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Abstract. We investigate linear MHD wave mode coupling in the cold plasma limit
when the equilibrium density (p) varies along the equilibrium magnetic field (B).
Our numerical simulations indicate that efficient fast/Alfvén mode coupling persists
even when (B -V)p # 0. The time-dependent picture we develop asymptotes to a
normal mode for large t and also recovers the (B - V)p = 0 singularity qualitatively.
When applied to waves in the magnetotail, we find that Alfvénic disturbances will
have an extended structure across the magnetic field and that Alfvén wave packets
should be excited on plasma sheet boundary layer (PSBL) or mantle field lines.

Alfvén waves driven on PSBL field lines are probably the most observable signature

at Earth of wave coupling in the distant tail.

1. Introduction

The large-scale reconfiguration of the geomagnetic
tail during flux loading or substorms is described nat-
urally in terms of propagating MHD waves. Since the
tail is nonuniform the different MHD waves will couple
to one another, and this is likely to be important in re-
gions where the Alfvén speed has a significant gradient
such as the plasma sheet boundary layer (PSBL) or the
plasma mantle.

Although fast mode waves have been observed in the
tail lobe by Elphinstone et al. [1995], it is far easier to
observe Alfvén waves owing to their guided nature and
associated lack of attenuation. Indeed, Alfvén waves
that are incident upon the ionosphere produce clear sig-
natures in the F region drift velocity in radar data [e.g.,
Walker et al., 1992] and ground-based magnetometer
chains [e.g., Ziesolleck and McDiarmid, 1994], and also
optical auroral emissions [Samson et al., 1992).

There is general agreement that efficient fast and
Alfvén wave coupling may take place in an equilibrium
for which (B - V)p = 0. Of course, a real tail equi-
librium will never satisfy this condition, and is it im-
portant to address the more realistic situation where
(B -V)p # 0. Few studies have considered this sit-
uation [Hansen and Harrold, 1994; Schwartz and Bel,
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1984; Wright and Garman, 1998), and they present con-
flicting results. Evidently, this issue requires more in-
vestigation and clarification, and this is the principal
motivation for the present calculation. It is clearly of
great importance to understand the coupling of waves
in the (B - V)p # 0 limit since coupling is most likely to
occur in the nonuniform mantle or plasma sheet bound-
ary layer. Even a simple local one-dimensional model of
these regions which assumes (in GSM coordinates) p(z)
and a constant field strength must admit the possibility
that the field is not entirely in the z direction, but may
have some, albeit small, z component (see Figure 1).

Recently, attention has focused upon Alfvén waves
originating from the PSBL and mantle. A. Wright et
al. (Phasemixing and phase motion of Alfvén waves on
tail-like and dipole-like magnetic field lines, submitted
to Journal of Geophysical Research, 1998; hereinafter
referred to as submitted manuscript) present observa-
tions of optical emissions which are thought to occur
on field lines mapping to the PSBL. The auroral emis-
sions show a phase motion (equatorward) that is oppo-
site to that observed on closed field lines. They suggest
that details of wave coupling are different on closed and
(effectively open) PSBL field lines and that this can
explain the reversal of auroral phase motion. Clearly,
the details of Alfvén wave excitation in the magneto-
tail must be understood, as this provides a powerful
method for investigating the equilibrium structure of
the tail and wave sources within it. These investiga-
tions will also lead to a more complete understanding
of data sets associated with the tail.
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Figure 1. The equilibrium model has a uniform mag-
netic field B = B(cos#,0,sinf), § being an arbitrary
angle. The density p depends solely upon z, and conse-
quently, if 6 is nonzero p changes along a field line.

To date, most studies have concentrated upon one-
dimensional tail equilibria in which quantities vary in
the z coordinate and the magnetic field is taken to
be parallel/antiparallel to . Within such an idealized
model, fast waves which do not propagate across the
tail (ky = 0) decouple from the Alfven mode, and these
normal modes (o< exp(—iwt)) have received much at-
tention [e.g., Hopcraft and Smith, 1986]. A summation
of these modes can describe how impulsive fast mode
sources, such as substorms, may propagate along the
tail waveguide [Edwin et al., 1986; Berghmans et al.,
1996]. Indeed, Edwin et al. [1986] suggest this may
explain the classic Pi2 signature.

If waves are considered for which ky may be nonzero,
the equilibrium described above will generally couple
fast and Alfvén waves. Seboldt [1990] and Liu et al
[1995] both considered solutions with a dependence
o expi(kyz + kyy — wt) and showed that the well-
known Alfvén resonance occurred at a particular value
of z for which the Alfvén frequency (wa(z) = ksVa(2))
matched the normal mode frequency. Formally, this so-
lution is identical to the result established by Southwood
[1974]. Recently, Allan and Wright [1998] have gener-
alized this work to the time-dependent domain by solv-
ing the impulsively driven equations numerically. They
found that fast and Alfvén waves were still coupled, but
an extended layer of field lines (probably in the PSBL)
has Alfvén waves excited on it preferentially.

