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Dispersion and wave coupling in inhomogeneous MHD

waveguides

Andrew N. Wright

Department of Mathematical and Computational Sciences, University of St. Andrews, Fife, Scotland

The propagation of the fast mode is considered in nonuniform waveguides. We show how the
natural dispersion inherent in a waveguide will select waveguide modes with a small wavenumber
(ky) along the guide to remain near a localized source region of fast mode energy. It is these modes
that are shown to have a coherent periodic time dependence over many cycles that are suitable for
driving observable Alfvén resonances (magnetic pulsations). We expect the frequencies of Alfvén
resonances to be very close to the eigenfrequencies of waveguide modes with ky = 0.

1. INTRODUCTION

The coupling of different MHD wave modes in inhomo-
geneous media is of interest to laboratory, space, and solar
plasma physicists. In particular the resonant coupling of fast
and Alfvén waves may be important for heating laboratory
fusion plasmas and the corona of the sun. Such resonant
coupling is thought to be important for understanding ULF
magnetic pulsations in the Earth’s magnetosphere [South-
wood, 1974; Chen and Hasegawa, 1974]. The in situ obser-
vations of pulsations afforded by satellite instruments and
ground-based radar permit a detailed examination of the
coupling process.

In this paper we shall consider resonant coupling in the
magnetospheric context, although our results will be of rele-
vance to other areas. The history of modeling ULF waves in
the magnetosphere dates back to the decoupled wave mode
studies of Dungey [1954,1967], which form the basis of cou-
pled mode calculations [Wright, 1992a]. For the fast mode
to drive an Alfvén resonance it must have a periodic time
dependence with a well-defined frequency. The mechanism
through which an oscillatory fast mode may be established
in the magnetosphere has been discussed for two decades:
Initially it was suggested that the Kelvin-Helmholtz insta-
bility at the magnetopause was the origin of the fast mode
[Southwood, 1974; Chen and Hasegawa, 1974]. Subsequently,
the cavity mode model was developed [Kivelson and South-
wood, 1985; Allan et al., 1986; Lee and Lysak, 1989] in which
the magnetosphere reverberates with the natural fast modes
of the magnetospheric cavity. The most recent ideas modify
the cavity model and treat the magnetosphere as an open-
ended waveguide [Samson et al., 1992].

In the cavity model the wavenumber around the cavity
(i.e., in azimuth) takes on discrete values, and consequently
the natural frequencies of the fast cavity modes also adopt
discrete values. In contrast the waveguide model has a con-
tinuous range of wavenumbers along the waveguide (i.e.,
around the dayside and into the magnetotail), and the fast
waveguide modes have a correspondingly continuous spec-
trum. The discrete frequency spectrum of the fast cavity
modes is suitable for driving a series of Alfvén resonances;
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however, it is not obvious that the continuous frequency
spectrum of the fast waveguide modes will be able to drive
resonances at discrete frequencies. Walker et al. [1992]
addressed this issue: they considered a disturbance mov-
ing along the outer boundary of the waveguide and argued
that only fast modes with a small wavenumber along the
waveguide would be excited. Thus we have a discrete value
of wavenumber and a discrete fast mode frequency spec-
trum. Harrold and Samson [1992] considered the modes
of an extended waveguide in which the bow shock was the
outer boundary. In their model they assumed a constant
wavenumber along the waveguide, which may be valid if the
solar wind has a dominant wavenumber. (It is unlikely that
the mechanism suggested by Walker et al. [1992] will be
important if the outer boundary is the bow shock, since ma-
terial is free to pass through this boundary, and will not
have to move along it.)

The magnetospheric waveguide model is still in its in-
fancy, being proposed and developed in a few recent papers
[Samson et al., 1992; Walker et al., 1992; Harrold and Sam-
son, 1992]. In this paper we develop concepts that give
some idea of the type of behavior we should expect in MHD
waveguides. In particular we address the problem of how the
waveguide may excite discrete resonances. Our approach is
complementary to those adopted to date: rather than drive
the waveguide continually from its outer boundary, we sim-
ply assume that some fast mode energy enters the waveguide
and ask how it will evolve. We develop the concept of dis-
persion in MHD waveguides, and demonstrate how this will
naturally favor fast modes with a small wavenumber along
the waveguide as being most important for driving Alfvén
resonances.

The paper is structured as follows: section 2 introduces
the model and governing equations; section 3 reviews the
basic properties of uniform waveguides followed by a treat-
ment of their dispersive behavior in section 4; section 5 ad-
dress the dispersion of fast mode disturbances in nonuniform
waveguides, and section 6 discusses how the fast mode may
couple to the Alfvén mode. Finally, section 7 summarizes
the main points of the paper.

