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Structure, phase motion, and heating within Alfvén
resonances

Andrew N. Wright! and W. Allan
National Institute of Water and Atmospheric Research, Wellington, New Zealand

Abstract. An analytical investigation of Alfvén resonances is presented for the cases
when energy is dissipated by (1) resistivity (n) within the body of the plasma, and
(2) finite Pedersen conductivity (¥,) within the ionospheric boundaries. Universal
functions for both solutions are compared, and we find that the structure and phase
motion of the resonant fields is fairly insensitive to the details of dissipation. We

also identify a curious property of resonances: the spatially integrated (but not
time-averaged) dissipation rate is independent of time for whichever dissipation
process we consider. It appears that resonances have a remarkably robust structure.

1. Introduction

Resonant MHD wave coupling is important for un-
derstanding the behavior of nonuniform magnetoplas-
mas. In the solar corona it is thought that resonant
excitation of Alfvén waves may enable us to under-
stand the unusually high temperatures there [Ionson,
1978], and the same basic mechanism is also employed
for heating laboratory plasmas [ Vaclavik and Appert,
1991, and references therein]. In the Earth’s magneto-
sphere the same coupling process is believed to establish
low-frequency pulsations [Southwood, 1974; Chen and
Hasegawa, 1974).

There have been many numerical and analytical in-
vestigations of resonant wave coupling [see, e.g., Wright
and Rickard, 1995; Goossens and Ruderman, 1995;
Goossens et al., 1995, and references therein]. Here-
after Goossens et al. [1995] is referred to as GRH.
Wright and Rickard [1995] identified some curious
features of the resonance in a numerical study when
plasma resistivity was included. They identified waves
of ohmic heating that have a phase motion across the
resonant layer in the direction of decreasing Alfvén fre-
quency. Here we make a connection between this prop-
erty and observations of resonances in the Earth’s mag-
netosphere that show poleward motion of the electric
field. Wright and Rickard [1995] also noted that their
numerical results showed the spatially integrated (but
not time-averaged) ohmic heating rate was independent
of time. We have been able to investigate this claim
further here by employing the novel anaytical solution
derived by GRH. They expressed the solution for a re-
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sistive plasma in terms of “universal” functions which
have an analytical form. By employing the results of
GRH, we are able to find analytical expressions for the
ohmic heating waves and confirm the numerical results
of Wright and Rickard [1995].

The resistivity of magnetospheric plasma provides
much less dissipation than the resistive ionosphere. In
this paper we derive analogous universal functions for
the case when the resonance is limited by ionospheric
dissipation rather than resistivity within the body of
the plasma. We find that the two sets of universal func-
tions are qualitatively very similar, and this suggests
that the structure of resonances is quite robust and in-
sensitive to the nature of the dissipation. The solu-
tion determined by ionospheric dissipation also exhibits
phase motion across the resonance and a spatially inte-
grated ohmic heating rate that is independent of time.
We have no physical explanation of the latter property,
although it is evidently a fairly general property of res-
onances regardless of the exact details of the dissipation
mechanism.

2. Governing Equations

We seek normal mode solutions to the cold linearized
MHD equations in a one-dimensional box model in
which the background magnetic field (B) is uniform,
and the density (p) is solely a function of z. The per-
turbations have a dependence on time (t) and y of

(1)

The ends of the field lines are terminated in plane
boundaries at z = ¢ which may represent the iono-
sphere or photosphere. The waves stand between the
boundaries and vary with z according to

expi(kyy — wt)

@)

for the odd modes. (The even modes have the oppo-
site sin / cos dependence.) Since the fundamental mode

Uz, Uy, b, ~ cos(k,2); bz, by ~ sin(k,z)
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is likely to be of most interest, we shall adopt the de-
pendence given in (2) for the remainder of the paper.
When the terminating boundaries are perfectly reflect-
ing/conducting, the wavenumber k, is real and is quan-
tized by requiring that the electric field vanish there.
If the boundaries are not perfect reflectors, k, is com-
plex and the boundaries absorb energy [Newton et al.,
1978; Allan and Knoz, 1979; Southwood and Hughes,
1983].

