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Asymptotic Time-Dependent Solutions of Mgnetic Pulsations 
in ReMistic Mgnetic Pield Geometries 

ANDRBW N. WRIGHT 1 

The coupling of compressional and Alfvtn modes is important in solar, magnetospheric, and 
laboratory plasmas. We investigate such coupling within a general framework, but concentrate 
upon applying our results to the excitation of Alfv6n waves in the magnetosphere. The Alfv6nic 
response of an arbitrary (curl-free) magnetic field and ideal cold plasma is considered, and the 
Alfvtn wave equation is shown to be driven by perturbation magnetic pressure gradients aligned 
with the Alfvtn fields. The efficiency with which any particular standing Alfvtn wave is excited is 
governed by an overlap integral along the background field line of the Alfvtn mode and the pertur- 
bation magnetic pressure gradient. Three types of compressional driving function are investigated 
which produce diverse behavior and may excite resonant and nonresonant Alfv6n waves. These 
waves oscillate with either the natural Alfvtn frequency or the frequency of the driver. Finally 
we turn our attention to the long-term, or asymptotic, state of the fields. A nonlinear solution is 
derived which is a generalization of earlier work. We find that the standing Alfvtn waves will be 
confined to thin layers. 

1. INTRODUCTION 

Wave coupling is a natural feature of most inhomoge- 
neous media and has been the subject of much research. 
Coupling is thought to be important for heating laboratory 
and solar plasmas, and also responsible for exciting mag- 
netic pulsations in planetary magnetospheres. In this paper 
we shall focus our attention on the latter example, although 
our results are of general interest: Magnetic pulsations are 
thought to be standing Alfvln waves that have become es- 
tablished on closed field lines deep within the Earth's mag- 
netosphere. 

One mechanism by which pulsations are excited is 
through asymmetries in fast cavity modes, resulting from 
the buffering of the magnetopause by the solar wind [Kivel- 
son and Southwood, 1985]. Alternatively, the persistent 
convection of Kelvin-Helmholtz vortices along the magne- 
topause can excite an oscillatory (although spattally evanes- 
cent) fast mode which can drive field line resonances [South- 
wood, 1974; Chen and Hasegawa, 1974]. Recently it has 
been suggested that the motion of reconnected flux along the 
magnetopause or the collision of dense plasma clouds with 
the magnetopause can also excite standing Alfv6n waves 
[Southwood and Kivelson, 1990; Liihr et al., 1990]. Within 
the formalism we develop here, each of these mechanisms can 
be represented as a driving term in a quite general Affv6n 
wave equation. Our analysis has two advantages over previ- 
ous models; first, we are not restricted to simple magnetic 
geometries; and second, we do not confine ourselves to so- 
lutions with a harmonic time-dependence [Inhester, 1986; 
Kivelson and Southwood, 1986; Mond et al., 1990]. 

Our calculations are tractable through the use of time- 
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dependent perturbation theory, familiar in quantum me- 
chanics [Schiff, 1968]. Such an approach is based upon the 
normal modes of the system. The results demonstrate the 
resonant excitation of Alfvin waves in a quite arbitrary mag- 
netic field geometry. This calculation is instructive for cal- 
culating the growth rate of a magnetic pulsation. However, 
the asymptotic state of a magnetic pulsation may not be 
described very well by this model because it neglects iono- 
spheric dissipation and also because the width of the reso- 
nant sheet of field lines becomes very small. Recently it has 
been suggested that Hall currents will be important in the 
final state [Rajaram and Venkatesan, 1990]. In this paper 
we give an alternative solution, which is a generalization of 
Dungey's highly asymmetric poloidal mode [Dungey, 1954, 
s6v]. 

The paper is structured as follows: Section 2 describes 
the coordinate system used throughout the paper along with 
the linearized cold plasma equations; section 3 analyses the 
equations presented earlier using time-dependent perturba- 
tion theory and studies the Alfvtnic response of field lines 
to a variety of driving terms; section 4 discusses the revised 
equations that are appropriate for describing the asymptotic 
state of the field; finally, section 5 summarises our main re- 
suits and concludes the paper. 

2. BASIC EQUATIONS 

The coordinate system used throughout this paper is an 
orthogonal curvilinear one based upon the magnetic geom- 
etry. We define three spatial coordinates (c•,fi, 7) and let -• 
be parallel to the local background magnetic field direction 
everywhere. The transverse coordinates (a,fi) are constant 
on any background line of force and are similar to Euler 
potentials or Clebsch variables. The background magnetic 
field is assumed to be solenoidal and irrotational, requiring 

= 

= 

where f and g are arbitrary functions of their arguments 
t ß 

and the scale factors hi are equal to •/Vs; 
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A physical interpretation of the scale factors may be re- 
alized By noting that a real space element dr is equal to 
&A•da + •Afid$ + SA•d7. These are standard proper- 
ties of such a coordinate system [Davis and Snider, 1979]. 
Similar coordinate systems have facilitated earlier investi- 
gations of related problems [Singer et al., 1981; Southwood 
and Hughes, 1983; Walker, 1987; Wright, 1990; Wright and 
Smith, 1990]. 

To proceed further we introduce the nonlinear cold ideal 
MHD equations. For the total velocity and magnetic fields 
(U and BT) and total plasma density p, the momentum, 
induction, and continuity equations are 

0U 

p-•- + p(U. V)U = (BT. V)BT/•O - V(B•/2;•o) (3) 

= V^(U^BT) (4) 

o• = -v . O,u) (•) ot 

Some of the analysis techniques employed in section 3 are 
simplest when applied to nondimensional quantities. For 
this reason we shall assume all quantities are normalised 
By representative values of the Background medium. (For 
example, lengths can Be divided By the equatorial stand- 
off distance of the magnetopause. Magnetic fields, velocity 
fields, and plasma density can Be measured relative to the 
field strength, Alfvtn speed, and density at the nose of the 
magnetopause.) We shall now look for small disturbances 
in the dimensionless magnetic and velocity fields (b and u) 
about a magnetostatic equilibrium field B and density dis- 
tribution p0. The perturbations may be written as a series 
of functions 

b = • ,"b("); u = • ,"u (") (6) 

and similarly for the density disturbance. Utilizing standard 
expressions for grad and curl the momentum and induction 
equations become to first order in ß 

+ h•• 

The functions b and u in these equations are actually b (•) 
and u (•), But we have omitted the cumbersome superscripts. 
The next section studies the time-dependent solution of the 
linearired equations (7) and (8). 

3. TIMe-DEPENDENT SOLUTIONS 

For definiteness we shall seek the solution of transverse 

(Alfvtn) fields with a • component. This does not restrict 
the applicability of our calculations since we have not pre- 
scribed the orientation of the coordinates (•,fi). (If • were 

aligned with the azimuthal direction, our results would de- 
scribe toroidal pulsations; if • were directed across L shells, 
we would describe poloidal pulsations.) The • components 
of the momentum and induction equations may be combined 
to yield a driven Alfvtn wave equation for the b• field [In. 
hester, 1986], 

= • • .•(b.,/,.,) = c (•)) 
where V is the Alfvtn speed. (Note that Inhester [1986] 
employs an alternative definition for his scale factors.) 