The equilibrium in all of these studies (except for
Hansen and Harrold [1994], Schwartz and Bel [1984]
and Wright and Garman [1998]) satisfies (B - V)p = 0,
and the associated linear ordinary differential equation
(ODE) of the normal mode is singular and second-order.
All these studies showed that if the equilibrium density
varied along the background field, as must be the case
in the real magnetotail, the resulting normal modes of
the governing fourth-order equation were not singular.
Hansen and Harrold’s [1994] solution had some unusual
properties, for example, the time-averaged z component
of the Poynting flux was found to be dependent on z.
It is essential that this system is understood properly
if we are to be able to interpret data relevant to wave
coupling in the tail. Wright and Garman [1998] reex-
amined the Hansen and Harrold [1994] calculation and
noted some fundamental differences between their so-
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lution and that of Hansen and Harrold [1994]. In par-
ticular, the time-averaged z component of the Poynting
flux is independent of z, and although efficient coupling
of fast and Alfvén waves still occurs at the “resonant”
position, the Alfvén waves propagate away from this
position, preventing the formation of a singularity.

Although Wright and Garman [1998] found evidence
of strong wave coupling in the normal modes of the
fourth-order equations, even in the limit (B - V)p — 0,
their character was completely different from those of
the second-order equations associated with the case
(B-V)p = 0. In the latter case, there is an accumulation
of energy at a certain position where the Alfvén wave
fields have infinite amplitude. In the former case, there
is no accumulation of Alfvén wave energy at any specific
position. The calculation we present here is able to show
that these two contrasting types of solution are actually
different limits of the more general time-dependent so-
lution. We provide quantitative criteria for when the
different types of behavior occur, and this enables us
to deduce the structure of driven Alfvén waves. Essen-
tially, we find that for early times the evolution is simi-
lar to the more familiar resonant coupling which occurs
when (B - V)p =0 [e.g., Mann et al.,, 1995] and Alfvén
wave energy accumulates around the coupling (or reso-
nant) position. For large times energy is radiated away,
and the solution asymptotes to the nonsingular normal
modes found by Wright and Garman [1998].

Our main conclusion is that efficient fast and Alfvén
wave coupling can occur even when (B - V)p # 0. Our
results indicate that Alfvén waves driven by impulsively
generated fast modes within the tail (e.g., reconnection
events) may be observed on field lines mapping to the
PSBL, and we are able to suggest potential observations
that would support our theory. For example, we predict
whether these waves propagate toward or away from the
Earth and also toward or away from the plasma sheet.
It has recently been suggested that negative-energy sur-
face waves on the magnetopause can couple to Alfvén
waves in the plasma mantle [Ruderman and Wright,
1998], and we make predictions about the propagation
features of these waves, too.

The paper is structured as follows: Section 2 de-
scribes our model and relevant length scales; section 3
discusses three numerical data sets which demonstrate
the different character of possible waves; section 4 dis-
cusses the relevance of our results to data and describes
potentially observable results; and section b summarizes
our main conclusions. Details of the numerical scheme
and boundary conditions are given in the appendix.

2. Model and Governing Equations

We adopt the simple model suggested by Hansen
and Harrold [1994] in which a uniform magnetic field
is inclined at some angle 6 to the % direction; B =
B(cos8,0,sin6) (see Figure 1). The density is an ar-
bitrary function of z, p(z), so (B - V)p = Bsinfdp/dz
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is generally nonzero unless @ is identically zero. This
model may represent a portion of the northern half of
the tail.

Since the equilibrium is invariant in z and y, we may
seek solutions of the form

f(z,t) exp i(kox + kyy) (1)

Note that f(z,t) is a complex function. Following
Hansen and Harrold [1994], we neglect plasma pressure
and seek solutions to the ideal, linearized MHD equa-
tions,

P2 = (VAb)aB/ks (22)
%‘tl — Va(urB) (2b)

where b and u are the field and flow perturbations.
Note that the plasma acceleration is always perpendic-
ular to B, and thus

Uy = —u, tand (3)

Throughout the rest of this paper we shall use dimen-
sionless quantities: Lengths are normalized by the ex-
tent £ of the domain in z; density is normalized by
po (the density at either z = 0 or 1); magnetic fields
are normalized by B; speeds are normalized by V5 =
B/\/fopo (where V(z) = B/+\/pop(z) is the Alfvén
speed); and time is normalized by ¢/V}.

Eliminating u, in favor of u, using (3), the fields may
be written as the state vector

UT = (b:cra bz:i) byra byi; bzr, bzi, Uyr, Uysy Uzr, uzi) (4)

(the superscript T' denotes the transpose, and the sub-
scripts r and 7 denote real and imaginary parts, respec-
tively).