We also allow for the fact that the magnetic dif-
fusivity (7 = 1/(u0), o being the electrical conduc-
tivity) within the body of the plasma may be impor-
tant. Under these conditions the governing momen-
tum and induction equations for the Fourier coefficients
b (z), uz(z),..., etc., may be written

2
—twu, = % (kzbz ~ cil:) (3a)
V2
—ilwy, = 5 (k,by — ikyb,) (3b)
—iwb, = —Bk,u, +nV?b, (3c)
—iwby, —Bk,uy +nV?b, (3d)
—iwb, = —B (‘Z’Z + z'kyuy> +7V2%, (3e)

where V2 = & /dz? — kz — k2 and V is the local Alfvén

speed (V? = B%/ugp(z)). Note we are assuming that
plasma pressure remains negligible compared to mag-
netic pressure, despite the fact that the plasma may suf-
fer ohmic heating. This is acceptable so long as the heat
is radiated or conducted away on a shorter timescale
than the period of the waves.

3. Resistive Plasma Solutions

In section 3 we consider the case of perfectly reflect-
ing boundaries in z (i.e., k, is real) but allow 7 to be
nonzero. This problem has been studied in an elegant
paper by Goossens et al. [1995] (GRH), and references
therein. Such a model is thought to be applicable to
resonant wave coupling in solar coronal flux tubes. Al-
though GRH were working in a cylindrical geometry,
we present their results below in the Cartesian “box
model” by taking an appropriate limit of their solution.

GRH note that the resonance has a finite width due
to the resistivity of the plasma of order 84,

wn 1/3
ba= ( A ) )
where A = —dw?, /dz and wy is the natural Alfvén fre-
quency of the field line (w% = k2V?). Thus it is con-
venient to adopt a scaled variable (7) to describe the
structure across the resonant layer.

T — 2z,

= ©)

T =

where x, is the position of the Alfvén resonance: w ()

= w?. Note that we have omitted the modulus sign
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in (4) compared with GRH’s equation (53). The re-
sult is that our 64 may be positive or negative, and
so T increases in the direction of decreasing w?, rather
than GRH’s 7 which always increases with increasing
2. (This redefinition allows us to drop all the modulus
and sign terms from the analysis of GRH.)

GRH show that the = or 7 dependence of the waves
can be described in terms of universal functions F' and-
G which have the following integral definitions.

F(r) = /000 exp(iut — u3/3)du | (6a)
00 e—u3/3
G(r) = /0 ” (exp(iur) — 1)du  (6b)

Close to the resonance the wave solution is characterized
by the following variations with x, which we express in
terms of 7,

& o G(7)+ const (7a)
& o« F(r) (7b)
b, o« const (7c)

where the plasma displacement (£) and velocity are
related by u = —iwg. The functions F' and G have
also been found to govern the structure of the resonant
layer when it is limited by viscosity [Hollweg and Yang,
1988] and are displayed here in Figures 1 and 2.

The structure of the resistive resonance has been in-
vestigated numerically recently by Wright and Rickard
[1995], who noted that waves of ohmic heating (equal
to ponj? in the small 5 limit) propagated through the
resistive layer (see their Figure 12). They also noted a
surprising feature of the heating; namely, that when in-
tegrated over space, it was independent of time. Wright
and Rickard [1995] arrived at these results by solving
the time-dependent resistive governing equations with
a steady harmonic driver, exp(iwt), and running their
simulation long enough for transients to decay away.