2. GOVERNING EQUATIONS

The model we adopt for studying wave propagation in a
waveguide is to take the magnetospheric box model [South-
wood, 1974] used in cavity model studies, but allow the box
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to have an infinite length with no imposed periodicities in
this direction. We can think of the open-ended waveguide as
extending from the noon magnetosphere around the dawn
and dusk flanks then on into an infinitely long magnetotail
(see Figure 1a). Figure 1b shows half of the waveguide ex-
tending from noon into the magnetotail. We have retained
the traditional box coordinates in which z measures the dis-
tance across the wavegunide/cavity, y is the distance along
the waveguide, and z is the field-aligned coordinate.

We assume the background magnetic field B to be uni-
form, but allow the plasma density to vary in the (z,y)
plane. The waveguide width extends from z = 0 near the
Earth to the outer boundary at £ = z,,. In the studies by
Samson et al. [1992] and Walker et al. [1992] the outer
boundary was taken to be the magnetopause, while Harrold
and Samson [1992] took this boundary to be the bow shock.
The general ideas put forward in this paper rely upon having
efficient reflecting boundaries at £ = 0 and z,,, and are in-
dependent of whether z,, corresponds to the magnetopause
or the bow shock. - For simplicity we assume the plasma to
have a low J, so our model approximates magnetospheric
plasma better than the magnetosheath plasma. Neglect-
ing resistivity, the governing equations for the linear plasma
displacement (£) and the compressional magnetic field (b,)
perturbations are

1% % _ _10b 1)
V2 ot? 922~ B oz
_l_azfy 3 3%, 19, @)
V2 a2 3:2 ~ By

Ecliptic plane

\/\% . central magnetosphere

%—k inner reflection point
J‘l o8 %\A T e

(@)
outer reflecting boundary
y central magnetosphere
© 07} o
X
(b) outer reflecting boundary

Fig. 1. (a) The magnetospheric waveguide viewed in the eclip-
tic plane. Fast mode waves (depicted as wiggly arrows) enter
the waveguide and subsequently suffer reflection from an outer
boundary (perhaps the magnetopause or the bow shock) and an
inner reflection point (the plasmapause or a “turning point”). ()
Half of the waveguide (from noon, around the dusk flank and into
the magnetotail) is approximated as an infinitely long waveguide
containing a uniform magnetic field and plasma whose density
depends on z and y.
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where V = B/,/mop is the local Alfvén speed, and p the
plasma density.

The growth of any Alfvén resonance will manifest itself in
the £, plasma displacement. It is evident from (2) that the
magnetic pressure gradient of the fast mode (Bb,/puo) in the
¥ direction will be responsible for driving the resonance, so
it is important to determine the how the fast mode evolves.

_ (%, %
bz_—B(3x+ y)

3. UNIFORM WAVEGUIDES

To study the nature of fast waves in a waveguide we con-
sider a particularly simple system first, namely, a uniform
waveguide in which p and V are constant. In such a medium
the governing equations above may be combined in a single
wave equation for the fast mode perturbation b.,

8%, o [ 8% o? 9? 22

Consider normal modes of the waveguide of the form
expi(wt £ k - r), where w is the frequency of the mode,
k = (kz,ky, k:) is the wavevector, and r = (z,y, z). Sub-
stitution of this dependence into (4) yields the dispersion
relation for the fast mode,

w? =V (k2 + k2 +42) (5)

In an infinite medium this relation gives nondispersive prop-
agation. However, in a waveguide the boundary conditions
in the = and z directions restrict the choice of wavenumbers
and introduce dispersion. Suppose that the boundaries in z
are perfectly reflecting (e.g., £z = 9b./dz = 0), as are those
in z (§z = & = b. = 0) which represent the ionospheric
boundary for closed field lines. Then

k: =xnw/zm k:=2mn/zm n,m=1,23.. (6)
where z,, is the length of the field lines.
Given the values of k; and k., we may use (6) to find k,

as a function of w,

w2 w2 w2

where w? = V2(k2 + k?) is the waveguide cuttoff frequency
of the (n, m) mode familiar in electrical and acoustic waveg-
uides. If w? > w2, ky is real and the mode may propagate
along the guide. If w? < w?, ky is imaginary and the mode
is evanescent along the waveguide, prohibiting propagation.

If we believe that the boundary at z,, is not a reflector
but is driven, it is more appropriate to impose a wavenum-
ber k, along the outer boundary and solve for k.. This is
the case when the magnetopause is driven by the Kelvin-
Helmholtz instability. In this situation k. is found to be
imaginary, and the mode is evanescent in z.

4. DISPERSION IN UNIFORM WAVEGUIDES

The dispersive nature of waveguide propagation may be
illustrated clearly in a two-dimensional waveguide. This is
achieved by setting k. = 0 so that the waves propagate in
the £ and y directions, but not in z. Fast modes could be
established in the waveguide as a result of a density enhance-
ment in the solar wind striking the outer boundary at some

location. It is likely that fast mode waves will propagate



WRIGHT: WAVE DISPERSION AND COUPLING IN MHD WAVEGUIDES

from this location into the body of the waveguide. Figure
2a shows the fast mode inside the waveguide shortly after
excitation from the boundary has stopped. We now treat the
boundaries in z as perfectly reflecting and study the subse-
quent propagation. The evolution of the fast mode may be
described in terms of either propagating wavepackets or the
group velocities associated with various waveguide modes.
We shall consider both in this section, but begin with the
former, which is easier to interpret physically.