The governing equations (2) take the form

oU
S —FU =0 (5)

The vector F is defined in terms of the vector C and
matrix M,

ou
F+M~8—Z+C:Q (6)

where M is a 10 x 10 matrix whose elements (m;;) are
zero except for

mig = mg10 = secl (7a)
mar = gg = —sinf (7b)
mr3= mgg = —sinf/p (7¢)
mg1 = myg2 =cosl/p (7d)
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The elements of C are
—ky cos Quy;
ky cos Ouy,
kg cos Quy;
—kz cos Quy,
_ kg sec Ouy; — ky sin Quy;
C= —kg sec Ou,r + ky sinfuy, (8)
—(ky cos Obg; — kg cos Bby; + ky sin0b,;)/p
(ky cos Obgy — kg cos Oby, + ky sin6b,,)/p
kg cosBb,;/p
—kg cosbb,,/p

The motivation for writing F in terms of M and C is
that the z derivatives are isolated. This will be useful
when updating the equations numerically at the edge
of our domain, as centered differences in z may not be
employed there. Instead, we will sometimes use a char-
acteristic boundary condition for which the form in (6)
is required [Sun et al., 1995].

The solutions we present in this paper demonstrate
the importance of two length scales. We shall intro-
duce them here to facilitate a detailed interpretation of
the results to follow. The phase mixing length (Lpp) is
defined to be

dv

2w dwy
R kx-d—; (9)

L = wl - -
ph A dz

wht’
where w4(z) is the Alfvén frequency (xkyV4) of the
field line at z. This concept makes sense when 6 = 0,
l.e., a given field line is confined to a single z coordinate.
The formula for L,; shows how neighboring field lines
drift out of phase with each other as time increases if
they have different Alfvén frequencies (v’ # 0) [e.g.,
Mann et al., 1995]. L, is rather like the wavelength in
z, l.e., the distance between two peaks in displacement.
When 6 # 0, a single field line maps to all z, if we trace
far enough along the field. Thus the idea of each field
line having a unique Alfvén frequency that is a function
of z does not make sense. However, we shall see that in
certain limits the solution is very similar to the § = 0
case, and it is useful to define w4 (z) = k,V when 0 is
small.

When 6 # 0, Alfvén waves propagate in the z direc-
tion. After a time ¢ the distance propagated in z will
be of order

L,=V,t =Vtsinf (10)

(where we have neglected the variation of V with z in
this order of magnitude estimate).
We define o to be the ratio of L, and Ly,

L, N Vi?sin g d_V
Low s dz

a= (11)
where Ay = 27 /k;. We shall show that when o < 1
(i.e., L, < Lypp), the propagation in z is negligible, so
we may ignore the tilt of the field and set § = 0. The
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evolution should be similar to the solutions of Mann et
al. [1995] in this regime.

When a ~ O(1) the distance propagated in z (which
is now of order the phase mixing length) may not be
neglected, i.e., the tilt of the field is important, and the
solution will differ from the # = 0 case. We define the
time t. to be when a(t =t.) = 1.

If « > 1, for example, when ¢ is large, the tilt of
the field dominates the solution which no longer resem-
bles the # = 0 solutions. Indeed, for a steadily driven
(exp(—iwt)) system with o 3> 1, we would expect the
solutions to asymptote to the § # 0 normal modes de-
scribed by Wright ‘and Garman [1998], in which the
time-averaged z component of the Poynting flux is in-
dependent of z.

3. Numerical Results

Details of the numerical scheme accuracy and bound-
ary conditions are given in the appendix. We present
three sets of results here which focus upon different «
regimes. The different runs each have a density and
Alfvén speed profile that is suited to demonstrating cer-
tain features. The normalized Alfvén speed for each
model is shown in Figure 2. The Alfvén speed is uniform
for 0 < z < z; and 23 < z < 1, having the values V(0)
and V(1), respectively. Over the interval z; < z < 25
the Alfvén speed varies according to

V(z) = 5 (V(0) + V(1)

_% (V(1) = V(0)) x cos (71' A > (12)

22 — 21

1.5

-
o

Normalised Alfven Speed

05 Model 1
Model 2— — — -
Model 3—-—-—-
OO0l v v \
0.0 0.2 0.4 0.6 0.8 1.0

Z

Figure 2. The Alfvén speed profiles for the three mod-
els used in this paper. (Analytical forms are described
in the text.)
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The values of (21, 22, V(0), V(1)) are (0.1, 0.9, 1.0, 0.5),
(0.6, 0.7, 1.0, 0.5), and (0.1, 0.9, 0.8, 1.0) for models 1,
2, and 3, respectively.