The results of GRH in (6) and (7) permit the possi-
bility of examining the numerically derived conclusions
of Wright and Rickard [1995] from an analytical stand-
point. We begin with the expression for &,

Ae'?
ﬁy - 6A A (8)

where A is a real constant dependent upon equilibrium
quantities and the amplitude of the wave and ¢ is the
arbitrary phase of the solution. Next we find b, from
(3d) noting that the second term on the right is of the

- F(r)

order of 77!/ relative to the first.
by = _Bkzgy (9)
To leading order, Ampeére’s law gives
. 1 db k,BAe® dF
Jo=—=t =t — (10)
Lo dzx Hob3 A dr

Thus j, is determined by the variation of F' = dF/dr,
which is displayed in Figure 3. The integral solution for
F'is

F’(T):/ iue™¥ Bl dy (11)
0
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Figure 1. The universal function F' for a resonance
with nonzero 7. (See also Figure 1 of GRH.) The top
and bottom panels display the real and imaginary parts
of F, respectively. The functions depend solely upon
the normalized = coordinate 7.

To find the current that would be observed in a phys-
ical system, we need to include the explicit dependence
of the mode on (y, 2,t) and, for example, take the real
part of the solution: Re{j.(z)sin(k.z)expi(¢ + kyy —

wt)}

k.BA , —
_—_2/105?4A sin(k, z) [F’e"l’ + Fe z<I>]
. (12)
where ® = ¢ + kyy — wt and the asterisk denotes the
complex conjugate. The dissipation rate is equal to pon
times the square of (12) and so has an = and t depen-
dence of [F' exp(i®) + F"* exp(—i®)]%. Figure 4 shows
the = (or 7) dependence as a function of time over one
cycle of the heating perturbations. Note how the heat-
ing peaks move to larger 7 as time increases. For the
equilibrium considered by Wright and Rickard [1995],
this maps to phase motion toward smaller z, consis-
tent with the behavior derived numerically by them and
shown in their Figure 12. The waves of ohmic heating
propagating through the resonance region are directly
analogous to effects observed in magnetospheric ultra-
low-frequency (ULF) waves for the past three decades.

Re{jz(m’ Y, Z,t)} =
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Contour plots of the ohmic heating versus ¢ and 7 are
shown in Figure 5 (note that a maximum of heating oc-
curs every half cycle of the wave). The resulting sloping
contour patches are very reminiscent of the patches seen’
in auroral radar range-time-intensity (RTT) plots. Such
slanting, repetitive patches were reported by Kaneda
et al. [1964], Keys [1965], and Brooks [1967] and were
interpreted as possibly being associated with hydromag-
netic waves. A key feature of such events observed
at middle to high magnetic latitudes was the apparent
propagation through the radar backscatter region in a
poleward direction. Unwin and Knoz [1971] suggested
that the electric field associated with a standing hydro-
magnetic wave was the source of the scattering region
[see also McDiarmid and McNamara, 1973].

The reason for the apparent poleward propagation
became clear after the field line resonance theory of
magnetic pulsations [Tamao, 1965; Southwood, 1974;
Chen and Hasegawa, 1974] was established. Walker
et al. [1979] and Greenwald and Walker [1980] ap-
plied this theory to detailed observations of auroral pul-
sations observed using the Scandinavian Twin Auroral
Radar Experiment. They showed that the apparent

Re(G)

10

Im(G)

Figure 2. The universal function G for a resonance
with nonzero 7. (See also Figure 2 of GRH.) The top
and bottom panels display the real and imaginary parts
of G, respectively.
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Figure 3. The derivative of the universal function F'
for a resonance with nonzero 7. The top and bottom
panels display the real and imaginary parts of dF/dr,
respectively.

poleward propagation was an artifact of the 7 phase
change of the wave electric field through the resonance
region. This leads to a zero of the electric field moving
across the resonance region, giving a repetitive phase
propagation [see Knoz and Allan, 1980, Figure 3]. The
phase propagation is always in the direction of decreas-
ing Alfvén frequency w4, which is generally poleward in
the outer magnetosphere. More discussion of the mag-
netospheric case will be given later. However, it is of
interest to note that an effect which theory and simu-
lation predict should occur in resonance structures in
the solar atmosphere has a long history of experimental
verification in the Earth’s magnetosphere.