Ray Trajectories

In a uniform medium the fast mode disturbance of Fig-
ure 2a may be decomposed into a series of propagating plane
wavepackets. The wavevector of any plane wave is perpen-
dicular to the plane wavefronts (and confined to the plane
z = const, since k,; = 0). The trajectory of a wavepacket
is calculated by allowing it to move in the direction of its
wavevector at the local Alfvén speed. When the wavepacket
encounters one of the reflecting boundaries, the normal com-
ponent of the wavevector changes sign. By continuing this
procedure the “ray trajectory” of the wavepacket may be
found. Figure 2bshows the ray trajectories of three wavevec-
tors, along with an observer (O) a distance yo down the
waveguide.

The qualitative behavior of the system is straightforward:
The ray with wavevector k; aligned with the ¥ direction will
propagate straight out of the waveguide through O without
reflecting off the boundaries. If this ray leaves the source
region at time ¢ = 0, then it will reach O at t = yo/V. The
ray k2 will suffer one reflection on its journey to O and has
a slightly longer path length than the ray k;. Consequently,
it will arrive at O later than the k; ray. Finally, the ray
ks propagates across the waveguide and shuffles down its
length very slowly. This ray will take a long time to reach
0.

From the simple description above it is apparent that we
shall have dispersion in both space and time: The waves at a
given instant in time will have dispersed spatially with the
largest ky/k; ratio wavepackets furthest down the waveg-
uide and the smaller ky/k. ratio wavepackets correspond-
ingly nearer to the source. Alternatively, consider the waves
seen at a given point in space (say, O) as a function of time:
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Fig. 2. (a) A source of fast mode waves is present inside the
waveguide (shaded region). The source may be decomposed into
a sum of propagating plane wavepackets with wavevectors k. (b)
The trajectories of three wavepackets propagating away from the
source region and along the waveguide.
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The largest ky/k: ratio waves are seen at the earliest time,
followed by wavepackets with smaller k,/k, at later times,
i.e., dispersion in time.

We may quantify these ideas by considering the time of
flight of different rays from the source to O. The first waves
to arrive at O when ¢t = yo/V = 1o are those with k =
(0, ky,0). The actual value of k, depends upon the stucture
of the source of waves. A wave leaving the center of the
source region and bouncing off the boundaries j times will
traverse a distance in z of jz,,. From the orientation of this
ray, which is aligned with k, it is evident that

o ®)

IZTm —’;7:

The time taken for the ray to reach O is

t=\95 +52en/V ()

Combining (8) and (9) with the minimum transit time to =
yo/V, we find ky at O as a function of time,

Bo,t) _ 1
B, BG-1

After a few periods of ¢ we may approximate (10) by

t> 1

(10)

ky(y‘)’t)zk:r'tTo t> 1 (11)
which suggests that the value of ky, seen at y = yo will tend
to zero for large times on a time scale of #o. Near the source
of waves (to = yo = 0) the value of ky observed will tend to
zero very rapidly, as one would expect, since waves with a
significant k, will soon propagate away.

We may also derive the frequency of the waves observed
at O as a function of time. The dispersion relation (5) gives
the frequency in terms of the wavenumbers. Recalling that
we have set k, = 0 and employing (10), we find

! ) t>t (12)

2 =r2ve (14—
w (yOat) sz < +t2/t8'—1

Evidently the frequency of the wave seen at O tends to k;V
for t greater than a few times o, which is just the low %,
limit we would anticipate from (11).

It is possible to see these features in a simple numerical
solution of the waveguide equations: We assume the source
of fast waves to be centered on (32m,0) and have k. = 0
again. The source is symmetric about the Z direction and
will propagate radially outward according to

b:(2,9,1) = $(R~ V1)/VR (13)

in an unbounded medium, where R is the distance from the
center of the source region. The reflection from boundaries
in z is accommodated by having image sources along the
line y = 0 so that 8b,/0z = 0 at z = 0,z,,. The prop-
erties of the solution are not very sensitive to the function
¢. For the results shown here we took b, at ¢t = 0 to be
zero at R = 0 and ,,/2, and to have a negative then posi-
tive value between (b, and its first derivative are continuous
throughout). The profile of b is shown in Figure 4a.
Figure 3 shows contours of b, in the (z,y) plane for the
times ¢t = 0,4, 10 in a waveguide of length 12. (Distances,
velocities, and times are normalized by zm, V, and z.,/V,
respectively.) The initial b, disturbance in figure 3(a) propa-
gates and relaxes to the states shown in 3(b,c) at later times:
the system is not driven, and the boundaries are perfectly
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Fig. 3. Contour plots of b,. (a) The initial circular distribution of fast mode waves at t = 0, with a contour interval
of 0.426. (b) When t = 4 the waves have propagated along the guide with waves near y = 4.5 propagating directly
out of the guide (i.e., k aligned with §) and waves near y = 0 propagating across the guide (i.e., k aligned with
%). The contour interval is 0.136. (c) At t = 10 the waves have reached a distance y = 10.5 along the waveguide.
Now the wavefronts at y = 4.5 tend to propagate across the guide rather than along it as in Figure 3(3). The