In addition to the driven Alfvtn wave equation (9) there 
is a fast mode wave equation which is driven by the Alfvtn 
wave fields. The driving terms represent coupling between 
the fast and Alfvtn modes. Wright [1992] shows that for 
,man azimuthal wave numbers 

are e•citea (accozcUng to (•)), wmlat there 
only a aecona-oraer (in m) correction to the fast moae. In 
this a•roximation we mar neglect the effect of the Alfvin 
waves on the fast moae. 

Setting the right-hancl aicle of (0) to zero yielcla the clecou- 
plecl Alfv•n wave equation for •. Eviclently this ia a goocl 
a•zoximation for toroiaa• oacmationa in an •aymmetric 
meaium (•/• = 0) [mun•, X•0•]. •eaiaea •aymmetzic 
aratema, the use of the aecou•ea wave equation imposes 
constraints u•on the geometry of the magnetic •iela and the 
cliatribution of plasma clenaitr 
E•,ans, 1001] which are aelclom realizecl in •zactice. Never- 
theresa, the aecou•lea equations rermi• ua to cakulate the 
nozma• moses of the system which can yield insights into 
the likely behavior of complicates meals. This a•roach 
ha.a pzovecl useful in the pa. at for investigating tezreatria• 
pulsations [Dun•, 1007; 
1969; Warner and Orr, 1979; Singer et at., 1981] and Alfvtn 
waves in •u•i•er'a magne.•oa•heze [Gm, m,i,r ,• ai., 1989; 
Smith and Wright 1989; Wright and Smith, 1090]. 

•otice •ow t•e aecou•lea Alfvin wave equation (9) (wit• 
• = 0) onlr con•na a•ati• aeziva•ivea •ong a single back- 
gzouna •ne of force, • one wo•a 
nature of Alfvln wave •zo•aga•ion. W•t a,• Smim [1990] 
note •a• • equation • of •e S•uzm-Uouv•e form [e.g., 
•or,, a,• •,s•ac•, 19•3]. If tAe ionosphere • a m•aive 
•e,fec• conSucCor, we mar set •e elec•c •ela in •e ion• 
a•eze (ana immeaiatelr above it) to =ezo. As a result •e 
velocity •ezturbation must van•h 
•zoachea. Such a bounaazr conamon neglects ionospheric 
a•aya•ion, ana no• auz•z•ing•r S•um-Uouv•e •eorr •e• 
ua •a• •e na•ur• frequencies of •e Alfvtn waves w• 
ze• (i.e., •e solutions are no• aam•ea). • eigen•e- 
auencr • •aoaa•ea wi• an eigenmoae (or harmonic) of •he 
ara•em. The v•uea of •e eigenfzeauenciea ana 
of •he eigenmoaea •ave been c•cula•ea for ze•ic moa- 
e• of •e •ezzea•zi• [Cummings 
x981] ana •ovian [W•t a,• Smith, X990] magne•oa•ezea. 
T•e • moae ana i•eauencr aa•ir •e ionow•g equation, 
subject to •e bounaarr conairion a(•A•)/a• = o at t•e 
ionosphere. 

• •• ß (•-•) + •k••- = 0 (•0) 



For every field line (a, fi) there will be an infinite set of 
modes and frequencies. Further standard properties include 
the orthogonality of any two different modes on a given field 
line, 

1 

The limits 'h (a, fi) and •(a,•)label the ionospheric ends 
of the field •es. •hen and •owley [1989] have dhcussed 
these ei•enfunctions and the• orthonorm•ty for a three- 
dimensionM dipolaf backsround field. (Note that the nor- 
m•zation •troduced in (11) determ•es the amphtude of 
each eisenmode.) Moreover, the set of eisenmodes on any 
field hne forms a complete set • the sense that we may write 
an arMtrary b• d•turbance • a sum over these modes, 

(•) 

Once again, (a0, f•0) can be thought of as parameters which 
specify our field line; they will be omitted from the remain- 
der of this sectionß Each field line has an associated set of 

coefficients {a•.; n = O, 1, 2...} giving the amplitudes of the 
modes on that particular field lineß In general one can think 
of the coefficients as being continuous functions of a and fi 
as well as of timeß 

Our problem of determining the b• fields has now become 
the problem of determining the coefficients {a•,}. For the 
alecoupled equation (9), with C = 0, it is straightforward: 
The time dependence of each mode is simply oscillatory at 
the appropriate eigenfrequency, a•. o• exp[iw•,•], represent- 
ing the free oscillation of each harmonic. The amplitude 
and phase of each mode may be determined from some pre- 
scribed initial conditions. This approach has proved useful 
for studying the evolution of Io's Alfvln waves when it is 
assumed that coupling to the fast mode is negligible [Srn{th 
and Wright, 1989; Wright and Smith, 1990]. If coupling 
with the fast mode cannot be neglected, we must solve the 
inhomogeneous equation (9) with C' •! 0, which is a far more 
complicated problem. Similar equations have been investi- 
gated in quantum mechanics via time-dependent perturba- 
tion theory, which is the technique we shall employ here. 

The method of time-dependent perturbation theory be- 
gins by writing the b• field as a sum over the eigenmodes, as 
is done in (12). The sum may be substituted into the cou- 
pled wave equation (9) and will remove the awkward field- 
aligned derivatives according to the definition of the modes 
in (10). (Note that the coefficients {a•,•} do not vary along 
a given field line.) The equation governing the coefficient of 
any mode may be found by employing the orthonormal re- 
lation (11); simply multiply the inhomogeneous equation by 
the desired harmonic (and h•) and integrate along the field 
line. The result is an infinite set of equations, n = 1, 2, 3..., 

each of which is of the form of a driven undamped harmonic 
oscillator (i.e., infinite Q), the solutions of which are well 
known [Morse and lngard, 1968]. The effect of nonunifor- 
mity along the background field fines has the effect of pro- 

modes. Our formulation demonstrates this property via the 
overlap integral of C' and the mode in question. The result 
is to determine the driver C', in the equation governing a•,, 
(13), and consequently how effectively that mode may be ex- 
cited. Of course, the detailed variation in C', depends upon 
the structure of the fast mode, which we do not consider 
explicitly here. 

In systems which are uniform along B, the cavity modes 
and the Alfvtn modes share a harmonic dependence along 
field lines [Allan et al., 1987; Southwood, 1974]. This means 
that only a single Alfvtn mode may be excited on each field 
line for each cavity mode. In the more general case described 
by (13) we see a single cavity mode may excite, to some 
degree, all the Alfvtn modes on each field line. This effect is 
somewhat akin to the 'mixing of states' found in quantum 
theory. 