We now return to the observation of Wright and
Rickard [1995] that the total heating rate over the vol-
ume is independent of time. Using the analytical so-
lution of GRH, we find that the ohmic heating (OH)
integrated over —o0o < 7 < 0o and —£ < z < £ is (see
the appendix)

7 mlk?B2A? 1
T |643A2 T w|A]

ek B? A2

OH
210

(13)

210
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Figure 4. Snapshots of the spatial variation of ohmic

heating for a resonance with nonzero 7. The panels

(from top to bottom) show the evolution through a half-

period of the wave. Note how there is a phase motion

of the peaks to larger 7.
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There are several interesting features to note in this
equation. The term involving n contains all the resis-
tive dependence, and (4) was employed to get the final
expression above. The familiar result of the total dis-

0 2m
wt
Figure 5. A contour plot of the ohmic heating rate as
a function of ¢ and 7 for a resonance with nonzero 7.
The phase motion to larger 7 is clear.
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sipation being independent of 7 is now evident. The
value of OH agrees with the time-averaged energy ab-
sorption rate from other models (see section 5). The
proportionality of OH to |dw?/dx|™! is also familiar
[see, e.g., Wright, 1992, equation (18)]. The heating
OH in (13) is, indeed, independent of time, and we have
demonstrated Wright and Rickard’s [1995] assertion
analytically. It is, perhaps, surprising that OH does
not fluctuate over the wave cycle. There do not appear
to be obvious physical grounds which require OH to be
independent of time.

4. Resistive Boundary Solutions

In the magnetosphere the resistive dissipation in the -

body of the plasma is generally much less than in the
ionospheric boundaries for ULF waves. We now address
the structure of the Alfvén resonance in an ideal plasma
whose background field threads a resistive ionospheric
boundary. We set 7 = 0 in (3) and allow %, to be
complex [see Southwood and Hughes, 1983]

k, =k, + ik (14)
If the boundaries are taken to be perfectly reflecting,
for the moment, we find k., is determined by the quan-
tization condition

nm

ﬂ'a (15)

while k_; is zero. If we now allow the boundaries to be-
come slightly absorptive by introducing a finite height-
integrated Pedersen conductivity (X,), there is no first
order change to the value of k.. but k,; now has mag-
nitude

k= n=123,...

kZT
bopX,

(16)

The choice of time dependence in (1) means that we
need to choose k,; to be negative; this ensures that the
Poynting flux is directed into the ionosphere which acts
as a sink of energy.

The resistive boundary limits the singularity that
would have occurred in the absence of dissipation. We
can estimate the scale of the solution in the z direc-
tion by combining (3b) and (3d). In terms of the dis-
placement we find an equation [e.g., Southwood and
Hughes, 1983] which may be expanded about z, to give

<u0p($r w

|k.i| =

(17)

. . b,
—k2, — 2ik, K + ...)g,, =iky

Note from the definition of the Alfvén frequency that
the first and third terms in brackets cancel exactly. The
solution is affected by k,; over a region where the two
remaining bracketed terms in (17) are comparable. This
defines a scale 63,

55 top' (z; )w

B2 = 2kzr kzi

(18)
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which may be rewritten
k; w?
bp =22 ——— 19
P ( dwi/dx)m, (19)

Note that when X, is very high, k,; is very small. Thus
we may employ ép as a small parameter with which
to perturb the ideal set of equations [Southwood and
Hughes, 1983]: Combining the governing equations (3)
to give a single second-order equation for £, close to the
resonance region we find

¢, 1 d&z N
dz? ' (z—z,) —ibg dz ~hkyte =0 (20)
Changing to the dimensionless scaled variable
x=2"% (21)
L
(20) becomes
P 1 de
22
o T X =i ax — 0o (22)
the solution of which is
& =60e®G(X);  G(X)=In(X—3)  (23)