12

contour interval is 0.078.

reflecting. Note how the leading wavefront running out of
the guide has a wavevector aligned with ¥, as expected. Also
the wavefronts at a given y propagate increasingly in the %
direction at later times (i.e., ky becomes smaller). Figure 4
shows the variation of b, along the center line of the waveg-
uide (%,y) for the same times presented in Figure 3. Its
dispersion in space is manifested by fine structure (large k)
in the leading edge and larger scales (smaller k) nearer the
source.

The frequency of the b, perturbation observed at a fixed
position may be investigated by considering the time varia-
tion of b, at that point. Figures 5a and 5b display b.(t) at
(%, 0) and (3, 1), repectively. For the point (3,0), to is zero,
and the wave settles down immediately to having a period
of 1 as suggested by (12). (The period of 1 corresponds to
the fundamental waveguide mode in = with k, = 0.) For the
point at (%, 1) we find to = 1. Initially bz(%, 1, 1) oscillates
with a short period, which subsequently tends to the value
1 on a time scale of o (in accord with (12)).

It is interesting to note that the amplitude of b, in Figure
5 decays with time. Physically, this is attributable to the
decreasing energy density near the source as fast mode con-
tinually leaks down the waveguide. Mathematically, we can
interpret the feature as follows: At time ¢ the disturbance
in the waveguide (at (%,0)) will have come from an image
source a distance ¢ along the y axis (in normalized units).
From the form of the wave in (13) it is apparent that the
amplitude of this disturbance will decrease in time as 1/ V.
Similar ideas may be used to understand the amplitude vari-
ations in Figure 4.

Waveguide Normal Modes

A complementary view of the propagation of disturbances
within the waveguide is to consider the group velocities of
the waveguide modes. The waveguide modes form a com-
plete orthogonal set of functions; thus we may construct any
initial disturbance as a sum over these functions and study

the subsequent evolution mode by mode. (This sum would
take the form of a Fourier series in the z and z directions,
and a Fourier integral in the y direction.)

In this subsection we shall allow the modes to have a
wavenumber in z, k = (kz, ky, k:), and look for solutions of
the form expi[wt £ k - r]. These modes have the dispersion
relation (5) in a uniform medium, k: and k. being quan-
tized according to (6). Since we are interested primarily in
propagation along the waveguide (i.e., in the ¥ direction) we
shall define V,, and Vj to be the phase and group velocities
along §. Employing (5) gives, for waves propagating in the
+¥ direction,

w k
V = — = —
"= T v (14a)
_ 0w ky
Ve = %, = TV (14b)
which yields the familiar waveguide relation
VWV, =v? (15)

The rate at which a waveguide mode transports energy and
information in the ¥ direction is given by V. From (14b) we
find agreement with our expectations based on ray trajec-
tories: Those modes with k2 < k2 and kZ have V, ~ 0 and
transport no energy along y; Those modes with k; > k2 and
k2 have V, ~ V, and transport energy at the local Alfvén
speed in §¥.

We may also derive the dispersive properties of the waveg-
uide shown in Figure 2 in terms of the waveguide modes.
The general source of waves in Figure 2a may be decom-
posed into waveguide modes as described above. The first
modes to reach the point O in Figure 2b will be those
with a group velocity equal to V aligned with ¥, i.e., the
modes with k§ > k2 and k2. These modes will arrive when
t =1t = yo/V. At subsequent times t the modes at O will
have wavenumbers determined by the condition Vy(k)t = yo.
Using (14b) to re-express this condition, we find
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Fig. 4. Snapshots of the variation of b, along the center line of
the waveguide (z/zm = %, y) for (a) t = 0, the initial source, (b)
t = 4, and (c¢) t = 10. These plots correspond to those shown
in Figure 3. Note the decreasing amplitude of b, at later times,
and the way that fine structure (large ky) is always present in

the leading edge while larger scales in b, (smaller ky) develop at
smaller y as time increases.
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kZ + k2

k2 t) = —5—=
y(y07 ) tz/tg 1

(16)
for t > to. (Setting k, = 0 recovers the two-dimensional
result (10).) Similarly, we may find the frequency of the
signal at O from the dispersion relation (5) and (16),
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Fig. 5. The time variation of b, at the points (a) (3,0), and (8)
(%, 1). The time period of waves at (%,0) is the fundamental pe-
riod 1, and the amplitude varies as 1/v/t. Dispersion is observed

1 1) and manifests itself in the high-

in the variation of b, at (
frequency oscillation initiai y observed which then tends to the

fundamental period 1.

