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Are two-fluid effects relevant to ULF pulsations?

Andrew N. Wright! and W. Allan

National Institute of Water and Atmospheric Research, Wellington, New Zealand

Abstract. It has been suggested recently that the traditional single-luid MHD
description of ULF pulsations is wrong and that a two-fluid model (which includes
electron inertia) is required [Bellan, 1994]. If this claim is correct, it suggests most
previous studies are inadequate and of questionable value. We have examined the
appropriate equations and find that two-fluid effects are not important for typical
ULF pulsations. Specifically, the time taken to develop spatial scales similar to
the electron inertia length far exceeds the lifetime of the waves. We argue that
the singular normal modes of single-fluid MHD are important properties of the
magnetospheric system that should be studied. They may be employed to calculate
the evolution of waves and are also a useful mathematical limit of the more realistic

dissipative normal modes.

1. Introduction

Single-fluid magnetohydrodynamics (MHD) has been
used to describe the behavior of ultralow-frequency
(ULF) pulsations for more than four decades [ Dungey,
1954]. Over the last two decades a variety of detailed
analytical and numerical studies have followed the work
by Tamao [1965], Southwood [1974], and Chen and
Hasegawa [1974]. The single-fluid equations give rise to
“resonant” coupling between the fast and Alfvén modes
on field lines where the local Alfvén frequency matches
the fast frequency. These field lines are sometimes re-
ferred to as the Alfvén layer.

Normal mode analysis of the governing ideal single-
fluid equations (i.e., solutions proportional to exp(—iwt),
where t is time) reveals singular behavior at the reso-
nant field line in the one-dimensional box model [South-
wood, 1974]). The singular behavior is also found in
more general two-dimensional equilibria [Thompson
and Wright, 1993; Wright and Thompson, 1994].

Recently, Bellan [1994] has claimed that a two-fluid
description of the plasma (i.e., including a finite elec-
tron mass) removes the singularity and argues that the
waves do not become “resonant” at the Alfvén layer
and there is no accumulation of energy there. Bel-
lan [1994] asserts that the description of resonant wave
coupling based upon single-fluid MHD as employed in
laboratory, magnetospheric, and solar plasma physics
is erroneous and points out alleged errors in the in-
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compressible and compressible single-fluid MHD, and
two-fluid MHD derivations. Bellan’s claims have drawn
three comments to date which take exception to his as-
sertions [ Goedbloed and Lifschitz, 1995; Ruderman et
al., 1995; Rauf and Tataronis, 1995].

The purpose of this report is to examine the relation
between single-fluid and two-fluid MHD and to deter-
mine the domain of validity of each in relation to typical
ULF pulsations. Single-fluid MHD predicts the develop-
ment with time of ever finer spatial scales. Eventually,
such a solution will violate the single-fluid approxima-
tions and require a two-fluid treatment. We estimate
that typical ULF pulsations on closed field lines (L<10)
do not live long enough for two-fluid effects to become
significant. We conclude that other effects (such as
ionospheric dissipation) are more important than elec-
tron inertia. The (singular) normal modes of single-
fluid MHD remain important properties of a nonuni-
form medium and are worthy of study and calculation.

2. Models and Approximations

Any model has its domain of validity outside of which
it should not be employed without refinement. The
most common refinements to ideal, linear, cold, single-
fluid MHD are the inclusion of (1) electron inertia (a
two-fluid description), (2) kinetic effects, (3) dissipa-
tion, (4) plasma pressure, and (5) nonlinear terms. We
decide if it is acceptable to ignore these refinements by
determining the relative sizes of appropriate terms in
the unapproximated equations. If a normal mode cor-
responded to reality, we would evidently run into prob-
lems justifying the linear approximation as the normal
mode attains infinite amplitude at the Alfvén layer! Of
course, a single normal mode does not correspond to
reality [Ruderman et al., 1995] but is a mathematical
property of the governing equations.
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Single-Fluid and Two-Fluid Equations

We shall address the difference between cold, linear,
ideal, single-fluid and two-fluid MHD. Let the particles
have masses, charges, equilibrium number densities, and
fluid velocities of mg, gs, s, and ug, respectively (s = ¢

" for ions and e for electrons). The macroscopic density
p, current density j, and center of mass velocity u are
given by

p = T+ MeNe (1a)
j = qnu+ gneu, (1b)
pu = mun;u; + meneu. (1c)

Assuming that the ions are singly charged (¢; = —¢. =
q), the linear center of mass velocity u, current density
j, magnetic field b and electric field E evolve in the
presence of the equilibrium magnetic field B according
to

P2 B =0 (2a)

E+u,B = %-2+E<1—%) jAB(2b)
88—IZ+V,\E =0 (2¢)
Vib — moj = %% (2d)

where ¢ is the speed of light [e.g., Boyd and Sander-
son, 1969]. The single-fluid, nonrelativistic MHD equa-
tions are found by letting m./m; — 0 and neglecting
the right-hand sides of (2) compared with the left-hand
sides. Thus the relative magnitudes of the right-hand
sides give some indication of how important two-fluid
effects are.