Leading order balance of (3e) gives &, = (i/ky6p)d¢./dX
or

—1

§ = _ézo

7" (X);  FX)= (24)
The logarithmic and 1/X behavior are familiar results
but are represented here as the universal functions
F(X) and G(X), which are the counterparts of GRH’s
F and G functions. Figures 6 and 7 display the func-
tions F(X) and G(X) which may be used to describe the
velocity and magnetic fields across the resonant layer
for an arbitrary ¥, by transforming the solution back to
real space (). Note the similarities between our F(X)
and G(X) and GRH’s F(7) and G(7). The explicit ex-
pressions for the real and imaginary parts of F(X) and
G(X) are quite straightforward,

Fr(X) = (X2+ 1)1 (25a)
F(X)= -X(X%*+1)7! (25b)
G, (X) = InvX2Z+1 (25¢)
Gi(X)= tan}(-1/X)—m X <0 (25d)
Gi(X)=  tanl(-1/X) X >0 (25¢)

In the section 3 it was mentioned that poleward mo-
tion of the poloidal electric field (E,) was commonly ob-
served. We can confirm that this is also a feature of the
solution presented here by constructing the real part of
the complex function (Ey/k,é5) cos(k,z)F(X)expi®,
where Fo = wB&; and ® = kyy —wt+¢—n/2. Noting
that cos(k.z) ~ cos(k.rz) — ik,;zsin(k.,2), we find

Re {Ez(msya z = +e t)}

a : 6‘ [cos(®) F;(X) + sin(®) F, (X)]

(26)
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Figure 6. The universal function F for a resonance
with finite ¥,. The top and bottom panels display the
real and imaginary parts of F, respectively. The func-
tions depend solely upon the normalized x coordinate
X. (Note the similarity with Figure 1.)

Figure 8 shows the evolution of the electric field compo-
nent F, (actually the terms in square brackets in (26))
through the resonance region over one wave cycle in
terms of the scaled variable X . The displacement &, has
a similar variation. The universal function F(X) gener-
ates a phase propagation in the direction of decreasing
X. When mapped to the physical coordinate z (using
(21)), the propagation is in the direction of decreasing
wy4. This behavior is consistent with the schematic in
Figure 3 of Knoz and Allan [1980].

Figure 9 shows a contour plot of E, versus ¢ and X
over three wave cycles, with negative contours shown
dashed. The slope of the contour patches in the reso-
nance region again indicates phase propagation in the
negative X direction, i.e. in the direction of decreasing
wy. If a constant background electric field (of positive
sign, say) were present in the ionosphere, the net neg-
ative electric field might drop below the threshold for
backscatter, and only the positive patches (shown by
full contours) would be seen by an auroral radar. It
should be noted, however, that the structure of the uni-
versal function F(X) is independent of the ionospheric

WRIGHT AND ALLAN: STRUCTURE OF ALFVEN RESONANCES

Pedersen conductance ¥ p, which enters through the
scaling factor 6g when converting to the physical coor-
dinate z.

It is interesting to calculate the integrated energy
dissipation per unit length in the y direction within the
resistive boundaries and see how this varies as a function
of time. The dissipation rate per unit area at z = +£ is
Y, Re{E,}?, and employing (26) this becomes

5B, = 5,8, "5 [FZ cos® @
p~xr — “~p x0k262 i
y“B

+.7-',2 sin? ® + 2F,F; sin ® cos @]

(27)

We need to integrate (27) over —oco < z < 0o to find
OH, and note that fj;o dz = 65| fj;o dX. On integra-
tion the term F,.F; yields zero as it is an odd function.
Employing the following identities

/ FX = / ]-'z?dXz-;- / |f|2dX5g (28)

the integral of (27) gives the ohmic heating (OH) per
unit y as

2.0}

1.5}

Re(¥)

1.0f

0.5}

0.0
-10

Im(¥)

-5 0 S 10

Figure 7. The universal function G for a resonance
with finite ¥,. The top and bottom panels display the
real and imaginary parts of G, respectively. The func-
tions depend solely upon the normalized x coordinate
X. (Note the similarity with Figure 2.)
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Figure 8. Snapshots of the spatial variation of E, for

o

a resonance with finite ¥,. The panels (from top to

bottom) show the evolution through one period of the
wave. Note how there is a phase motion of the peaks
and troughs to smaller X.