31. Run1: <1

The parameters in this run are chosen to study the
early development of wave coupling, and the equilib-
rium model 1 is used (k, = 8.3776,7 = 1.0, k, = 1.0).
These parameters are such that if 8 = 0, we would ex-
pect there to be an Alfvén resonance where V(z) = 0.75,
i.e., z = 0.5. The boundary at z = 0 is held as a per-
fectly reflecting boundary, while the one at z = 1 has u,
forced with period 7 (see the appendix for details). Fig-
ure 3 shows uy, snaphots for the times ¢ = 2.5,5.0,7.5,
and 10.0. The dashed line is the result for § = 0 with
which we contrast the solid line for § = 0.01. At t = 2.5
the amplitude is very small, and u,, has a global struc-
ture, as it is associated with the fast mode. At later
times, uy, has a larger amplitude and is centred upon
z = 0.5, where Alfvén waves are expected to be excited.
The value of « for the different snapshots is also given.
We see that when o = 0.05 or 0.25, there is very little
difference between the tilted (6 = 0.01, solid line) and
untilted (¢ = 0.0, dashed line) solution. This demon-
strates that when L, < Ly, the tilt of the field is unim-
portant. At later times (¢ = 7.5 and 10.0) the distance
propagated in z by the waves is of order the phasemix-
ing length, and the two solutions differ increasingly with
time. The Alfvén waves excited around 2z = 0.5 may
propagate in z when # = 0.01, whereas when 6 = 0.0
the Alfvén waves must stay near z = 0.5. This prop-
erty manifests itself as the dashed line having a larger
amplitude than the solid line near z = 0.5.

3.2. Run2: 1< a <16

Run 2 is designed to study the medium-term evolu-
tion of the waves and employs the Alfvén speed in model
2. The dashed lines in Figure 4 at z = 0.6 and 0.7 de-
lineate the two regions 0 < z < 0.6 and 0.7 < z < 1.0,
which contain a uniform medium in which there will
be no wave coupling of fast and Alfvén modes. The
nonuniform section 0.6 < z < 0.7 is where any mode
coupling will occur.

The parameters used in run 2 are k, = 16.755,7 =
0.5,ky = 1.0,6 = 0.08, and Figure 4 summarizes the re-
sults taken up to the time ¢ = 8.0, when a = 16.0. This
large value of & means that the propagation of Alfvén
waves away from the coupling site should be an impor-
tant feature of the solution. On the basis of the results
of Wright and Garman [1998] we expect strong coupling
to occur at z = 0.65, where 27 /7 = k;V. The dura-
tion of the run is sufficiently short that Alfvén waves
will not reach the ends of the domain, so we employ the
reflecting boundary condition at z = 0 and the driven
one at z = 1.0.

The top panel of Figure 4 shows the structure of the
fast mode at t = 8.0 : u,, and b,, have an oscillatory
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Figure 3. Snapshots of uy, for run 1. The dashed lines
correspond to 6 = 0.0, and the solid lines correspond to
6 = 0.01. Other parameters are given in the text.

spatial variation for z > 0.7 and an approximately ex-
ponential decay for z < 0.6. The presence of a turning
point at z & 0.65 is also evident. The lower three panels
show the Alfvén wave fields. At ¢ = 2.0 (o = 1.0) the
waves are concentrated in 0.6 < z < 0.7, where mode
coupling is expected to occur. When ¢ = 4.0 (a = 4.0),
Alfvén waves are propagating into the two uniform re-
gions z < 0.6 (by, and uy, in phase) and z > 0.7
(byr and uy, out of phase). For Alfvén waves we ex-
pect uy/V = +b,/B, where the plus and minus signs
correspond to propagation antiparallel and parallel, re-
spectively, to B (since 8 is positive, B is directed from
z =0 to z = 1.). Thus, in normalized units, we expect
“Uuyr = +byr(z < 0.6) and uy, = —0.5by,(z > 0.7), in
agreement with Figure 4.

The bottom panel of Figure 4 shows a clear wave-
length in z emerging for the Alfvén waves when ¢ =
8.0 (o = 16.0). Wright and Garman [1998] give an ex-
pression for this wavelength

2w sin @
ke "V(ze)/V(z) — cos 0 (13)
where V(z;) = w/kycosf. They also show that for
small # the position z. and the quasi-resonant position
2, (where 2r/7 = k;V(2,)) are virtually identical; z, =
zr + O(6?%). (Note that we have allowed for the Alfvén
waves in z < 0.6 propagating to £ = —co, while those in

27
A (z) = E =
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z > 0.7 propagate to £ = 400, when adapting Wright
and Garman’s result; see later.) Equation (13) predicts
the wavelengths A, (z < 0.6) = 0.12 and A,(z > 0.7) =
0.06, which are plotted as horizontal lines in the bottom
panel of Figure 4. These lengths agree extremely well
with the peak-to-peak spacing in uy,.

