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1. Introduction

Bellan’s Comment [this issue, hereinafter B] has sug-
gested that our previous article Wright and Allan [1996a]
(hereafter WA) contains errors. We find no substance
to these criticisms. B concentrates upon normal modes,
and fails to appreciate the central time-dependent re-
sult of our article: For typical conditions the inclusion
of ionospheric dissipation terms (which are far more im-
portant than B’s two-fluid terms) causes pulsations to
decay before the process of phase mixing has time to de-
velop spatial scales of order the electron inertia length,
when two-fluid effects would become important. We
also point out some basic errors in B’s analysis of the
fluid equations. Our previous conclusion that “The ne-
glect of two-fluid effects... is an excellent approxima-
tion during the lifetime of typical pulsations found from
dawn through noon and dusk” remains accurate.

We shall divide our reply into two sections. The first
addresses the importance of two fluid effects in time-
dependent systems, such as observed ULF pulsations;
the second (which may be of less interest to the general
reader) focuses upon properties of the single-fluid and
two-fluid normal modes.

Before proceeding any further we note that of the
three comments [Rauf and Tataronis, 1995; Ruderman
et al., 1995; Goedbloed and Lifschitz, 1995] written on
Bellan’s earlier work, two of them pointed out basic
misconceptions regarding the ordering of plasma quan-
tities in the fluid equations, in particular a supposed
contradiction concerning quasi-neutrality. To quote Ru-
derman et al. [1995, p. 3547] “This illusory contradic-
tion was widely discussed long ago and we are sorry to
have to repeat the well-known explanation.” Such or-
derings are derived in numerous plasma textbooks. B
contains a similar basic misconception about the order-
ing of plasma quantities, and we are also are sorry to
have to repeat well-known material here. Readers may
like to move on to section 2 if they are familiar with the
following material.
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B is confused over the orderings of terms in the ideal
linear two-fluid Ohm’s law (equation (2b) of WA);
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where ¢ is the magnitude of the unit of charge, and B is
in the z direction. WA state that when the single-fluid
limit is taken appropriately, the terms on the right are
small compared to those on the left-hand side. When
B disagrees with WA on this point, B disagrees with
every single-fluid MHD text ever written. B takes the z
component of the above equation to get B’s (26). Only
two terms remain; one from the left-hand side (E,),
and one from the right-hand side. Of course, these two
terms must be of the same order, and so B claims that
the surviving term on the left-hand side (F,) cannot
be neglected. The error B has made is to consider a
single component of the equation in a direction in which
the left-hand side vectors have a small magnitude. A
cursory reading of almost any MHD text makes it clear
that it is the magnitudes of the terms that should be
compared. There is nothing wrong with considering a
component of (1), but it must be done in conjunction
with the other components too, which is not done in
B - although this fact is acknowledged there. We shall
provide this service here by continuing from B’s (26)
and equations (2) of WA. It is easy to show that
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where £, = c/wp. is the electron inertia length and E
is the magnitude of E. Thus, if the wavelength is much
greater than the electron inertia length, E, is much less
than E. Equation (2) says in words: in the single-fluid
limit the magnitude of F, has nothing to do with the
magnitude of E.

It is acknowledged in B that “...FE, and m,. are both
small....” However, this is somewhat sloppy as the size
of dimensional quantities is ambiguous. It is far better
to look at dimensionless ratios, as in (2) above. B claims
that the limit of m./m; — 0 has nothing to do with B
(26) as the quantity does not appear explicitly. Assum-
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ing some characteristic time variation for the solution
(e.g., exp(—iwt)), it is trivial to write B (26) as

Ee (m0) _ (m_> (i) 3)
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Thus it is evident that E, does indeed depend upon the
ratio me/m;. B intimates that although F, is small this
does not mean that the parallel current is small. This is
nothing new to the MHD cognoscenti: the Alfvén wave
has long been celebrated for its ability to carry a field-
aligned current in the ideal single-fluid limit (E, = 0).

In B’s abstract the magnitudes of the fourth and sec-
ond derivative terms are discussed. It is impossible to
determine the size of these terms unless the magnitude
of d/dz is known. B seems to overlook this basic fact.
WA (p. 24,994) state that “T'wo-fluid effects begin to
become important when spatial scales [in z] of the or-
der of the electron inertia length are achieved,” and we
stand by that statement. If d/dz < 1/£., then the or-
der of the fourth derivative term is less than that of the
second. We demonstrate this property using B’s own
analysis in the text around our (5) and (6).

An undesirable feature of B is that it concentrates al-
most exclusively upon the properties of a single normal
mode, which can never describe a real time-dependent
system. Motivated by observations of ULF pulsations
WA tried to determine when two-fluid effects would be-
come significant, and this is the crucial issue to be set-
tled. All the discussion in B (except for the last small
subsections) focuses on a single ideal normal mode; this
is a distraction and does not enable B to comment on
what is the main conclusion of WA.

2. Time-Dependent Equations

Numerical studies of the evolution of single-fluid and
two-fluid MHD equations by Wei et al. [1994] show
that there is no noticeable difference between the two
solutions until the time at which spatial scales of order
10 electron inertia lengths (£, = ¢/wp.) are developed.
At this point a two-fluid term in Ohm’s law becomes
significant. The simulations show how the (now in-
valid) single-fluid equations develop even smaller scales
by continued phase mixing [Mann et al., 1995]. In con-
trast, the two-fluid solution does not develop smaller
scales but begins to radiate an electron inertial Alfvén
wave.