The solutions of (13) are well known for a variety of sim- 
ple driving functions. However, it is possible to evaluate 
the response of a•,,(t) for quite arbitrary drivers in terms of 
an integral over the Green's function [Morse and Feshbach, 
1953]. For example, if the field line is initially unperturbed 
(a•, and its derivative are both zero at t = -oo), the solu- 
tion for a•,, (t) is 

f/ C'.(t')[cos(•,t')sin(w•,t) 
- sin(w•./') cos(w•./)] dr' (14) 

Stead!l Harmonic Driver 

If we wish to study the excitation of resonant Alfvln 
waves within the context of a Kelvin-Helmholtz driven sys- 
tem [Southwood, 1974; then and Hasegawa, 1974] or a cavity 
mode model with weak damping (and rn < 4) [Kivelson and 
Southwood, 1985], a suitable driving term that would repre- 
sent the effect of the compressional fast mode would be 

= 0 t < 0 

C',(t) = C',0 sin(w,/), t •_ 0 (15b) 

where w, is the natural frequency of the compres- 
sional/cavity mode. Of course, several different cavity 
modes may be present at any one time and can be accommo- 
dated into our theory by writing C',,(t) as a sum over several 
oscillatory terms, each term representing the influence of a 
single cavity mode. For the remainder of this subsection 
we shall concentrate upon calculating the Alfvln response 
due to the driving function in (15). If the frequency of the 
compressional/cavity mode wc does not equal the natural 
Alfv•n frequency w•.,, then a driven off-resonance response 
is found (w•. •! w•) 

= 0 t < 0 

(7.0 ß [- sin(w,/) + w, aDn : 2 W• n WD n ß sin(w•.,/)] , t >_ 0 
(16b) 

When the driving frequency is much less than the nat- 
ural frequency (We • wf•,•), we see that af•,, • 

ducing eigenfunctions that are not sinusoidal. Southwood (C•,,0/w•,,)sin(wc/), which displays the expected in-phase 
and Kivelson [1986] have shown how such an inhomogeneity oscillation of the driven Alfvln fields and the driving func- 
can lead to enhanced or suppressed excitation of different tion. If the natural frequency is much less than the driving 
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Now the princip• response • • n•tur• osc•tion of the field 
•e (exalted by the abrupt change of the driver at • = 0). 
In th• •mit, note how the much sm•er driven component 
of ,•, • • -(C,0/•)'•(•,0, •ch • o• o• ph•e •h 
the driver by •, • one wo•d expect. 

The expression given • (16) • v•d when 
and it describes the nonresonant •fv•n response of back- 
ground fieM •nes. We see that when • resonance is 
proached (w, • wg•) the &mpBtude of the Alfv•n fields can 
become very large due to the vanishing of the denominator. 
Indeed, expression (16) appears to be singular in the res• 
n&nt •t. Th• • not •ctu•y true, and (16) can be m&niw 
•&ted to give the fo•owing resonant response. (This result 
• •o found by ev•u&ting (14) when we set w, = wg•.) 

t ß > o a•,• = C•o • - 3,,,•,• - 
The most important feature • (17) • the secular term which 
•ep•esents the steady growth • amp•tude of the nth mode. 
Indeed, th• result demonstrates the time-dependent growth 
of • resonance in an arbitrary medium and is • gener•zation 
of ear•e• studies [lnheste•, 1986; Southwood and Kivelson, 
1986; Mond et al., 1990; Southwood and Kivelson, 1990]. 

behind the driver bI a ph•e of x/2, • one wo•d expect 
for a resonantly driven osc•ato•. The ampfitude of this sec- 
ular term grows •early with time and w• dominate the h• 

pm 
a •tion of a cIcle, t • 1/w•n. It is •teresting to note that 
the rate of increde in amp•tude w• tend to be g•eater when 

wg•, is smaller, suggesting that the lower-frequency modes 
will grow more rapidly. (A full calculation would have to 
allow for the fact that C'n0 would, of course, be different for 
each Alfv6n eigenmode.) 

A convenient way to quantify the amplitude of the dis- 
turbance over many cycles when t is large is in terms of the 
root-mean-square amplitude, < a•n >. We find that 

where z = w,•,.,/wc. Figure 1 plots < ag,,(t --, oo) > as a 
function of wg,,. If we are interested in studying toroidal 
magnetic pulsations, the natural variation of wg,, with L 
shell means we can also regard the horizontal axis in Figure 
1 as an L shell coordinate (wg,, increases as L decreases). 
Thus ff •, (L) = •, is satisfied on the resonant L shell (L,), 
then w•,,(L)/wc > I corresponds to L shells earthward of 
•he resonance (/; < /;,), and •.(/;)/• < I co•responds 
to L shells > L•. From the discussion following (16) we 
would expect that on L shells < L, the main contribution 
to < a•,, > arises from the Alfvln mode oscillating with the 
cavity mode frequency. In contrast, on L shells > 1;• we 
expect the Alfvin fields to oscillate with the natural Alfvin 
frequency of that L shell. We return to these predictions in 
section 5. 

The resonant 'result given in (17) is important because it 
demonstrates how a magnetic pulsation may become estab- 
lished in a general magnetic field configuration. Evidently 
we cannot rely upon (17) to describe our fields reliably for 
an indefinite time, since the amplitude of our perturbed field 
would become very large and invalidate our initial linearisa. 
tion (7) and (8). For example, after a time t ,.., wl•r,/(•C'r,o ) 
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4.0 -- 

0.0 
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I I I I I I I I I I 

0.0 (l)•tl/(1) c 1.0 2.0 
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Fig. 1. The variation of < a•n > u•ca/Cno as a function of the natural frequency of the mode (w•n) for the 
steady harmonic driver (15) when t •, 1/o•n, 1/we. The vertical dashed line is located at the resonant frequency 
where the amplitude is singular. Large amplitudes are also found for modes whose natural frequency is much less 
than the driving frequency. In an axisymmetric magnetospheric model of toroidal pulsations we can think of the 
horizontal axis as also representing the L shell coordinate. The right-hand end of the axis will correspond to small 
/• nea• the plasmasphere, while the left-hand end of the axis will correspond to large L near the magnetopause. 
The predominant contribution to < a•n > to the right of the asymptote (earthward of the resonant L shell) is 
due to oscillations at the driving frequency, whereas to the left of the asymptote, < a•n > arises mainly from 
oscillations at the natural frequency 
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the perturbed fields will be of the same order as the back- 
ground fields, and we shall not be able to neglect nonlinear 
terms. Problems arising from large perturbed fields can be 
avoided to some extent by including ionospheric dissipation. 
In this case the resonance builds up to an amplitude where 
the rate of energy dissipation in the ionosphere is equal to 
the rate of resonantly absorbed energy from the cavity mode 
[Inhester, 1986]. The inclusion of dissipation is beyond the 
scope of the present paper; however, in the next section we 
do consider the asymptotic state of a resonantly driven pul- 
sation by including nonlinear terms. For the moment we 
shall focus our attention upon the growth of Alfvln fields 
when the linearized equations (7) and (8) are valid. 