It is interesting that the coupling region generates
Alfvén waves propagating in both directions; this is dif-
ferent from the normal modes derived by Wright and
Garman [1998] that only propagated to larger z (partic-
ularly clear in their Figure 5). The reason is that Wright
and Garman’s modes can be thought of as being driven
by the u, condition at z = 1 of u,(z = 1) exp i(kyz —wt)
for a suitable time origin. Taking the real part gives
cos(kzz — wt), which corresponds to propagation in the
positive & direction. The solutions presented here are
generated by a boundary condition at (z = 1) of the
form u,(z= 1,t) exp i(k;z). Taking the real part yields
terms of the form u,,(1,t) cos(kyz) (see section A4 for
more details), which do not have phase propagation in
z, but stand. This can be seen by driving the bound-
ary at a single frequency, so the z and ¢ dependence
of the physical z component of the velocity at z = 1

ol
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— —0.4F} |y
[ £ ]
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0.2 0.4 0.8 1.0

Figure 4. The top panel shows a snapshot of the
fast mode fields u,, (solid line) and b,, (dotted line).
The bottom three panels show successive snapshots of
the Alfvén wave fields uy, (solid lines) and by, (dotted
lines). The parameters for this run (run 2) are given in
the text.
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is cos(wt) cos(kyz). We can, of course, consider this
standing wave as a superposition of traveling waves,

2 cos(wt) cos(kgz) = cos(kyz—wt)+cos(kyz+wt) (14)

The Wright and Garman [1998] solution only has
terms like the first one on the right-hand-side of (14).
By superposing two Wright and Garman modes (one
with kg positive, the other with k; negative) we would
get solutions that radiated waves in both z directions
from the coupling site, like the results in Figure 4. In-
deed, when calculating the wavelength in (13) we had
to allow for a change of sign of k, for the waves in
0 < z < 0.6 when adapting the Wright and Garman
formula. .

The Alfvén waves propagating in each direction in
Figure 4 carry a time-averaged (over one cycle) nor-
malized Poynting flux in the z direction of (S,) =
B, (tyrbyr + tyibyi)/2 which is actually equal and op-
posite for the two groups of waves. (This result was
established quantitatively in other results that are not
shown here.)

33. Run 3: a>1

Run 3 is designed to study the long-term behav-
ior of the waves and confirms that the results can
asymptote to a normal mode, for which (S,) should
be independent of z. The parameters used in this run
(which used the Alfvén speed variation of model 3) are
ky = 6.6139,ky = 1.0,7 = 1.0, and 6 = 0.2. The simu-
lation is run up to a time of 25.0, during which time the
Alfvén waves will have propagated to the boundaries at
z=0.0 and 1.0.

In order to allow the system to asymptote to a “nor-
mal mode,” where all quantities vary as exp(—iwt), it
is necessary to drive the system but also to allow any
Alfvén waves that reach the boundaries to propagate
out of the domain 0 < z < 1, rather than be reflected
~and trapped. This is accomplished easily enough at
z = 0, where the outgoing boundary condition is em-
ployed. The boundary at z = 1.0 is more awkward,
since we wish to drive a fast wave here, but also allow
Alfvén waves to propagate out of the simulation do-
main: The driven/leaky boundary condition described
in section A4 produces this type of behavior and was
imposed at z = 1.0.

The dependence of (S,) on z for four time intervals
is shown in Figure 5. (S,) is always negative and repre-
sents the net transport of energy from the driven bound-
ary (z = 1.0) in the negative z direction to the leaky
boundary (z = 0.0). For 0 < t < 1.0, (S,) is zero for
0 < z < 0.2, as the waves launched from z = 1.0 have
not reached there yet. At a later time (1 < ¢ < 2, dot-
ted line), energy is leaking out of the z = 0 boundary
but not as quickly as it is being supplied at z = 1.0. As
early as 2 < t < 3 (dashed line), {(S,) is showing indi-
cations of becoming independent of z, and at a much
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Figure 5. Plots of the time-averaged z component of
the Poynting flux (S,) for run 3. The curves show (S,)
at different times. As time increases, (S;) becomes in-
creasingly independent of z.

1.0

later time (24 < t < 25, dash-dotted line) (S,) is es-
sentially constant. Indeed, a(t = 25) =~ 50 for this run,
suggesting the solution should look more like a normal
mode than a (6 = 0) growing resonance. The fact that
(S,) is independent of z rather than having a “jump”
across the (6 = 0) resonant position confirms this inter-
pretation.

4. Observations

In this section we address the implications of our re-
sults for wave behavior in the tail and describe the sig-
natures likely to be seen in ground-based and satellite
data sets. Figure 6 shows a diagram of the magnetotail.
In the center of the plasma sheet is a region that radi-
ates fast waves (e.g., a reconnection event). Allan and
Wright [1998] show that on the sunward/antisunward
side of the source there only exist fast waves propagat-
ing in the sunward/antisunward direction. Of course,
a general fast mode disturbance may be thought of as
a summation of propagating k, Fourier modes. Allan
and Wright’s [1998] detailed solutions (in the o < 1
regime) show how the resonant wave coupling at a given
z is dominated by a single k; mode and is thus similar
to the model presented here. The numerical solutions
we considered had a standing structure which corre-
sponded to the combination of two solutions propagat-
ing in the sunward and antisunward directions. Evi-
dently, we need only consider each component in isola-
tion for this particular situation.