2 2
|FI2dX = 5,82, Tkt

k2.02 00
_ 2 21
OH =S,E Bl

(29)
xo k; | 6B| o

where a factor of 2 has been included to account for both
ionospheres. Note that OH is once more independent
of time. Moreover, recalling that k,; and 6 are both
proportional to 1/X,, we see that OH is independent of
2.

5. Discussion

In sections 3 and 4 we have derived analytical solu-
tions for an Alfvén resonance whose singularity is re-
solved by some dissipation in the system. For both
models we find that the rate of energy absorption by the
resonance is independent of the dissipation coefficient,
and we show later in this section that this is equal to
the time-averaged jump in the Poynting flux across the
singularity that occurs in the ideal set of MHD equa-
tions.

Although the two cases we consider have different
dissipation mechanisms, we find that the universal func-
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tions from which the components of wave field and dis-
placement are constructed are very similar. Note that
although some of the F or G functions have opposite
symmetry from their F and G counterparts, this merely
produces oppositely directed phase motion in the scaled
coordinates X and 7. What is important is the phase
motion in real space (), and for both models this is to-
ward lower w4. Indeed, the forms of the perturbations
are remarkably similar given the different dissipation
mechanisms (dependent upon F' in the resistive plasma
case but F in the resistive boundary case) and suggest
that Alfvén resonances have a rather robust structure.

The two dissipative solutions we have derived have
natural scale lengths of §4 and 6p over which the dis-
sipation is important and determines the structure of
the waves. Far away from the resonance (|z| >>
|64] or |65|) the exact nature of the dissipation does not
affect the leading order behavior of the waves. Hence it
is possible to compare the two values of OH derived in
the paper (these should be identical if we set the two
waves to have the same amplitude at large |z|).

We begin by relating the amplitudes of the two solu-
tions A and E,y. GRH give the asymptotic behavior of
F(t)as 7 — o0

F(r)~ = (30)
T
Thus the leading order behavior of (8) when |z —z,| >>
|64] is
iAe't 1
&~ (31)

The corresponding electric field is E, = iw€,B and has
the behavior

A T — z,

_ wBAet® 1

A T — 2z,

E, =

(32)

The asymptotic behavior of E, from the calculation in
section 4 requires determining the asymptotic behavior

Figure 9. A contour plot of E, as a function of ¢ and
X for a resonance with finite ¥,. The phase motion to
smaller X is clear. Figure 9 is similar to range-time-
intensity plots familiar from observations [e.g., Kaneda
et al., 1964]. Full contours are positive, dashed con-
tours are negative, and the dashed-dotted lines show
zero contours.
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of F(X). From (24) we find F(X) =~ —i/X when |z —
x| >> |65|- Recalling that E, = —i(Ey exp(i¢)/ky6B)
-F(X), the asymptotic behavior of E, for this model is

E'moe2 1
EFE=—— 33
‘ ky T — T, (33)
Comparing (32) and (33), we see that setting
A .
= . 34
A wB ky EzO ( )

will give the two solutions identical amplitudes far away
from the resonance where the nature of the dissipation is
unimportant. Employing (34), both expressions for OH
(13) and (29) can be manipulated with straightforward
algebra to yield the same result of

o2

OH=R2C. 5 .
w02 uoksz

dwy

— (35)

Ty

so both models do indeed give identical dissipation
rates. Note that since this dissipation rate is constant
in time, it should be equal to the time-averaged jump in
Poynting flux across the resonance that has been calcu-
lated in several ideal models. We now employ the results
of one model that specifically considered the box model
geometry. Equation (38) of Thompson and Wright
[1993] states the time-averaged Poynting flux disconti-
nuity as being

(823] = ma?lof2(6p0r) | 24 (36)

Zr

where ¢,(2) is the form of the Alfvén mode (sin(k.z)
or cos(k.z) in our case) and the angle brackets de-
note integration along the length of the resonant field
line. In our present model the density is indepen-
dent of z and so may be taken outside of the brack-
ets, which then integrate trivially to yield a value of
£. Writing dw,/dx = (dw? /dz)/(2w,) and noting that
Bo = iexp(ip)A/A, the jump in Poynting flux may be
expressed with the use of (34) as

(5] = S (Q}EW) o)t
Yy

Substituting p(z,)/B? = k2/(w?u), we see that (37)
is identical to (35). Thus the rate at which energy is
supplied to the resonance from an ideal calculation is
equal to the rate at which it is dissipated when 7 or X,
determine the structure of the resonance, as we would
expect.