Pulse Driver 

Cavity modes and the fast mode excited by the Kelvin- 
Helmbolts instability are not the only suitable mechanism 
for producing a driving term in the Alfvln wave equation (9). 
It has been suggested that the motion of reconnected flux 
along the dayside magnetopause will disturb adjacent dosed 
magnetospheric field lines [Southwood and Kivelson, 1990]. 
Recent observations demonstrate how waves can be excited 

by the collision of a smaJ1 dense plasma cloud in the solar 
wind with the magnetopause [œ•/hr et al., 1990]. In both 
these cases, the driving term would be not an oscillatory 
function but a short pulse of fixed duration. We do not wish 
to model the driving term in detail for these mechanisms 
here. Instead we focus upon the types of solutions that 
are found for the Alfv•n modes when a pulse driver of the 
foUowing form is used. 

c.(t) = 0 t < 0 (•,,) 

c•(t) = -•. (1 - co,(•t/•:)) 0<t<n (19•) 

c.(•) = o • _< t (l•) 

The fixed duration of the pulse driver is the time interval 
In a crude sense we can think of the frequency associated 
with the driver (19) as being equal to 2•r/r:, and South- 
u•ood and Kivelson [1990] have suggested that the largest- 
•p•tude response • p•el current density w• occur 
on field •es with a natur• Alfvln frequency that sateties 
•fin = 2•/rc. The response of the Alfvtn fields • e•fly c•- 
cdated by ev•uating (14). For norm• modes whose natur• 
•equency does not coincide with the •sociated frequency of 
the driver (•finrc • 2•) we find an amp•tude of 

• = 0 t < 0 (20•) 

C'.o [•_••. cos(•v•.t) '•'•=•-' + 2 2 • •,•.(•,•.•-•/4• • _ •) 

co.(2.•/•:) ] -•. _ 4.•/• , 0 < t < •: (•0•) 

x .•(•.n/3), n _< • (20c) 

The long-term behavior of the Alfvln fields (t _• r•) is just 

a free oscillation of the undriven eigenmode. It is interest- 
ing to note that the magnitude of the driven fields when 
r•o•n • 1 (i.e., the frequency of the normal mode is much 
smaller than the associated frequency of the driver) scales 
as Cn0/o•,. In this limit there will be a tendency for the 
lower-frequency modes to achieve a larger amplitude. (A full 
calculation must allow for the fact that C,0 will be different 
for each mode.) In the other extreme, when the frequency 
of the driver is much less than the frequency of the normal 
mode being considered (r•o•, •, 1), we find that the magni- 
tude of the disturbance scales according to 4.2C.o 
suggesting that modes with a natural frequency greater than 
the frequency associated with the driver are not excited very 
effectively. It is also interesting to note the envelope in the 
amplitude response introduced by the second sine term in 
the final expression of equation (20): When an integer num- 
ber (greater than 1) of natural oscillations is equal to the 
interval re, the driven response is identically zero for that 
mode, whereas the envelope of a•,, tends to have local max- 
ima on field lines where the number of natural oscillations 

of a given mode during the interval rc is an integer plus 
half. 

The behavior of a•, is given in (20) for modes whose 
natural frequency is different from the frequency associated 
with the driving term (2•r/r•). Indeed, when this assump- 
tion is not satisfied, the expressions for a•,, appear to be 
singular. Once again, we find that the solution is not actu- 
ally singular and can be manipulated (or (14) recalculated 
with 0•,rc '- 2•r) to yield the following evolution for 

a•,, = 0 t < 0 (21a) 

[ ] "•'• = 2•,• ' I - cos(•,•t) - •'•t- sin(•,•t) 2 ' 

0 <_ t < n (2•) 

-•'C',•o 

"•'• -- 2•,• ' sin(•,•i) rc _< • (21c) 
The long-term behavior of the Alfvin fields (when t _> r:) 
is again a free oscillation of a normal mode, as one would 
expect when the driver is sero. Once again, we find that 
lower-frequency modes are more readily excited. 

In contrast to Southwood and Kivelson's [1990] conjec- 
ture that the principal response is found as 'resonant' Alfvln 
modes (0•,, = 2•r/rc), we expect a•,• to be greatest for the 
lower harmonic modes. Our results can be clarified by plot- 
ting the variation of the r.m.s. value of a•,, as a function of 
0•, following the driven phase, t > rc (see Figure 2). The 
explicit form of < a•,, > is 

4•r • sin(.'y) 1 
< "•"• > ":) > 'C.• = -•- ' f(f - •) Y • • 

(22a) 
4•r 2 •r 

< "•"(• > •:) > 'C.o• 2vrj • = • 
(22b) 

where y = •,•r:/2x. 
When comparing our results with those of Southwood and 

Kivelson [1990] it should be borne in mind that our calcu- 
lation concentrates upon the magnetic field perturbation, 
whereas they consider the parallel current density (their Fig- 
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6,0 - 

0.0 ' 

Fig. 2. The variation of < •,• > 4•r 3/C,,,o• as & function of the natural frequency of the mode (w•n) for the 
pulse driver (19) when t > 2•r/•c. The Alfvtn modes that are excited most effectively have the lowest frequencies, 
and these is no evidence of any 'resonant' excitation. 

ure 7). We have not explicitly calculated the current density, 
and so cannot compare our results rigorously with those of 
Southwood and Kivelso. [1990]. 

Finally we note that the expression for < a•,(t > rc) > 
given above is equal to the Fourier transform of (19) di- 
vided by u•,•. This reinforces our conclusion that the low- 
frequency modes achieve larger amplitudes than the higher- 
frequency modes. 

Finite Cycle Harmonic Driver 

Evidently the response of the Alfvtn fields to the steady 
harmonic driver (Figure 1) and that to the pulse driver (Fig- 
ure 2) are very different in character. In practice a realistic 
driver will be somewhere between the two extremes consid- 
ered above. For this reason we consider one more type of 
driving term which is oscillatory in nature, but only for a 
specified number of cycles. We define the following form for 
the driver: 

c•(t) = o t < o 

C,.,(t) = C,.,o sin(a•ct) 0 <_ t < br/• (23b) 

The above driver is sero except during the time interval 
[0,•w/wc] when it executes 
(• = 1, 2, $...). The integer • will be left as a free parameter 
in our equations, so that we can study the transition from 
a simple half cycle, • = I (qualitatively similar to the pulse 
a (19)) •o ß ,•e•y a•ve, Uke •h,• in (15), t -. oo. 