1
2(yo, 1) = (K2 + k2)V? —
w*(yo,t) = (kz + k2) <1+t2/t3_1) t>t (17)

which again generalizes the two-dimensional result (12). Af-
ter a few time scales to we find that the solution has the
following limit,

ky =0  w?— (kZ+k3H)V? (18)

so the frequency tends to the ky = 0 cavity mode frequency.
This effect may be observed in acoustic waveguides such as
an alley between two buildings. Stamping your foot in the
middle of the alley excites a broad spectrum of wavenum-
bers; however, the only sound waves you will hear are the
ones that stay near you, i.e., the waves with a wavevector
directed across the alley. For example, an alley of width 3
m should reverberate with a frequency of about 50 Hz.

5. DISPERSION IN INHOMOGENEOUS WAVEGUIDES

The previous section has explained the idea of dispersion
in a uniform waveguide. In this section we develop the more
complicated idea of dispersion in nonuniform waveguides,
which must be employed for a sensible discussion of magne-
tospheric waveguides. We shall let the Alfvén speed decrease
monotonically with z as appropriate to the Earth’s magne-
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tosphere, and assume the background to be independent of
y and z. (Note that we shall assume the magnetic field to be
uniform and allow the density to vary with z.) The inhomo-
geneous medium means that the fast and Alfvén modes will
now be coupled together, and the possibility of resonant ex-
citation must be considered, especially as section 4 showed
how the dispersive nature of the waveguide will permit the
fast mode to oscillate at a single steady frequency. For the
moment we shall develop the normal mode description, and
then consider ray trajectories.

Waveguide Normal Modes

The inhomogeneity in z means that we can only consider
Fourier components in the y and z directions. Seeking nor-
mal modes of the form b;(z)expi[wt £ kyy + k. z], the gov-
erning equations (1)-(3) yield the following familiar equation
for b,,

d%b, W?dV~?/dz db,

2
2 2 /2 _ 1.2 + ia—ki—kﬁ =0 (19)
dz W[V k2 dz \%

Solving this equation for given boundary conditions in z
yields a set of orthogonal eigenfunctions b.(z) and eigenfre-
quencies, which may be used to synthesize the profile in =
of the initial disturbance [Barston, 1964].

The general behavior of this equation has been discussed
in depth in the context of cavity modes [Kivelson and South-
wood, 1985; Kivelson and Southwood, 1986; Inhester, 1987;
Walker et al., 1992]. The main features of the solution are
as follows: A singularity occurs at the position z, where

w? = k2V3(z,) (20)

In terms of a WKB description, the solution for b, has a
turning point at z. defined via

w? = (k2 + k2) V3(z:) (21)

In the low Alfvén speed region (z between [z, z,n]) the fast
mode may propagate, while in the high Alfvén speed region
[0, z¢] the mode is evanescent. Thus the resonant singular-
ity, z,, is in the evanescent tail of the fast mode. The second
term in (19) dominates near z,, but is small in the propa-
gating interval. This is particularly true in the WKB limit
where we consider waves of short wavelength in z; i.e., sec-
ond derivatives of b, are much greater than first derivatives.
Accordingly, in the lowest-order WKB analysis we may ne-
glect the second term and solve the following reduced wave
equation in the propagation region [Inhester, 1987]:

d>b, w?

We see that the effective local wavenumber in z is given by

(22)

2 w
ki(z,w) = ) k2 — k2 (23)
and note that k; is now an explicit function of z through
the nonuniformity of the Alfvén speed, V(z). The Bohr-
Sommerfeld (or phase integral) condition which the wave

must satisfy is [Bender and Orszag, 1978]

/ " kz(z)dz = (n + a)7 n=1,2. (24)
z

t

the phase factor « is determined by the boundary conditions
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in z. For a perfect reflector at z.,, (2 = 0), and evanescent
decay at small £ we find o = —1/4 [Walker et al., 1992). If
there is a resonance in the waveguide, this will modify «;
however, since the resonance will be in the evanescent tail
there would be no leading order change in a.

Equation (24) is an integral relation for the eigenfrequen-
cies of the fast mode: We specify ky, k., and n (the number
of the mode in z), then find the nth eigenfrequency as that
frequency for which the criterion (24) is met.

To illustrate the character of the solutions we have calcu-
lated the dispersion diagram w(ky,n) for the Alfvén speed
variation V = V(1 — £ /o). (This functional form was cho-
sen because it yields an integrable phase relation.) Quan-
tities are normalized by the dimension z,, and speed at
z = 0, Vo. We chose the Alfvén speed to vary from
100 km/s at £, = 15 RE to 2000 km /s near the plasmapause
z = 5 Rg (e.g., Harrold and Samson [1992]). Hence the
scale length of the background medium is zo = 295/19 Rg
and Vo = 2950 km/s. The length of the field lines in z is
taken to be 2z,,. Figure 6 displays the dispersion relation
for the fundamental mode in z; k; = x/2z,,. The curves
correspond to the first two harmonics in z, the lowest being
the fundamental (n = 1). The quantity €, is defined to be
wnZm/[Vo.