Bellan [1994] places much emphasis upon the ab-
sence of a singularity in the normal modes of the two-
fluid equations. For a simple equilibrium containing
a uniform magnetic field (B = Bz) and with density
solely a function of z, we may seek normal modes pro-
portional to expi(kyy + k.z —wt). The governing equa-
tions then reduce to ordinary differential equations in
z, determining how the modes vary in that direction.
Employing the two-fluid equations (2a)-(2d) and elim-
inating variables in favor of the electric field, we find,
after much algebra,

dE B (o o &
do (ky + kz - ?S E (3&)
w2
+=iDE, =0
C
. dE, d*E w?
’kaTw— — —-d—x—zl - —7,DEZ (3b)
+<kf—%S>Ey kyk. B, =0
_ dE, &, , W
ik — = — kyk.E, +<k CZP>EZ 0 (3¢)
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where D, P, and S are functions of z and are defined
as
2

D = w- et +wawp - (4a)
(Ld —wce)(w ?z
w? +w2‘
w2 w2
S = 1— 9 e 2 2 E 2A (4C)

W —wn, wt—wy

The plasma and cyclotron frequencies of the species s
are defined via

2
2 Nsqs
w = — 5a,
vs py (5a)
B
Wes = L (5b)
me

These equations are identical to the dielectric tensor
form given by Bellan [1994, equation (35)]. To decide if
the equations are singular, we combine the above equa-
tions to give a single, fourth-order equation in one vari-
able and see where the coefficient of the highest deriva-
tive vanishes. After considerable algebra, (3a)-(3c) may
be reduced to the form

&E,

E &3 E, dE,
A4 +A3 - +A2 +A1 +A0E =0 (6)

We have calculated the coefficients in full without omit-
ting any terms, unlike Bellan [1994, equations (131)
and (132)]. For brevity we give only the explicit form
of A4(z) since we are interested in the existence or oth-
erwise of a singularity in the normal modes.

Ay(z) = S|k (P*+ 8? — D? ~ 25P)

+ky (PD' — P'D +3DS' — SD)

;5 (SD* - §* — SP? +2PS* + PD?)

+°"Z“y (SDP' — PSD' — 2PDS' — SDS' + $*D)
+k2 (SS" — 28 — PS" + P'S')

27,2 s Wt 2
+k2K2(S — P) —c—4PSD] (7)

where a prime denotes d/dzx.

The coefficent A, vanishes when S(z) = 0, which
corresponds to the upper and lower hybrid resonances
[Stiz, 1992], but it does not vanish where w? = k2V%.
(Va is the Alfvén speed and is equal to B/,/fop.) Thus
Bellan [1994] is quite right to claim that the two-
fluid normal mode does not contain a singularity at the
“Alfvén layer.” We have also performed numerical in-
tegration of (6) across the Alfvén layer and find regular
well-behaved modes in accord with Bellan [1994, Fig-
ures 2 and 3].
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The reader may be curious as to how the singular
single-fluid modes arise from (6). We take the limit of
low Alfvén speed, V4/c — 0, and the limit of low fre-
quency, w/we — 0, simultaneously such that the quan-
tity Vak/w remains finite. Finally, we let m, — 0 so
that wy, becomes infinite and the electron inertia length
£, = ¢/wpe becomes vanishingly small. When this limit
is taken, the coefficients A3 and A4 are smaller than
the leading behavior of the other coefficients by a fac-
tor V% /c2. Thus the leading behavior of (6) produces a
second order ordinary differential equation (ODE) that
has the following coefficients

A4 = A3=0 (8&)
A = 1 (8b)
2(In VA)’k2(w/VA)2
Y s mmay R ey

w2
Ay = V2 — kK2 (8d)

It is easy to confirm that (8a)-(8d) are identical to the
familiar single-fluid equation of Southwood [1974] and
other studies. The normal modes of this equation are
well known and contain a singularity at the position

where V% (z) = w?/k2.