During the time interval [-oo, br/wc] the driver is iden- 
tical to that given in (15), and the response of am,• will be 
•h.• given a (16) o, (17). •o•eve,, fo, t > t./•. • a,ive, 
changes from that given in (15), and we must recalculate 
a•,•(t) for these times. Performing this calculation we find, 
for t > 

C,•0 •--• [(1 - (-1)' cos•,) sin(w•,,t) .• = • - •'• 

+(--1) t sin • cos(•o•,zt)] 

-C•ot.. co.(•0 • = •, (•4•) 

where •t = bro•,•/o•. Of course, for t > br/o•c the driver 
is sero and so the Alfvtn modes simply oscillate at their 
natural frequencies. Note how the amplitude of these free 
oscillations on the resonantly excited field line (u•,• = u•c) 
is directly proportional to l, suggesting that the more cycles 
the field line is driven over, the larger the final amplitude. 
The magnitude of the free oscillation following excitation 
can be expressed most simply in terms of the r.m.s. ampli- 
tude < a•,, > (calculated by integrating the square of (24) 
over one period, dividing by that period, and finally taking 
the positive square root). For t > •r/wc we find 

• I ß V/1 -- (- 1)z cos •, •,• 

where once again z = u•,,/u•,. Figure 3a plots the variation 
of the normalised r.m.s. amplitude (i.e., < al•,., > •3/C,.,o) 
as a function of u•,, following the driven phase for several 
values of •. The curve corresponding to • = I represents 
the response to a half cycle of the driver and is qualitatively 
simila• to the pulse driver (19). Indeed the dependence of 
the r.m.s amplitude on u•,, is also very simila• to that found 
for the pulse driver (see Figure 2). No resonant behavior is 
evident from the driver (23) when • = 1. 

Figure $a also exhibits a lack of resonant behavior when a 
complete cycle of the driver is executed (• = 2), and we find 
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Fig. 3 (&). The variation of < •n > o.'•/Cno as a function of the natural frequency of the mode (w•n) for the 
driver (23) when t > br/o•½. The four curves illustrate the dependence of the excited Alfvln fields on the number 
of cycles (1/2) over which the driver acts. The transition from & pulse-like driver (l = 1) response to resonant 
excitation (l •)• 1) is evident: As the number of driving cycles increases, the peak in the plot moves closer to the 
resonant asymptote and becomes sharper. This property is shown more clearly in (b) which plots the envelope of 
& curve like those in Fisure 3& for which l -• co. 

that lower frequency modes realise larger amplitudes. When 
the field line is driven for a cycle and a half (• -- $), a clear 
peak emerges along with seros in < a•n >. However, the 
peak does not coincide with the 'resonantly excited' field 
line, but is found for lines where 0•n is slightly less than 
0•c. The final curve in Figure $a is plotted for two complete 
cycles of the driver (25), I = 4. The peak is now higher 
than before and closer to the resonant position. In fact, as l 
increases further, the maximum value of < a•n > increases 
and is located closer to the dashed vertical line in Figure $a 
where we expect resonance to occur. This property can be 
seen by considering the limit I -, oo: < a•n(t > br/•c) > 
becomes a rapidly varying function of 0•n/0•½ due to the 
dependence on the phase • = l•r0•n/0•½. However, we can 
plot the envelope of this function instead, as in Figure $b. 

Note the strong similarity between Figure 1 and Figure 
$b confirming the expectation that as f -, oo we recover a 
similar resonant behavior to that found earlier. Evidently, 
for small f we do not find the largest response on the 'res- 
onant' field lines. The driver must be coherent for at least 

two cycles to produce a large Alfvtn response near the 'res- 
onant' field lines, and even then the adjacent field lines also 
experience similar excitation. We may quantify how local- 
ized the peak in • a•n • is in terms of the full width of the 
normalisea envelope V•'/[z(1- z )] at half the height of the 
r.m.s. resonance value (equal to l•'/4V•). If the full width 
of the peak is A0•n, it is convenient to define the parameter 

An = Aa,,pn (26) 
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in which case the height of the envelope at half maximum is 
•/•/[2As + 3A• + Aas]. Equating this expression with half 
of the peak r.m.s. value we can determine As, 

: 2w, • • /9 + $2/($l•') - As < 1 

As- Awps 4 •-- As<l (27b) 

neilects squares •o.) A s•ar estelle fo• the width of 
the reson•t pe• • • hnciion of t•e (r•iher th•n l) c•n 
•e a•avea •om (16) •na (iv) ff •he a=iv•= • con•o•s 
(15). 

The reset (27) demonstrates cle•ly that the more cy- 
cles (l/2) ß field he • driven for, •he more loc•e/ the 
p•ncipd •turb•ce • • •equency. In the c•e of toroid• 
magnetic p•tions • •n •ymmetdc m•gneiosphere, t• 
•o me•s •hat • l •cre•es, the pu•ion w• be loc•sed 
to ß sm•er r•nte of • she•. 

4. ASYMPTOTIC SOLUTIONS 

The previous section demonstrated, to lowest order, how 
compressional wave fields due to a variety of sources can 
couple to transverse Alfvtn waves on closed field lines. Of 
course, the precise form of the coupling coefficients Cs will 
depend upon the structure of the b• wave field, which we 
do not consider in detail here. (See Wright [1992] for more 
details.) When there is significant Alfvtn wave excitation, 
the main response is confined near resonant field lines. If the 
natural Alfvtn frequencies vary across the background field 
lines, it will often be the case that the excited Alfvtn waves 
are confined to a thin layer of magnetic flux [lnhester, 1986]. 
In this section we consider what the long-term state of the 
Alfvln fields will be. This explains why toroidal pulsations 
are higltly localized in the direction across magnetospheric 
L shells. Previous numerical and analytical studies also ex- 
hibit singular behavior on resonant field lines [Southwood, 
1974; Chen and Hasegawa, 1974; Inhester, 1986; Inhester, 
1987; Zhu and Kivelson, 1988; Mond et al., 1990; Lee and 
Lysak, 1990]. Some early calculations by Radoski [1974] 
demonstrated how the asymptotic, or long-term, state of 
the disturbance would ultimately be composed of standing 
Alfvtn waves - all of the energy in the fast cavity mode hav- 
ing been expended in exciting the Alfvtn waves. Zhu and 
Kivelson [1988] show how the rate of energy absorption by 
resonant Alfv•n waves damps the cavity mode. However, the 
time scale of the damping is typically 2 orders of magnitude 
greater than the Alfv•n period, and it seems likely that leak- 
age of the cavity mode down the geomagnetic tail will drain 
energy f•om the fast mode more quickly than the excitation 
of a pulsation. Nevertheless, a final state will result in which 
we have only a thin layer of oscillatory Alfvtn fields and no 
significant cavity mode, as envisaged by Radoslci [1974]. 

We may model the asymptotic state as a sheet of field 
lines containing (to lowest order) perturbed magnetic and 
velocity fields in the • direction and being highly localized 
across the sheet (in a). It is a natural feature of such a state 
that the perturbed fields (at any instant in time) will vary in 
phase along the resonant sheet. For example, most models 
impose a dependence exp[i/cpfl] on the perturbations. The 
presence of a variation along the sheet is essential if we are 

to excite a bp Allvia response. (H &/&fi = 0, the driving 
term in (9) is sero.) Given that there must be a phase vari- 
ation along the sheet it would appear, at first sight, that the 
Alfvtn fields do not satisfy V. b = 0 [Cross, 1988; Rajaram 
and Venkatesan, 1990; Wright, 1990]. Evidently the solu- 
tion to the paradox is to include some small bs fields across 
the resonant sheet. Moreover, since the scale of variation 
across the sheet is much smaller than the scale along it in 
the & component of the magnetic field may be much smaller 
than the main • component described in section 3. 