Figure 6 may be interpreted as follows: For a specific
harmonic of the waveguide mode (i.e., n) we may read off
the frequency wy of the mode given a value of k. The curve
contains information about the phase and group velocities:
The phase velocity is simply wn/ky, whereas the group ve-
locity of the mode is the gradient of the line, dwn /9k,.

Analytical expressions may be obtained for the phase and
group velocity of a mode. Following Walker et al. [1992] we
substitute (23) into (24), and differentiating with respect
to ky (assuming o to be a constant) we find a modified
waveguide relation (cf. equation (15))

w Ow _ =2y —1
ky aky = I/PVQ - (V ) (25(1)
where
T Tm
(V™2 = / V=2k;ldz / / k;ldz (25b)
Tt Tt

rearranging for the group velocity we find

Fig. 6. The dispersion diagram for the first two modes of the
inhomogeneous waveguide (n = 1 being the lowest curve).
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ow
Vg = %,
From (26) it is evident that the result found for the uniform
waveguide of V, being zero when k, = 0 is still valid for
inhomogeneous waveguides. This property is manifested in
Figure 6 by the gradient of the dispersion curves in Figure
6 being zero when ky = 0.

Another property deduced for the uniform waveguide was
that of greatest group velocity for modes with the great-
est value of ky/k (14b). This, in fact, is not the case in a
nonuniform waveguide and would require the gradients of
the curves in Figure 6 to monotonically increase with k. It
is easiest to interpret the variation of group velocity with k,
in terms of ray trajectories, to which we now turn.

By oz (26)

Ray Trajectories

The trajectory of a wavepacket with wavenumber k is
given by

dz dy _dz
kx(zywn) - (27)

ky k-

with k;(z,wy) defined in (23), and the frequency wy, satis-
fying (24) for a given n. The projection of the ray trajec-
tory onto the (z,y) plane is shown schematically in Figure
7a. The wavepacket leaves the boundary at z,, with ini-
tial wavenumber k(z). Since the wavefronts are inclined
relative to X the left-hand side of the wavefront experiences
a larger Alfvén speed than the right-hand side, and runs
ahead sightly. It is this differential velocity that causes the
wavefront to rotate and the ray to bend (commonly referred
to as refraction in optics textbooks). Eventually the ray is
completely turned around and returns to z,,, where it is re-
flected as in the previous section. The ray can be thought
of as being reflected at the turning point due to the nonuni-
formity of the medium. The position of the inner reflection
point will vary for different modes. Thus the effective size
of the cavity depends upon =, ky, and k..

The path of the ray in Figure 7a may be calculated ex-
plicitly by the first two relations in (27). The point at which
the ray turns around (when k; = 0) is at z. (see (21) and

x=0
X=Xy —  — — _large V
X=X{ — —— @ — @ — —_— = _— — —
k
small V
X=Xm
@) A —
Ay
(22) —>y
X
1 large V
2
|| 3
. small V
X=Xm

Fig. 7. (a) Schematic ray trajectory in the inhomogeneous waveg-
uide. As the wavepacket propagates into the higher Alfvén speed
region it refracts and has a “turning point” (at z:) that is de-
pendent upon n, k;, and ky. The position of the resonant field
line for this ray (at z,) also depends upon n, k., and ky, and is
located outside the propagating region [z:,zm]. (b) sketches of
three ray paths with different values of ky, but the same values
of k, and n.
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(23)). The Alfvén resonance will be located at a smaller
value z,. Integrating (27) over the section of the ray path
between z: and z,, gives the distance moved in y to be Ay,

Ay =k /zmd’_z
y z, kz(z)

t

(28)

The ray propagates at the local Alfvén speed V in the di-
rection of k, and the component of this velocity in the x
direction is Vk;/k = V?k,/w (employing (23)). Thus the
time taken (At) for the ray to propagate from z; to =, is

Tm
At=/ __w_dx_z___
z:  k=(z)V*(z)

The speed at which energy is carried along the waveguide by
this ray is simply Ay/At. From expressions (26), (28), and
(29) we see that Ay/At = Vg, confirming the expectations
of the previous subsection.

It is interesting to study the ray trajectories for different
values of k at z,,. Suppose we choose a mode number n
in £ and wavenumber k., then consider varying the value
of k,. When we adjust ky the two parameters frequency w
and position of the turning point z, must change to satisfy
the two conditions (21) and (24). In the appendix we show
that for a monotonically decreasing Alfvén speed profile the
value of z; always increases when k"y’ increases.