3. Time-Dependent Solutions and
Reality

At first sight the vanishingly small scale lengths that
exist at the singularity of the single-fluid equations must
be smaller than the electron inertia length (since m, is
very small, but not zero) and suggest that the singular
modes indicate a violation of the approximations em-
ployed in deriving them. As we have already noted the
infinite amplitude of the normal mode already indicates
that the linear approximation will be violated. These
problems are a cause for concern only if you believe that
a real system can behave as a solitary normal mode.

A real system is time dependent and never behaves
as a single normal mode. Even if the system has been
driven for a long time at a single frequency there will
still be transients somewhere, although they may be
outside the region of interest or of small amplitude. If a
real system were described by a single normal mode, we
would be forced to conclude that the system had been
executing this oscillation for an infinite time, which no
real system could be expected to satisfy. Real systems
are driven or excited, and this behavior can never be
described by a single normal mode. Normal modes do
not correspond to reality, but are mathematical func-
tions of the governing equations, and as we shall see,
are very useful functions that are well worth studying.

Some confusion may arise from the use of the term
“resonance.” In a normal mode it is clear what a reso-
nance is. Rauf and Tataronis [1995] associate resonant
behavior with non-square-integrable normal modes. It
is not so clear what the term “resonance” means in a
time-dependent system where the meaning of frequency
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is lost. We would like to offer the following working def-
inition based upon time-dependent behavior and pro-
pose two ways of arriving at the result.

Time-Dependent Governing Equations

The most straightforward method is to step back
from normal modes and solve the time-dependent equa-
tions (2a)-(2d) by numerical or analytical means. Let
the system be undriven for t < 0 and driven at a single
frequency subsequently. (This could be realized by driv-
ing a boundary motion at a single frequency or consider-
ing a cavity with small k,, in which case the natural fast
modes act as a steady driver.) If the single-fluid equa-
tions are employed, we find an accumulation of energy
at the Alfvén layer [Radoski, 1974; Allan et al., 1986;
Inhester, 1987; Lee and Lysak, 1991; Wright, 1992a,b;
Mann et al., 1995]. The amplitudes of the fields at the
Alfvén layer increase with time, while becoming more
localized in the z direction. There is an accumulation of
energy at the Alfvén layer; the energy density variation
with = has a peak at the Alfvén layer whose amplitude is
proportional to 2 and whose width scales as ¢}, giving
the energy integrated across the Alfvén layer increas-
ing as t [Wright, 1992b]. We shall adopt the increasing
amplitude and energy at the Alfvén layer as our work-
ing definition of the manifestation of a “resonance” in
a time-dependent system.

If the two-fluid equations are solved, similar behavior
is observed until times when the solution develops spa-
tial scales that are comparable to the electron inertia
length [Rankin et al., 1993; Wei et al., 1994]. At this
point, two-fluid effects become important and the first
term on the right-hand side of (2b) becomes significant.
(The second term on the right-hand side of (2b) is of the
order of w/wy, which is independent of the cross-field
scale of the wave.) For early times in this solution there
is no significant difference between the single-fluid and
two-fluid solutions. For large times the two solutions
will differ significantly; the single-fluid solution will con-
tinue to develop ever finer scales and larger amplitudes
at the Alfvén layer, while the two-fluid solution begins
to mode convert the Alfvén wave in the “resonant” layer
to an inertial electron Alfvén wave which propagates
across the background field on the higher Alfvén speed
side [Wez et al., 1994; P. M. Bellan, Mode conver-
sion into non-MHD waves at the Alfvén layer: The case
against the field line resonance concept, submitted to
Journal of Geophysical Research, 1996]. Thus the
two-fluid equations prevent the continual increase in en-
ergy at the Alfvén layer at large times. What is impor-
tant for us is to determine at what point the two-fluid
effects become significant for ULF pulsations.