In the northern PSBL we expect Alfvén wave prop-
agation to be parallel/antiparallel to B for observa-



WRIGHT AND ALLAN: EFFECT OF FIELD-ALIGNED DENSITY VARIATIONS

magnetosheath

S
tail lobe
Ecry PPN
= ——— P

T —-— PSBL
[5 @ plasma sheet
S
I A L—.: v.v.>

~ fast mode sources

//

Figure 6. A sketch of the magnetotail field in the (z, z)
plane. Fast waves may originate from the center of the
tail from reconnection events and substorms or from
the magnetosheath flow, which may excite a negative-
energy fast surface wave on the magnetopause. These
waves may couple to Alfvén waves (denoted by the rip-
pled arrows) in the plasma sheet boundary layer or the
plasma mantle. The direction of propagation of the
Alfvén waves is shown in these regions.

tions on the sunward/antisunward side of the fast mode
source region. In the southern PSBL we expect Alfvén
wave propagation to be parallel/antiparallel to B for
observations on the antisunward/sunward side of the
fast mode source region. Hence a positive identifica-
tion of a propagating Alfvén wave in the PSBL is suf-
ficient to constrain the location of the observing space-
craft relative to the fast mode source region. Once the
earthward traveling PSBL Alfvén waves reach the iono-
sphere and suffer significant reflection, the structure
of the waves will be composed of an incident and re-
flected Alfvén wave which will locally look like a stand-
ing wave if the waveform is observed after the initial
wave front has reached the ionosphere, which is the
most likely case. Thus low-altitude satellites may see
a standing Alfvén wave signature, whereas satellites in
the deep tail will see propagating wave signatures. Un-
fortunately, published ULF wave observations from low-
altitude spacecraft have generally concentrated on day-
side events [e.g., Potemra and Blomberg, 1996]. There is
little available information on the behavior of potential
PSBL waves at low altitudes.

It has recently been suggested that negative-energy
surface waves on the tail’s magnetopause can exist when-
ever the sheath flow speed has a magnitude between the
sheath sound speed and tail lobe Alfvén speed [Ruder-
man and Wright, 1998]. (If the flow speed exceeds the
Alfvén speed, the boundary suffers from the Kelvin-
Helmholtz instability.) These authors show how the
negative-energy wave must propagate antisunward, and
also that it may drive Alfvén waves in the nonuni-
form plasma mantle. If there are no field lines pass-
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ing through the tail magnetopause (B = Bx) then the
analysis of Ruderman and Wright is appropriate. How-
ever, if field lines pass through the magnetopause so
that the mantle field is tilted, as shown in Figures 1
and 6, then the behavior described in the present paper
is applicable. Mantle Alfvén waves driven by magne-
topause waves should have strictly antisunward prop-
agation (i.e., antiparallel/parallel to B in the north-
ern/southern mantles). Consequently, the propagation
is always toward the magnetopause where the waves
may suffer partial transmission to the magnetosheath
or partial reflection back into the tail.

Whether the wave coupling occurs in the small or
large o limit requires a knowledge of the equilibrium
Alfvén speed variation, orientation of the field, the pe-
riod of the waves (7), and the number of cycles of Alfvén
waves excited (V). These quantities would have to be
estimated from a carefully analyzed set of observations,
but once they have been determined the following for-
mula may be employed (based upon equation (11))

(15)

Here we have taken the evolution time of the system
to be t = N7, a conservative minimum elapsed time for
the observed event. Taking the PSBL parameters used
by A. Wright et al. (submitted manuscript, 1998) as
typical, we have 7 = 670 s'and dV/dz ~ 100 kms™?! REI.
By estimating the number of cycles of waves in their
data we may use (15) to calculate the value of 6 for
which o = 1. Their data show about six cycles, but we
shall again be conservative and assume there were only
three coherent oscillations, as the entire event may not
have been a single wave packet. These values indicate
that to make o < 1 the background field would have to
have been aligned with the density contours to within
0.5°. Otherwise, « exceeds 1, and the tilt of the field is
significant. It seems extremely likely that the physical
tail equilibrium does not satisfy this stringent criterion,
and we conclude that wave coupling almost certainly
does not occur in the (B - V)p = 0 limit that most
previous studies have focused upon. However, we must
bear in mind that the simulation we have described here
considers only a single Fourier component in z. Recent
two-dimensional time-dependent simulations in a model
magnetotail [Allan and Wright, 1998] have shown that
the summation of such modes required to give the full
two-dimensional structure can result in quite different
behavior to a single Fourier mode. Therefore a true two-
dimensional simulation of the present system would be
of considerable interest.

dv
a=N? sin(ﬁ)r—c—l;