Figure 7b shows schematically how the ray paths of a
given mode vary with ky,. The first ray has a small k, and
penetrates deep into the medium. This ray will have a small
Vy as it shuffles along the waveguide very slowly. The third
ray has a very large value of k,, and consequently the turn-
ing point is very close to z,,. Since the third ray propagates
approximately parallel to ¥ and is confined to the low Alfvén
speed region, we would expect that Vg(ky) — V(zm) in the
limit k, — oco. We have confirmed this result for the dis-
persion diagram Figure 6 by evaluating the gradient of the
curves for large ky, and we find that the asymptotic group
velocity is indeed V(). The second ray has an intermedi-
ate value of ky. The speed of this ray along the guide will
depend upon the details of the V(z) profile, but typically
the maximum group velocity is found for intermediate k,.

Why should intermediate k, have the largest group ve-
locity? Intermediate k, penetrates the high Alfvén speed
region significantly (so the ray propagates quickly). More-
over, k(zm) is oriented at an angle to ¥ small enough that
the ray propagates out of the guide rather than across it.
If we were to decrease ky from that in the second ray, the
trajectory would be more like the first ray and would tend
to propagate across the guide, not along it. If k, were in-
creased, the path would be similar to the third ray, i.e.,
confined to a lower Alfvén speed region. The intermediate
ray represents the optimum trade-off between propagating
quickly but propagating out of the guide. The value of &,
which maximizes the group velocity may be found from set-
ting 9V, /0ky = 8’wn/0kZ = 0. Naturally, this condition is
dependent upon the choice of V(z) and will be an integral
equation in general.

The variation of group velocity with k, is shown in Figure
8 for the » = 1 and 2 modes, which have maximum group
velocities near kym = 2.25/z,. Both modes asymptote to
the group velocity Vg = V() = 0.0339Vp. This type of be-
havior is quite different to the uniform waveguide (of speed
V(zm)) of the previous section, where the group velocity
increased monotonically with ky and tended to V(zm) but

(29)
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Fig. 8. Group velocity along the waveguide as a function of ky
for the inhomogeneous waveguide (solid lines). The n = 1 and 2
modes both have a maximum group velocity near ky;m = 2.25/zym,.
For large ky both modes have a group velocity that tends to
V(zm) = 0.0339Vp. A uniform waveguide (of speed V(zm)) has
a group velocity that increases monotonically with ky to the speed
V(zm).

never exceeded it (see (14b) and the dashed curve in Figure
8).

The dispersive properties of the inhomogeneous waveg-
uide may be quite different to the uniform waveguide, de-
pending upon the band of ky modes present in the ini-
tial source disturbance. For example, if only k, values in
the band {0,%kym} are present, then both the n = 1 and
2 modes have dispersive properties similar to the uniform
waveguide: large ky components run ahead of small ky com-
ponents. However, if the initial source is contained in the
band {kym,00} we find that small ky will travel faster than
large k, for these two modes. For a general source we ex-
pect very fine spatial structures in y (ky — o) to propagate
down the waveguide at a speed V(zm).

6. ALFVEN RESONANCES

In a nonuniform waveguide the fast and Alfvén modes are
coupled together, and the possibility of resonant coupling
must be considered. An Alfvén resonance will manifest itself
as a large-amplitude £, perturbation oscillating at the local
Alfvén frequency. It is evident from (2) that the gradient in
the ¥ direction of the magnetic pressure perturbation ( b.)
will be responsible for driving the Alfvén resonance. (The
left-hand side of (2) is a simple harmonic oscillator equation
for &y, given k., and the right-hand side represents a driver.)

The discussion of fast mode propagation in the previ-
ous sections gives us some idea of the behavior of b, along
the waveguide and in time. A complete solution would in-
clude the effect of coupling to the Alfvén mode, which would
enter our analysis as the phase factor &. The Alfvén reso-
nance will absorb energy from the fast mode and cause the
fast eigenfrequency and k: to become complex - representing
the temporal damping of the fast mode and the absorption
of energy at z,, respectively [Zhu and Kivelson, 1988]. We
noted earlier that these effects are a higher-order correction
to the basic WKB theory discussed above, since the reso-
nance is situated in the evanescent tail of the fast mode.

In keeping with the lowest-order WKB solution presented
in this paper we shall discuss the qualitative features of
Alfvén resonances by considering b, to be given by the dis-
persive notions described in section 5, and allow this pres-
sure perturbation to drive Alfvén resonances according to

).
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Many of the concepts used in understanding resonant
coupling in a cavity model are relevant to the waveguide,
and we begin by reviewing the main features. In the limit
k, approaches zero r, approaches z: permitting the fast
mode to reach the resonance without difficulty. However, as
ky — 0 the gradients in the ¥ direction vanish, and there is
no driving term in (2). Hence there is no resonant coupling
in a cavity model when ky, = 0. In the opposite extreme
(ky — o0) the derivatives in y are very large; however, the
separation between z, and z increases, and the decay length
in the evanescent tail decreases, resulting in negligible fast
mode penetration to the resonance. Hence there is no reso-
nant coupling in a cavity model when ky, — oo.