Note again that the spatially integrated dissipation
within the resonance region is independent of time,
while the energy input via the Poynting flux S, is a
time-dependent quantity proportional to cos?(wt). This
is quite a surprising result but does not violate conti-
nuity of energy, as one may suspect at first sight. The
energy of the fields in the resonant layer (proportional
to |by|? times the width) scales as 77 /% or %, for the

dw

7 (37)

Zr
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two cases we considered. Thus, in the limit of small
dissipation the energy of the resonance becomes very
large. The leading order O(n~'/%,%,) of continuity of
energy simply states that the energy within the reso-
nance is constant in time. This is not surprising for
Alfvén waves; they simply exchange energy back and
forth between kinetic and magnetic energies. At the
next order we have dissipation and influx of energy of
the order of 1, i.e., O(7°, £J). Note that the source and
sink can not balance as the sink is independent of time,
while the source varies as cos?(wt). Continuity of en-
ergy at this order tells us that the energy stored in the
resonant layer must change by the order of 1 during a
cycle. This is a small change compared to the leading
order energy O(n~Y/3,%,) and can be accommodated by
introducing a correction of the order of 1 to the fields
in the resonant layer, which have a leading order am-
plitude of O(n~'/3,%,). Thus the leading order solution
presented here is unaffected. The small correction could
be calculated by retaining higher-order terms than the
linear ones employed in the present analysis.

The solutions we have considered in sections 3 and
4 both contain some dissipation that allows transients
to decay leaving the normal modes we derived as the
asymptotic state. However, it is not necesary to have
dissipation to achieve this result, and “leaky” bound-
aries will suffice as they appear to the system as a sink of
energy. Indeed, Berghmans and De Bruyne [1995] ad-
dressed wave leakage through the photospheric bound-
aries of coronal loops by estimating the reflection coef-
ficient (R) associated with the jump in density there.
They set k, = 0 in their calculation and so focused
solely on Alfvén oscillations. However, many features

_of their resonance are similar to our dissipative bound-

ary solution in section 4. For example, our dissipation
is proportional to 1/%,, whereas in the work of Bergh-
mans and De Bruyne [1995] the analogous quantity
is 1 — R. We find that the amplitude of the resonance
scales as ¥, (from (16), (19), and (24)), and the corre-
sponding result of Berghmans and De Bruyne gives
a scaling proportional to 1/(1 — R). In a similar fash-
ion we would expect that the width of their resonance
scales as 1 — R, although this result was not explicity
determined. It is interesting to note that the non-self-
adjoint nature of dissipative MHD can be mimicked by
having leaky (non-self-adjoint) boundary conditions on
an ideal MHD plasma.

6. Summary

We have been concerned with normal mode solu-
tions of the cold linearized MHD equations in a one-
dimensional uniform box with uniform magnetic field,
and density solely a function of . Two cases have been
considered, namely, (1) magnetic diffusivity 5 within
the body of the plasma is significant, but the boundaries
are perfect reflectors so that the parallel wavenumber k&,
is real, and (2) 7 is negligible, but the boundaries have
a finite Pedersen conductance YXp. As a consequence,
k. is complex and the boundaries absorb energy.
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Case (1) relates to work by GRH and Wright and
Rickard [1995] and is thought to be applicable to res-
onant wave coupling in solar coronal flux tubes. GRH
showed that the Alfvén resonance region has a finite
width due to the finite value of 7 and that the structure
in the resistive layer around the resonance position can
be described in terms of universal functions F' and G,
defined as integrals which are independent of . Wright
and Rickard [1995] investigated the structure’of the
resonance numerically, and showed that waves of ohmic
heating propagate through the resistive layer. They
also noted that the total heating rate over the volume
is independent of time.