5. Summary

Our time-dependent simulations have demonstrated
that the configuration shown in Figure 1 can permit
efficient coupling between fast and Alfvén waves even
when 6 # 0. For o < 1 (satisfied when 6 is suffi-
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ciently small) the solution is effectively the same as the
6 = 0 case, and the fast energy flux coupled to Alfvén
waves will be independent of 6 (run 1). As time (and
«) increases the Alfvén waves propagate away from the
coupling site (run 2) and may asymptote to a normal
mode (run 3) in which the time-averaged Poynting flux
of the Alfvén waves and the fast wave energy flux cou-
pled to the Alfvén waves must balance. The Alfvén
wave Poynting flux has a z component proportional to
Bsin §(uyrbyr + uyiby;), and for small # this must be
a constant. We can now see how to recover the § = 0
singularity for a steadily driven system: As § — 0, the
constancy of Alfvén wave Poynting flux means that u,
and b, — co.” Moreover, the distance in z propagated
by the Alfvén waves is L, = Vitsinf — 0 as § — 0.
Thus the Alfvén waves have an infinite amplitude over
an infinitesimal region, i.e., we have a singularity which
is familiar from the second-order § = 0 normal mode
equations [Southwood, 1974]. Explicitly, the amplitude

of the Alfven waves is proportional to 1 /\/5, and the’

width in z is proportional to 6 (once L, > Lyy).

A realistic model of wave coupling in the geomagnetic
tail must allow for the fact that the fields are not pe-
riodic in z but have a finite extent in z as well as in
time. This will result in Alfvén wave packets being ex-
cited (rather than the Alfvén wave trains of the present
simulations), which will then be guided along the back-
ground field. The Alfvén waves arriving at Earth are
likely to be more easily observed than fast waves (es-
pecially those originating from the distant tail) whose
propagation is more isotropic, which results in attenu-
ation. '

Appendix

The numerical method used to update the state vec-

tor (5) is the leapfrog-trapezoidal scheme [Zalesak, 1979].

Given the state vector (U) at two times (¢ and t — At),
we apply the following algorithm to calculate U't4%:

Ul = U2 4 2AF! (16a)
Bo= S(F 4T (16b)
yitat U + AtF” (16¢)

U' is a prediction for Ut2? based upon U*~2* and
Ft = F(U"). F' = F(U'") is thus an estimate of
- (8U/8t)ttAt so F* gives (U/0t)!+442. Finally, we
take a centered time integration to find a better es-
timate of U'*4*. The fact that all time integrations
are centered means the scheme is second-order accu-
rate in time. The z derivatives required to calculate
F in (6) are also taken as centered differences, so the
scheme is second-order accurate in space also. Conver-
gence tests were performed and conservation of energy
and V - b checked. When choosing the number of grid
points (n), it is important to ensure that L,; and A,
(the wavelength in z; see Wright and Garman [1998])
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are well resolved (typically, Az < min(Lpy, A¥)/10, the
plus-minus sign corresponding to the waves propagat-
ing parallel and antiparallel to B). The time step (dt)
is then chosen according to dt < Az/V.

To estimate the numerical error, we calculated the
magnetic and velocity fields at a specific position (zp)
and time (o), normally the finishing time of the simula-
tion. The resulting values will depend upon the spatial
resolution (Az) and the time step (At); f(zo,t0, Az, At),
where f is a component of b or u. The simulation
was then repeated at a higher resolution (Az/2, At/2)
to determine f(zp,to, Az/2,At/2). The resolution was
increased until the resolution had converged to an ac-
ceptable error. The relative error (€) in the fields is
estimated from

€= f(ZO,to, AZ,At) - f(Z(),to, AZ/2,At/2) :
- |f(to, Az/2, At/2)|

where the denominator represents the typical magni-
tude of f over the z domain at t = ¢;3. Below we give
details of the numerical error of the wave fields deter-
mined by this criterion, the spatial and temporal reso-
lutions employed, and the results of checking the degree
to which invariant quantities of our governing equations
were conserved at the end of the run time:

Inrun 1, n = 1000 and dt = 5 x 107°. Wave fields
are determined to 0.05%, energy conservation is met to
0.01%, and V - b = 10~11,

In run 2, n = 2000 and dt = 2.5 x 10~%. Wave fields
are determined to 0.05%, energy conservation is met to
0.02%,and V-b =2 x 10~19,

In run 3, n = 400 and dt = 1.25 x 10~%. Wave fields
are determined to 0.03%, energy conservation is met to
0.08%, and V-b = 5 x 10~

Of course, centered differences are not possible at the
ends of the spatial domain, and below we give details of
the variety of boundary conditions that were employed
in the the three numerical experiments described in this
paper. Generally, the boundary conditions were cho-
sen for numerical convenience or to elucidate a certain
type of behavior in our preliminary studies. However,
these boundary conditions may also be a reasonable
first approximation to representing various boundaries
in the magnetotail, and we discuss this below. Our one-

dimensional model does not permit a realistic inclusion
of the ionospheric ends of the field lines. Thus our re-
sults are applicable to the evolution of waves in the tail
before they encounter the ionosphere.

