dp,- ay
Ymaz(Or) b P} 2
2 (2
x[r....,.(a,) Frahy (3‘1 (&"h“B)) v (B13)

This relation demonstrates how the magnetic energy of the
Alfvén fields at the resonance increases steadily with time
and acts as a sink for the cavity mode energy.
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