Normal Mode Summation

Although a single normal mode cannot be used to
describe the evolution of a real system, a summation
or integral of the normal modes can [Barston, 1964;
Goedbloed, 1983; Cally, 1991; Mann et al., 1995], and
it is for this reason that the modes are so useful. If the
single-fluid limit is taken, the normal modes may con-
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tain singularities. However, a properly constructed sum
of these singular modes yields a solution in (z,t) which
is finite and well behaved, with no singularities [see
Barston, 1964; Goedbloed, 1983; Cally, 1991; Mann
et al., 1995]. Of course, we could work with the two-
fluid normal modes and sum these to generate a realistic
evolution. The solution resulting from the nonsingular,
two-fluid normal modes would be the same as that de-
rived with the single-fluid, singular normal modes until
such time that the right-hand side of (2b) becomes sig-
nificant. At this point the single-fluid approximations
start to become invalid and the two solutions will differ.
The summed normal mode solutions will give identical
results to the integrated causal equations discussed in
the previous subsection. Thus accumulation of energy
at the Alfvén layer will occur until electron inertia scale
lengths are reached, at which point radiation of inertial
electron Alfvén waves suppresses further growth. Until
then, the development is identical to that of a single-
fluid Alfvén “resonance” as we have defined it.

An important point in deciding if a single-fluid de-
scription is valid when describing a real system is that
the approximations must be checked against the real
(or summed normal mode) solution. It should never be
applied to a single normal mode. It does not matter
if a singular mode has infinite amplitude and vanishing
scale length. What matters is if the amplitude and scale
lengths of the summed (physically meaningful) solution
violate the single-fluid approximations.

4. Spatial Scales

Recently, Mann et al. [1995] have shown how time-
dependent, ideal, cold plasma solutions develop increas-
ingly fine structure in time. One can think of each
field line tending to oscillate with its natural Alfvén fre-
quency, w4(z). As time passes, neighboring field lines
drift out of phase with one another and fine spatial
'scales result. We term the local spatial scale the “phase-
mixing length” L, which is the distance between field
lines with the same phase. To an excellent approxima-
tion we find

27

= — 9
ph wlA t ( )
We can invert (9) to define a “phase-mixing time” T,
which is the time it takes for phase mixing to reach

some scale L.
2r

T = oL (10)
Mann et al. [1995] note that these relations can be
used to decide when a single-fluid solution will develop
scales such as the electron inertia length or ion gyro-
radius, which would indicate that the solution would
cease to be a good approximation to reality. Two-fluid
effects begin to become important when spatial scales
of the order of the electron inertia length (£, = ¢/wpe)
are achieved. Rankin et al. [1993] and Wei et al.
[1994] suggest that a scale of 5 or 10, is adequate. We
shall follow the suggestion of Mann et al. [1995] and
estimate the time it will take to develop this scale.
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Simulations

To test our predictions we apply our method to the
numerical results of Wes et al. [1994]. In terms of their
time unit 7),, we calculate the phase-mixing time to
reach a scale of 104, to be 7 = 3.4T},. Wei et al. [1994]
ran their simulations twice (once with electron inertia
and once without). They then superpose the results and
look for differences. Wei et al. [1994, Figure 4] display
a snapshot at ¢ = 2T, in which there is no noticeable
difference. Wes et al. [1994, Figure 5] is a snaphot at
t = 47T,, and we would expect some differences to be
visible now. Indeed, this is the case. Relatively small
but significant differences exist between the two solu-
tions. Further evidence is shown by Wei et al. [1994,
Figure 7] which displays the two simulation results at
times 2T}, 4T, 61, and 8T,. Once again, theré is no
difference at ¢t = 27}, small but definite differences at
t = 4T,, and increasing differences at later times. A
crucial requirement for a time-dependent system to ex-
hibit two-fluid effects is the development of fine scales
via phase mixing, which is a single-fluid effect!

Magnetosphere

The above analysis shows that our method of decid-
ing when two-fluid effects become significant is reliable.
We shall now apply the method to realistic magneto-
spheric parameters for ULF pulsations that are found
on dipole-like field lines. First, we need to choose some
representative equilibrium quantities. We take a rep-
resentative field line to have an invariant latitude of
A =67° (i.e., L = 6.5). The Alfvén frequency and its
gradient can be estimated from data. Poulter et al.
(1984, Figure 2| show that the period at A = 67° is

about 400 s, and the gradient is 100 s per L shell. Thus
ws = 2.5 mHz and W'y(A = 0) = 5.7x1071° s7'm™,
where A is the latitude. The gradient near the iono-
sphere (A = A) will increase by a factor of 31.5 due to
the convergence of field lines. Taking the electron num-
ber density at the equator and ionospheric footpoint (at
an altitude of 300 km in the F region) to be 107 m™3
and 10 m~3, respectively, we find the electron inertia
lengths are 1.68 x 10 m and 17 m.