(17)

Al. Reflecting Boundary Condition

At z = 0 we frequently impose a perfectly reflecting
boundary condition which has {(S,(0)) = 0. A consis-
tent choice has nodes of ugy, Uyr, Usr, bai, byi, and by;
and antinodes (i.e., d/dz = 0) of ugs, Uys, Uzi, bgr, byr,
and b,.. In practice, this is done by introducing a
ghost cell at z = —Az, and when calculating U' and
U2 for this cell a simple symmetry or antisymmetry
about z = 0 is exploited. For example, the elements
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ugr and ug; are defined as ug,(—Az) = —ug (+Az),
and u,;(—Az) = ug(+A2), etc. A reflecting symme-
try boundary condition would be a good representation
of the center of the plasma sheet (PS) when the tail is
driven symmetrically from the northern and southern
lobes.

- A2. Outgoing Boundary Conditions

An outgoing boundary condition employs the char-
acteristics solution of Sun et al. [1995]. The z deriva-
tives at the boundary are calculated using one-sided-
derivatives, and no ghost cells are required. The eigen-

values and eigenvectors of the matrix M in (6) are cal- .

culated. The eigenvalues correspond to the group ve-
locity (in z) of different wave modes and the eigenvec-
‘tors to the perturbations of these waves. The quantity
M - 9U/dz may be decomposed into a superposition of
the different wave modes. For an “outgoing” bound-
ary condition we set the amplitude of any modes with
a group velocity into our simulation domain to be zero.
Thus F is calculated based upon waves propagating out
of our simulation domain, and the solution loses energy
through this boundary.

This boundary condition was chosen for numerical
reasons so that we could study how waves are radi-
ated from the coupling site. (Waves returning from
the boundaries would cloud this picture.) The outgoing
boundary condition could represent the PS/PSBL inter-
face when the duration of the simulation is less than the
transit time across the PS. In this limit, waves would
propagate into the PS but would not return from it.

A3. Driven Boundary Condition

The driven boundary condition updated U accord-
ing to (5) and (6) by using one-sided derivatives at the
boundary and no decomposition in terms of character-
istics. The equations are driven by prescribing some
variables as a function of time on the boundary and
simply overwriting these values to the appropriate el-
ements of U and U*4'. (See Wright and Rickard
[1995] for more details.)

The driven condition we employed on the boundary
was
(1= cos (2rt/7)’ 0<t<T1/2

1
1
Uzr = Uzi = (18)
cos (2mt/T — ) t>71/2
where the period 7 may be chosen. The velocity over
the first half cycle is chosen such that u, and its deriva-
tive are continuous at ¢t = 0 and 7/2. Only u, is driven.
The other elements of U are updated on the boundary
using (5) and one-sided derivatives. This driving con-
dition could represent the motion of the magnetopause
resulting from a strong magnetosheath flow.
Taking the real part of u,(z = 1,t)expikzz to cor-
respond to the physical displacement of the bound-
ary yields u,, cos(kya) — uzisin(kyz) = u,,(cos(kya) —
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sin(kz2)), since u,, = u,; on the boundary. A lit-
tle manipulation renders this in the form —\/iuz,.(z =

1,t) cos(kyx —m/4) which, after a shift in x and ¢ origin,

clearly has the standing wave structure in « described
in and around equation (14).

Note that the algorithm in equation (16) requires
the state vector to be known at two consecutive time
steps. If we always choose to drive the system from
an unperturbed state at ¢ = 0, we may simply set
U2 = U% = 0 at the first two time levels, so long
as this is consistent with the driving condition in equa-
tion (18).

A4. Driven/Leaky Boundary Conditions

When driving the system for a long period of time (so
that the solution should asymptote to a normal mode),
it is inevitable that some Alfvén waves will reach the
driving boundary. The driving condition described in
the previous subsection actually reflects any fast waves
that are incident upon it [Wright and Rickard, 1995],
and this is appropriate for certain magnetosheath flow
speeds [Mann et al.,, 1998]. If we wish to asymptote
to a normal mode, it is necessary to lose some energy
and transients through the boundary. We achieve this
by imposing an outgoing characteristic update on the
Alfvén fields b, and uy, while we reflect any fast wave
that is incident upon the driven boundary. The latter
is implemented by first introducing an incoming fast
characteristic wave of equal amplitude to the outgoing
fast wave, which has the effect of reflecting any fast
mode incident upon the boundary. (Note that the fast
characteristic eigenvector contains nonzero b, and wu,
elements.) Second, the driving condition in equation
(18) is added to the resulting fields to provide a driven
wave component as well.

Although our main concern in devising these bound-
ary conditions was numerical convenience and stability,
it is reasonable to expect the fast and Alfvén waves
to have different reflection and transmission properties.
The driven/leaky boundary condition could be a good
model of the magnetopause which is reflective to fast
waves but transmissive to Alfvén waves.
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