Let us define the asymptotic state more formally: The 
dominant fields are resonantly excited (bp, up) disturbances. 
These fields vary in phase along the resonant sheet, which 
we shall assume has a width (in &) of •. There are also per- 
turbed fields across the sheet, but these are much smaller 
than the resonant components, (bs, us) << (bp, up). The dis- 
turbances parallel to the Background field are in turn much 
smaller than the & field components. The coupling Between 
the two transverse fields has Been discussed recently By 
•r•m •nd l/'en]c•tes•n[1990]. They advocate that the small 
spatial scale • can result in significant Hall currents. Whilst 
the Hall current may be an important feature of some pulsa- 
tions, we present a complementary solution here within the 
ideal Ohm's law approximation. 

It can Be argued on physical grounds that the wave so- 
lution should Be incompressible to lowest order: Any com- 
pressional field perturbation will communicate across a sheet 
of width • on a very small time scale (~ •/V) and inhibit 
plasma compression in planes perpendicular to B. More- 
over, since the magnetic pressure gradient in the & direction 
(~ •/•0•) must Be a perturbation (i.e., much less than 
•/•0•; • is the scale of the Background field), we con- 
clude that • ,• •/œ. Thus • (or V. u•) is likely to 
zero to lowest order, but may be a second- or third-order 
perturbation. 

The (normalized) width of the resonant sheet • plays a 
central role in determining the character of the fields in our 
asymptotic solution. We shall assume that • is so small 
that we can neglect the variation of the background field 
on this scale, and employ techniques from boundary layer 
theory [Bender and Orszag, 1978]. In effect, the parameter 
• is used as a second expansion parameter (the other being 
e) with which to expand the nonlinear MHD equations (7) 
and (8). We shall seek a 'distinguished' solution satisfying 
the criteria given above. The simplest distinguished solution 
is when • = ½. It can be seen that the solution furnished 

by this choice does not meet our criteria: The perturbation 
magnetic pressure gradient in the & direction is &.V(b•/2•0) 
and will be of order ½ (if bp ~ ½). Consideration of the 
& component of the momentum equation tells us that we 
shall drive us perturbations that are also of order ½, and 
consequently produce bs fields of order ½ too (see the 
component of the induction equation (8)). Obviously the 
solution found when • = ½ does not satisfy our requirement 
that (b,, Us) << (bp, up) and is not the appropriate relation 
between • and ½. 

An alternative distinguished solution is found when • = 
X/•. In this case (if (bp, up) are of order ½) the magnetic 
pressure gradient in & is of order zz/•, suggesting that the 
size of (bs, us) will be of order ½z/2 too. So far the new 
choice of f and ½ produces the correct ordering between the 
• and & components of the magnetic and velocity fields. 
However, it does introduce half-powers of •, and we will 
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have to include these half powers in the expansions (6). 
A full exa_m_in_ation of the nonlinear equations expanded in 
8 and g when 8 = a/• can be shown to yield a consis- 
tent solution in which the following are the leading terms: 

tributions to the three components of the induction equation 
are 

0b• l) I 0 (u(•l)h,B) (28b) 

The two transverse components of the momentum equation 
yield the following lowest-order relations, 

•o po at = h•h• ' O-• 

(The lowest-order terms in the parallel component of the 
momentum equation are of order •3, while those in the con- 
tinuity equation are of order •.) Note the importance of 
nonlinear terms in (29a). 

It is evident from the above equations that the • Alfvtn 
wave solution does indeed decouple; (28b) and (29b) com- 
pletely determine b•. In fact, this solution is a generalization 
of the highly asymmetric decoupled poloidal mode found 
in axisymmetric magnetospheres, first derived by Dungey 
[1954, 1967]. The system of equation fits together in a rather 
unusual fashion: Once the Alfvtn fields (b•, u•) have been 
determined, they act as a driver for the other wave fields 
including the magnetic pressure. Thus the asymptotic sit- 
uation is the complete reverse of the early history of the 
Alfvtn fields described in section $ where the magnetic pres- 
sure acted as a driver for the Alfvtn wave fields. 

Knowledge of the (•, u•) fields enables us to calculate 
the smaller ua velocity from (28c) required to prevent the 
plasma from becoming compressed and evolving a magnetic 
pressure perturbation of order •. The evolution of •a fol- 
lows directly from the ua field via (28a). The compressional 
magnetic field perturbation (•3 to lowest order) is deter- 
mined by (29a), namely that it be whatever is necessary to 
produce the required u,, given b, and b•. We could go on 
to discuss the evolution of the u• velocity and the density 
perturbation, but these quantities do not affect the lowest- 
order transverse fields that would be observed in data, so 
we shall curtail the perturbations here. 

The discussion above demonstrates the existence of an 

Alfvtn wave solution for a special thickness of the resonant 
sheet, 8 = a/•. We should consider whether the system is 
likely to develop into a sheet of this thickness. After all, 
from equation (27) we anticipate that the width of the res- 
onant sheet will be inversely proportional to the duration 

of the driver. Thus prolonged excitation could result in 
narrower resonant sheet than desired by the distinguished 
solution 8 = a/•. For example, we saw that when 
there exist b•, b.r, and ua fields of order •. These fields 
are associated with a fast mode which win transport energy 
away from the resonant layer. Evidently the system is un- 
dergoing some adjustment to prevent the resonant Alfvtn 
fields beco_m_ing confined to too thin a layer. A detailed ac- 
count of evolution of the resonant layer is beyond the scope 
of the present paper; however, the qualitative behavior may 
be as follows: The transport of energy away from the res- 
onant sheet will permit the excitation of adjacent field line 
resonances, and consequent absorption of any fast mode en- 
ergy radiated by the resonant sheet. The net effect could be 
to broaden the resonant width 8 until the system approaches 
the distinguished limit 

It is interesting to note that in an axisymmetric mag- 
netosphere the asymptotic toroidal Alfvtn modes (• = az- 
imuthal coordinate) can be localized to a L shell on which all 
field lines share identical natural frequencies. However, for 
asymptotic poloidal Alfvtn modes of large azimuthal wave 
number (• = L shell coordinate) the natural frequencies 
will vary across the meridian plane. This poses no prob- 
lem to the solution described here, and it simply requires 
that the perturbation fields (ua,•a,•) vary accordingly in 
the meridian plane. In fact we could generalize our solution 
further by allowing our principal (b•, u•) perturbations to 
be confined to a surface a =const. This surface may have 
an arbitrary form throughout space; provided that the scale 
on which the perturbations vary across the surface (8) is of 
order V/•, our expansions (28) and (29) remain valid. 