We have confirmed the numerical results of Wright
and Rickard [1995] analytically by using the F and G
functions to derive ohmic heating waves which prop-
agate in the direction of decreasing Alfvén frequency
and have shown that the volume-integrated heating rate
is indeed independent of time (and of 7). The heat-
ing waves are an artifact of the = phase change of the
wave electric field through the resonance region, a fea-
ture which has been observed in magnetospheric Alfvén
resonances for three decades.

Case (2) relates to Alfvén resonances in the magne-
tosphere. We have derived equivalent universal func-
tions to those in case (1), which we denote by F and G.
These are independent of the ionospheric conductance
Y p and have much simpler forms than F' and G. How-
ever, their spatial properties are similar, leading to the
same features as in case (1), namely, the propagation of
ionospheric Joule heating waves in the direction of de-
creasing Alfvén frequency and the time independence of
the ionospheric area-integrated heating rate. The latter
is also independent of Xp.

The similarity of the universal functions in two cases
with very different dissipation mechanisms suggests that
Alfvén resonances have a robust basic structure. We
have also shown that the two cases give identical total
heating rates when the amplitudes are the same at large
distances from the resonance position. The jump in
Poynting flux across the resonance from an ideal calcu-
lation is shown to be equal to the rate at which energy
is dissipated when 7 or X, determine the structure of
the resonance. However, it is a surprising result that
the spatially integrated dissipation within the resonance
region is independent of time when either 7 or 2 1 are
nonzero (mathematically this may be expressed as re-
quiring [ F?dz or [F?dz to vanish when integrated
over —oo < z < 00). This property seems to be inde-
pendent of the dissipation mechanism, and we do not
understand why resonances should behave in this fash-
ion. It will be interesting to see if solutions governed
by different dissipation mechanisms, such as viscosity,
display this property.

Appendix

In this appendix we prove that the total ohmic heat-
ing in a resistive Alfvén resonance is independent of
time. For small 7 the heating is dominated by the j.
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current. We need to calculate ponRe{3, }? by employing

(12)

L kB
M077R6{Jz}2 = U

= W SiIl2 (kzz) [Fl2€2i€1>

(38)
+FI*26—2iq> + 2FIFI*]

We now integrate this relation over z and note that
fj;o dx = |6A|fj:)° d7 to find that the first term in

square brackets is proportional to

/ F?dr = / (F? — F? + 2iF,F)) dr

—00 —00

(39)

The final term in the integrand is an odd function of 7
and so integrates to zero. The first term of the integral
may be written (with the aid of (11))

00 00 2
/ [/ —ue /3 sin(ur)du} dr
—oco LJO
/ { / ue /3 cos(ur’ )du}
—oo LJO

The equivalence follows from making the substitution
7 =7 —7n/2u. Tt is evident from (11) that the inte-
grand on the right-hand side of (40) is equal to F/2(7").
Noting that |F'|> = F2 4+ F?, we arrive at the following
identities

“Rrar= [ FPar=l [ |PPar=Z (@
tdr= [ Frar= [ FPar=3 ()
—0o0 —00 —00

with the final value being determined numerically. Note
the analogy with (28).

Returning to (39), we see that the first and second
terms in brackets will cancel, so that the whole expres-
sion (proportional to the first term in brackets in (38))
is equal to zero. Since the second term in (38) is equal
to the conjugate of the first, this too will integrate to
zero. The only remaining contribution when (38) is in-
tegrated arises from the term F'F"* = |F'|> which is
positive definite, and its integral may be evaluated from
(41). Further integration in z gives the total ohmic dis-
sipation to be

(40)

2
dr’

n
OH = .
643 A2

|F'[2d'r

2 2 A2 00
k2B A / (42)

2p0

e e}

from which equation (13) follows directly.
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