The excitation of a resonance in a waveguide is compli-
cated by the fact that since the waves propagate down the
waveguide, field lines are excited for a finite duration while
the waves pass by, and not continually as in a cavity. The
longer a field line is driven, the bigger will be the ampli-
tude of the resonance [ Wright, 1992b]. The time for which a
certain ky component of the source disturbance will excite a
specific field line for will be of the order of Ly /V,(ky), where
L, is the dimension of the source in the ¥ direction. Thus
waves with small k, (and so small V;) will drive field lines
for the longest time. Moreover, we saw in section 4 that
the most coherent frequency a field line will experience will
be corresponding to small k, (see (17) and (18)). Although
small k, means small gradients along ¥, only these waves
will provide a coherent driver for Alfvén resonances and also
have the advantage of being able to drive a field line over an
extended period of time. For these reasons it seems likely
that a waveguide will excite Alfvén resonances at frequen-
cies approximately equal to the eigenfrequency of the ky =0
waveguide modes. Note also from Figure 6 that wy, is rela-
tively insensitive to k, for small wavenumbers (dwn [0ky =0
at ky, = 0), so the waveguide modes in a fairly broad band
around ky, = 0 may all act together to drive a single reso-
nance.

7. DISCUSSION AND SUMMARY

In the preceding sections we have shown how dispersion
in MHD waveguides will, after an initial phase, be able to
select a steady periodic wave that will be suitable for driving
a resonance. The frequency of this driver will be approxi-
mately wn(ky = 0), will have a small value of ky, and will
be able to drive a single field line for an extended period of
time as it has a small group velocity along the waveguide.
Waveguide modes with a larger value of ky (and V) will
propagate down the guide more quickly and may only drive
field lines for perhaps one or two cycles, resulting in no clear
resonant signature.

As the small k, components shuffle slowly down the
waveguide they will lose energy to the Alfvén resonance and
decrease in amplitude. Consequently, these components will
drive a resonance of smaller and smaller amplitude as they
move down the waveguide. This effect is compounded by
fact that at any given time the field lines further away from
the source region will have been driven for a shorter time,
and so resonances will not have had as much time to grow
as resonances on field lines near the source region.

In summary, given a source region of fast modes in a
nonuniform waveguide we expect the following qualitative
features: (1) The source waves disperse; intermediate and
large ky, components will run down the waveguide ahead of
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the small k, components that linger near the source region.
(2) The small ky band of components will provide a steady
periodic driver for Alfvén resonances at frequencies given
approximately by wn(ky = 0). (3) The small k, band will
propagate very slowly down the waveguide, decaying in time.
Thus the largest Alfvén resonances will occur near the source
region.

The features discussed above need to be examined quan-
titatively by numerical and analytical studies which will
model the wave coupling process in detail and will be the
subject of a future paper. Finally, we note that waveguide
dispersion provides a complementary mechanism to that of
Walker et al. [1992] by which a suitable resonant driver may
be established. If the magnetospheric waveguide extends
out to the bow shock, as suggested by Harrold and Sam-
son [1992], we believe that the waveguide dispersion model
described here will be the more relevant mechanism for ex-
citing Alfvén resonances.

APPENDIX

In this appendix we examine how the turning point z.
changes with ky. Suppose we have an initial solution to
(21) and (24), say, kyo,wo and z:. We now introduce a
change in k, of 6k, which generates perturbations éw and
§z: - we assume k. to be constant. Collecting linear term
in 6 from an expansion of (26) gives

bwwo(VT2)gm = kyobky (A1)

so we know the change in eigenfrequency in terms of ék,.
Note that increasing the size of ky, means the size of the
eigenfrequency increases.

The Alfvén speed may be expanded as a Taylor series
about the original turning point,

V2(1‘¢0+61‘z) = VZ(I:0)+6I¢V2I(1I¢()) (A2)

where the prime denotes differentiation with respect to z. If
w and k are known (21) defines the position of the turning
point. Substituition of (A2) in (21) yields
2w06w - 2ky05kyv2(l‘to)

(K2, + k2) V' (z40)
Eliminating 6k, in favour of éw with (Al) the above equa-
tion becomes

(A3)

6.’1}: =

i 2wobw [

t = :
(K2, + k2) V*(210)

where we have omitted the cumbersome limits on the in-

tegral. Explicitly, the second term in the square brackets
is

1-V3(z)(V72)]  (A4)

xml

V(““°)d //z,,. Lz (A5)

Recall that we are assuming the Alfvén speed to decrease
monotonically with z; thus V(zw)/V?(z) > 1 on the in-
tegration interval z:;0 to m, and V¥ < 0. Under these
conditions (A4) states that §z. is always positive for k2 in-

VA (zwo)(V?) = /

Zto
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creasing , i.e., the turning point z; moves closer to the outer
boundary z,.
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