5. DISCUSSION AND CONCLUSIONS 

In this paper we have studied how magnetic pulsa- 
tions may become established in arbitrary magnetoplasmas 
(which carry no background current) and have also consid- 
ered the long-term solution of any Alfvtn fields that are 
excited. The former calculation takes advantage of various 
properties of the normal modes of the system. The problem 
is then rephrased in terms of calculating how the coefficients 
of each mode evolve in time. Under the simplifying assump- 
tion of perfectly reflecting ionospheres it is found that each 
coefficient is governed by a driven harmonic oscillator equa- 
tion of infinite (•. The driving term for any mode is an 
overlap integral (along the field line) of the mode in question 
with the magnetic pressure gradient. Of course, the growth 
of transverse field and flow perturbations will in turn gen- 
erate plasma compression and affect the magnetic pressure 
driving term. However, ff the scale on which the perturba- 
tions vary along the perturbed surface (say 2•r/k•) is much 
greater than the width of the perturbed surface (8), then 
we may neglect the plasma compression due to v• motions. 
(Such an ordering of lengths will be a natural feature of a 
resonant response and is borne out by numerical and ana- 
lytical calculations [South•vood, 1974; Chen and Hasegmva, 
1974; Inkester, 1987; Allan et al., 1986a; Zhu and Kivelson, 
1988; /•ee and l•Vsak, 1990].) Thus we are able to calcu- 
late the coefficient of any mode as a function of time and so 
construct the complete Alfvtnic disturbance. 

The driving term in the equation governing the evolution 
of each coefficient demonstrates how the variation of the 

Alfvtn mode and the fast mode along the field line may influ- 
ence how effectively a given mode is excited [$outhtoood and 
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Kivelson, 1986]. For example, if one is an odd function and 
the other is even, there will be no excitation. In simplified 
models in wMch background quantities do not vary along 
the field lines, fast and Alfv•n modes both share a harmonic 
dependence upon the field-aligned coordinate [Southwood, 
1974; Allan et al., 1986a]. In this situation the fundamental 
cavity mode may only excite a fundamental Alfv•n response. 
tIowever, in an inhomogeneous medium where the modes do 
not have a sinusoidal field-aligned variation, the fundamen- 
tal cavity mode may excite all the harmonics of the Alfv•n 
modes [/•ee and l•ysak, 1989]. 

The amplitude of the Alfv•n response has been calcu- 
lated in detail for three types of driving term. The first 
driving term was a steady oscillatory source (15). On reso- 
nant field lines the amplitude of the resonant Alfv•n mode 
grows steadily in time, and lags behind the driving term by 
a phase of •r/2. The rate of growth of the resonant mode 
tends to be greater the lower the resonant frequency. On 
either side of the resonance large-amplitude fields may be 
produced, and the phase of these changes by •r across the 
resonance (relative to the driver) in agreement with other 

also found that modes ben with wen > w, tend to oscil- 
late at the driving frequency and are not strongly excited, 
whereas normal modes for wMch wE• < w, achieve larger 
amplitudes and tend to oscillate at their natural frequency. 

Recent calculations by Lee and Lysak [1989] have inves- 
tigated the excitation of toroidal magnetic fields in a dipole 
magnetic geometry for low azimuthal wave number (m = 3). 
Many of the features found in their results can be under- 
stood within the framework of the theory presented in sec- 
tion 3, and we shall discuss these here briefly. The model 
employed by Lee and Lysak [1989] has a realistic variation in 
Alfv•n speed such that the natural frequency of the toroidal 
Alfv•n modes is a function of L shell. In fact the frequency 
of any given mode increases as one moves closer to Earth 
(i.e., smaller L). To compare our predictions with the re- 
sults of Lee and Lysak we should align our • vector with 
the a,.imuthal direction. (The plates we refer to in this sec- 
tion are those of Lee and Lysak [1989] and may be found 
at the back of the December 1989 issue of the Journal oI 
Geophysical Research). 

The frequency spectrum of the cavity modes excited by 
an impulse at the magnetopause is shown in Plate l a of Lee 
and Lysak [1989]. Any single cavity mode tends to extend 
throughout the entire magnetosphere, but may have a com- 
plicated nodal structure. Within our model, these cavity 
modes will be taken as oscillatory drivers for the toroidal 
Alfvln wave equations. Plate lb illustrates the frequency 
spectrum of the toroidal fields excited by the cavity modes 
as a function of /; shell. The trajectories of the natural 
Alfvln frequencies as a function of/; are very clear (for the 
fundamental, 3nd, 5th, 7th, 9th and 11th harmonics; the 
initial impulse does not excite the even harmonics). In Lee 
and Lysak's axisymmetric model the natural frequency of 
a given harmonic is a function of/; alone and decreases as 
/; increases. Their Plate lb demonstrates that on L shells 

where one of the natural Alfvln frequencies coincides with 
one of the cavity mode frequencies, large-amplitude toroidal 
fields are produced; i.e., there is resonance, as anticipated 
by our equation (17). 

The largest resonance is a third harmonic (f = 0.027 
Hz) at /; = 7.4 and is located where the resonant cavity 

mode has a significant amplitude, i.e., C3 will be large. It 
is interesting to note that smaller-amplitude resonances will 
occur on L shells where the cavity mode may have a small 
amplitude, such as near nodes. (See, for example, the 5th 
toroidal harmonic at L • 5.9 (f -- 0.090 H,.) which is excited 
less effectively than the same harmonic at L • 5.7 (f -- 
0.097 Hz).) 

Besides the resonant excitation of toroidal fields. we see 
•i•.c• o• .o..•o...t couph• (•.(•) • •,) . ..•ici- 
pated by our equation (16). For example. when the natu- 
ral Alfv•n frequency is less than the cavity mode frequency 
(•E,,(L) < •c) we expect the response to be dominated by 
an oscillation of the Alfv•n mode at its natural frequency. 
For example, Plate lb illustrates significant fundamental 
mode excitation from L • 5.5 to 9.0 despite the lowest cavity 
mode frequency being greater than the fundamental toroidal 
frequency in this interval. 

The other nonresonant excitation predicted by equation 
(16) is the driven response, when the toroidal modes oscil- 
late with the same frequency as the cavity mode, not their 
natural frequency. We expect this behavior to dominate 
when •E,,(L) > •,. Thus on moving away from a resonance 
(•E,,(L) = •,)in an earthward direction (•E,,(L) > •,) we 
should see toroida/ fields oscillating with the cavity mode 
frequency. This explains the toroidal fields found in Plate 
lb earthward of the 3rd harmonic resonances at /; • 7.4 

(f = o.02? Hs) and /; • 5.6 (f = 0.060 Hs), aad the 5th 
harmonic resonance at /; ,,• 6.7 (f = 0.060 Hz). If, on the 
other hand, we move from a resonance (wEn(L) = wc) to 

lation of toroidal fields to dominate the driven component. 
This explains the absence of toroidal fields oscillating at the 
cavity mode frequency on L shells greater than the resonant 
L shell. Thus we would predict that the toroidal fields found 
between L • 5.6 and 7.0 oscillating at the cavity mode fre- 
quency (f = 0.027 Hz) are actually 3rd harmonics of the 
field lines, not fundamentals. (Indeed, it is just possible to 
resolve some 3rd harmonic structure in Plate 3b, which has 
been filtered to display fields that oscillate with the lowest- 
frequency cavity mode, f = 0.027 Hz.) 