Employing (10) we are now able to estimate how
many cycles the pulsation must survive before a scale of
104, is reached. We find 2000 cycles are required for the
equatorial region and 5 million cycles for the ionospheric
end! So the wave must survive for the order of 2000 cy-
cles before we need to concern ourselves with two-fluid
effects. ULF data show that pulsations do not live this
long but typically survive for 5 to 20 cycles, suggesting
that the two-fluid corrections are insignificant.

The situation is complicated somewhat by the vari-
ation of plasma density (and thus £, which is propor-

tional to ng 2) along the field line. Moreover, the sep-
aration of L shells decreases with latitude according to

the factor
cos® \

0= V1 +3sin? A ()

The criterion of the phase-mixing length equaling 104,
will be satisfied first at a latitude where £.(\)/s(\) is a
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maximum. Suppose 1,  r~¢ over most of the field line,
where the radial distance r may be parameterized in
terms of the latitude and equatorial radial distance (rg)
by r = rocos’? A\. For ¢ > 6 or less than about 3, two-
fluid effects will first become evident at the equatorial
or ionospheric sections of the field line, respectively. For
intermediate values of q it is easy to show that two-fluid
effects initially occur at a latitude )\, given by

4(g —3)
3(g—2)

For example, if ¢ = 3.5 on an L = 6.5 field line, two-
fluid effects will first manifest themselves at an altitude
of 2 Rg. We still need to estimate the number of cycles
for phase mixing to reach 104, at this position. Let us
choose quantities conducive to the development of two-
fluid effects by assuming that there is a strong density
depletion at altitude 2 Rz such that n, =5 x 10 m™3.
The wave will now need to phase-mix for 85 cycles,
which is still much longer than the lifetime of field line
resonances.

cos? )\, =

(12)

5. Discussion and Summary

The fact that standing Alfvén wave pulsations last
for 10 or so cycles rather than the infinite lifetime an
ideal single-fluid calculation would suggest means that
some important ingredient is missing from this model.
Of the refinements listed at the beginning of section 2
it is likely that the most significant omissions are dissi-
pation and nonlinear terms. Newton et al. [1978] and
Allan and Knoz [1979] show that realistic ionospheric
conductivities will give a damping rate v/w of order
0.01. Thus the e-folding decay time is about 15 cycles,
which is in good agreement with observations. When
a realistic value of ionospheric dissipation is included,
the smallest scales of the normal modes are restricted
[Wright and Allan, 1996] and it seems unlikely that
the electron inertia length will be reached. Allan [1992]
and Tikhonchuk et al. [1995] have shown that non-
linear effects can also be important and are required to
understand the distribution of plasma along field lines.

An ideal, cold, linear description of a plasma neglects
many processes. For ULF Alfvén pulsations it seems
that the most important omissions are probably dissi-
pative and nonlinear terms. The neglect of two-fluid
effects (i.e., electron inertia) is an excellent approxima-
tion during the lifetime of typical pulsations found from
dawn through noon and dusk. Resonances in the mid-
night quadrant with extreme plasma depletion in the
auroral zone could perhaps develop two-fluid behavior
after 85 cycles, which is still several wave lifetimes. It
may be possible that some extra ingredient such as non-
linear chaotic phase-mixing could yield two-fluid behav-
ior within the wave’s lifetime under extremely favor-
able conditions, but this has not been demonstrated.
While two-fluid effects are not important for the type of
ULF pulsations described above, we note that Streltsov
and Lotko [1995] suggest electron inertial and kinetic
effects may become significant in thin layers around iso-
lated density enhancements where the gradient of the
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Alfvén frequency may be much larger than the value
adopted in our equilibrium magnetosphere. Indeed, we
do not claim that ULF pulsations will never have scales
small enough that two-fluid effects are important. We
are merely pointing out that these scales will not be
achieved through “resonant” linear MHD wave coupling
for realistic timescales. Thus some other effect must be
responsible for producing small scales when (or if) they
exist.

We conclude that two-fluid corrections to the tra-
ditional single-fluid analysis are not of importance in
the ULF resonant coupling model proposed by South-
wood [1974] and Chen and Hasegawa [1974] for typ-
ical magnetospheric conditions. The singular normal
modes of these studies are certainly worthy of calcu-
lation and indicate where resonances will grow in real
time-dependent systems. When dissipative effects are
introduced to a single-fluid analysis the arguments of
the ideal, singular functions acquire a small imaginary
component which removes the singular behavior. Con-
siderable insight and understanding of resonant wave
coupling have been achieved through studying the sin-
gular normal modes and their relation to regular dissi-
pative normal modes within the single-fluid MHD limit.
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