The second type of driving term investigated in section 3 
was a pulse of fixed duration (19). The resulting coefficients 
of the Alfvln fields are calculated in terms of the duration 

of the forcing driver rc and the natural frequencies. When 
the natural period of the wave is equal to rc, secular growth 
is observed during the driven phase, and the 'resonant' coef- 
ficient achieves an amplitude of C,•0r,•/8w. The coefficients 
of modes whose natural periods are much smaller than rc 
(i.e., rcwE,• ;•, 1) are not excited very effectively. A sur- 
prising result is found for modes whose natural period is 
much greater than rc (i.e., rcwE,• •[ 1): The coefficients of 
these modes are approximately C,•0/w•,• which means that 
the lower the natural frequency of a mode, the larger its 
final amplitude will be. The surprising result is that these 
modes will probably have a larger amplitude than the 'reso- 
nant' mode which has a period equal to the duration of the 
driver. These properties are illustrated in Figure 2, which 
plots the normalized r.m.s. amplitude of the natural oscil- 
lations of the Alfvln fields following the driven phase as a 
function of wE,•. Contrary to previous studies we do not find 
the largest response on field lines where wen = 2w/rc, but 
on field lines for which wE,• •[ 2•r/rc. 

The preferential excitement of lower harmonics can be 
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seen experimentally by considering an analogous system: 
waves on a string. In this system the driving function could 
be a push at the center of the string. If we push over a short 
length of the string, then C1 • C• • Cs... (i.e., the driver 
acts equally on the fundamental, third, fifth, etc. harmon- 
ics). The limit of interest is when the periods of the modes 
are much greater than the period of the push, so it is best 
to give the string a sharp flick. The analysis suggests that 
the response will be dominated by the fundamental mode, 
which will have an amplitude 9 times that of the third har- 
monic and 25 times that of the ffth harmonic. In prac- 
tice it certainly seems the case that the dominant mode is 
the fundamental. (T•y it for yourself with a telephone ca. 
bid) The explanation for this effect probably lies in the fact 
that the restoring force due to tension (magnetic tension in 
Alfvin waves) is greater in higher harmonic modes and in- 
bibits their growth. By flicking the string a quarter of its 
length from one end a signifcant second harmonic can be 
excited; however, the amplitude of the fundamental mode is 
still 2•/• times larger than that of the second harmonic. 

It is interesting to note that if we model the impulse 
given to the string not as the smooth pulse given by (19) 
but by a half cycle of a sine function (i.e., equation (23) 
with l = 1), slightly different results are found, although 
the general behavior of the system is unchanged. In the 
limit of the duration of the sine impulse (•r/w,) being much 
less than the eigenperiods of interest (2•r/w•,•), the ampli- 
tude of a given mode is an,, oc C,,o/o•,o•,,. Thus flicking 
a string at its center (so that C1 •, C3 •, Cs...) will mean 
that the amplitude of the fundamental mode is 3 times that 
of the third harmonic, and 5 times that of the fifth har- 
monic: The response of the string is still dominated by the 
lowest-frequency eigenmodes. 

Our predictions for the excitation of Alfvin waves from 
a pulse can be compared with some recent observations re- 
ported by /;//hr et al. [1990]. They found that the lithium 
cloud released during the AMPTE mission created a mag- 
netic compression of duration r, • 6 minutes inside the 
magnetosphere (estimated from their Figure 4). The small- 
amplitude oscillations in the ground-based measurements of 
the H and D magnetic field components before and after 
the compressional pulse can be used to estimate the natural 
period of the field lines being observed (see their Figure 3). 
We estimate this period to be between 3 and 4 minutes, and 
it probably corresponds to the fundamental period. Thus, 
from our Figure 2 (or Figure 3a with l = 1), we anticipate 
only a small Alfvinic response (w•,•rc/2•r = 1.5 to 2), con- 
sistent with the small fluctuations observed subsequent to 
the compressional pulse. 

The final driving function we considered (23) had an in- 
termediate character compared with the previous two driv- 
ing functions. By specifying the number of half cycles (•) 
in the driving function we were able to study the transi- 
tion from a pulse driver (19), in which the lowest-frequency 
modes attain the largest amplitudes, to a steady harmonic 
driver in which the resonant mode attains the largest ampli- 
tude. At least 2 complete cycles (• = 4) of the driver are re- 
quired before the main Alfvln response is found around the 
'resonant' location. However, any eigenmodes with eigenfre- 
quencies similar to the driving frquency will also experience 
signifcant excitation. In the toroidal magnetic pulsation 
problem this would correspond to a broad range of/; shells 
around the resonant I; shell being excited. We weze able 

to relate the bandwidth of frequencies in the peak (or the 
range of I; shells excited, if l,•,,(l;) is a known function) to 
the number of cycles in the driving function; see equation 
(27). As one would anticipate, the more cycles the field line 
is driven over, the higher and thinner the peak around the 
resonant frequency or resonant I; shell. 

After having considered the growth of Alfvin fields, we 
turned in section 4 to the long-term, or asymptotic, solu- 
tion to these waves. We derived a generalized solution of 
Dungey's [1967] alecoupled Alfvin wave modes. It is neces- 
sary in this solution that the Alfvin felds be confined to a 
thin layer. In Dungey's solution this was achieved by im- 
posing a large azimuthal wave number (m) on the poloidal 
perturbations. In fact this solution is frequently referred to 
as the limit of infnite m, which is not actually true: The 
scale of variation across the background field (perpendicular 
to the Alfvin fields) is f ~ l/re. This must be small, but 
not less than the amplitude of the Alfvin fields, • [ Wright, 
1990]. The generalized asymptotic solution we present (for 
• ~ •) includes nonlinear terms and the much smaller non- 
Alfvinic perturbations which are a necessary part of the so- 
lution. The overall picture that emerges is similar to that 
suggested by Radosti [1974], in which all of the fast mode 
energy is ultimately absorbed by resonant Alfvin waves. 

Some of the novel results presented here (e.g., the spatial 
and temporal variation of the Alfvln fields) may be useful 
when used to interpret data. For example, the variation of 
the fields across I; shells during the growth of a toroidal pul- 
sation will provide information on how the natural frequen- 
cies vary across these I; shells. This may yield estimates of 
the radial plasma density gradient if the background field is 
known. Information regarding the spatial variation of cav- 
ity modes may also be deduced via the magnitude of the 
integrals C,•. For example, if the form of the Alfvin modes 
is known, we may infer some of the structure of the cav- 
ity modes (such as the division of the magnetosphere into 
'inner' and 'outer' parts [Allan et al., 1986b; Z, hu and Kivel- 
son, 1989]). The range of/; shells over which the pulsations 
exist may provide some idea of how many cycles the driv- 
ing magnetic pressure gradient has executed. The set of 
coefficients {•,• } provides a natural Fourier analysis of the 
temporal variation of the magnetic pressure gradient, and 
may be used to infer the form of fluctuating or propagating 
compressional disturbances within the magnetosphere. 
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