A simple way of estimating the time it takes to phase
mix to spatial scales of order 104, was given by Mann et
al. [1995], based upon the single-fluid solution. B criti-
cises our use of this relation as it is based upon single-
fluid equations which B claims are not valid. However,
we only use these equations for the early time devel-
opment when spatial scales are greater than 10£., dur-
ing which time the single-fluid approximation is valid.
Further support for the correctness of our calculation
comes from us estimating at what time the single-fluid

WRIGHT AND ALLAN: COMMENTARY

and two-fluid solutions of Wei et al. [1994] should begin
to show differences. WA (p. 24,994) state “we calcu-
late the phase-mixing time to reach a scale of 104, to
be 7 = 3.4T,.” Indeed, Wei et al.’s [1994] results show
no difference between the solutions at ¢ = 2T}, whereas
the results at ¢ = 47}, begin to show visible differences.
The excellent agreement between our estimate of when
single-fluid MHD becomes invalid and the independent
results of Wei et al. [1994] indicate that our estimate
is extremely reliable. If there had been any doubt, we
would not have used it in WA.

The picture that emerges for the growth of a steadily
driven Alfvén resonance is one where energy is fed into
the resonant layer which has a width proportional to 1/¢
and the wave amplitude is proportional to ¢. WA (p.
24,994) clearly state that this single-fluid description is
valid “until electron inertial scale lengths are reached, at
which point radiation of inertial electron Alfvén waves
suppresses further growth [of the resonance].”

B criticizes WA’s use of Wei et al.’s results as these
employed an unrealistically large value of the magneto-
spheric plasma resistivity. (Something that all numer-
ical studies do.) We can estimate the scale length at
which resistive effects become important in Wei et al.’s
simulation (e.g., from equation (4) of Wright and Allan
[1996b]). For We: et al.’s parameters it turns out that
this length is an order of magnitude smaller than the
scale length at which electron inertial effects become
important. This is why, as acknowledged in B, “... de-
spite this [large resistivity], Wei et al. ... see electron
inertial effects...” Thus WA are quite justified in us-
ing Wei et al.’s results to predict the onset of electron
inertial effects.

If Wei et al.’s [1994] resistivity had been even larger,
so that the resistive scale length was much greater than
10£,, they would not have seen electron inertial effects.
Indeed, WA’s argument is just this: WA (p. 24,995)
continue “An ideal, cold, linear description of a plasma
neglects many processes. For ULF Alfvén pulsations
it seems that the most important omissions are prob-
ably dissipative and nonlinear terms.- The neglect of
two-fluid effects (i.e., electron inertia) is an excellent
approximation during the lifetime of typical pulsations
found from dawn through noon and dusk.” The reason
WA claim that dissipative effects are more important
than two-fluid effects is because dissipation limits the
lifetime of the pulsations and hence places a limit on the
smallness of the scales that can be produced by phase
mixing. For realistic parameters ULF waves survive for
10 or so cycles, whereas the waves would need to phase
mix for at least 85 cycles (under extremely favorable
conditions) to develop scales of 10¢,.

B criticizes WA’s time-dependent picture by saying
that WA “abandon frequency domain analysis”, and
that “[WA’s time-dependent description] does not stand
scrutiny, because time domain signals can always be ex-
pressed as a Fourier sum of [normal modes].” B’s prob-
lem is that it never considers a sum of the modes and so
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can never deduce the time-dependent behavior. Under
certain circumstances a single normal mode may repre-
sent the state of a system for large times. This will be
possible for ULF pulsations. However, the main point of
WA is that dissipation is the most important correction
to single-fluid MHD. Ergo, if we are to approximate the
asymptotic behaviour of a ULF pulsation by a single
mode, we must include dissipation in the normal mode
equations. B has no dissipation in its equations, and so
they are not as realistic as WA’s description. Obviously,
a single ideal two-fluid normal mode is of little relevance
to the asymptotic state of dissipative ULF pulsations.
Nevertheless, the vast majority of B, and consequently
the rest of this Reply, are devoted to such a mode. The
reader who is not interested in these ideal modes in their
own right may skip the next section.

3. Normal Modes

Normal modes are solutions to the governing equa-
tions (either single-fluid or two-fluid) that have a time
dependence of exp(—iwt). It is well known that the
ideal single-fluid normal mode contains a singularity at
the Alfvén resonance where the spatial scale becomes
vanishingly small, and so must be smaller than £,. WA
(p- 24,993) note that this would “suggest that the sin-
gular modes indicate a violation of the approximations
employed in deriving them.” However, this is (WA, p.
24,993) “a cause for concern only if you believe that a
real system can behave as a solitary normal mode..... A
real system is time dependent and never behaves as a
single normal mode. Even if the system has been driven
for a long time at a single frequency there will still be
transients somewhere...”

So, are normal modes worth studying? Yes. WA (p.
24,993) continue “Normal modes do not correspond to
reality, but are mathematical functions of the govern-
ing equations... Although a single normal mode cannot
be used to describe the evolution of a real system, a
summation or integral of the normal modes can... It
does not matter if a singular mode has infinite ampli-
tude and vanishing scale length. What matters is if the
amplitude and scale lengths of the summed (physically
meaningful) solution violate the single-fluid approxima-
tions.”

WA begin by considering the properties of the two-
fluid normal mode for arbitrary frequency and Alfvén
speed. To decide if there is a singularity or not at the
Alfvén layer, WA follow the textbook method of Frobe-
nius: First, the governing equations are reformulated as
a single ordinary differential equation. WA’s equation
(6) is

&*E, , d&*E,  d*E,  dE,
Aa— HAs— 5+ Ar——r H AL Aoy = 0 (4)

The derivation of the coefficients above for the general
two-fluid equations is rather arduous. It is not practical
to do this with pencil and paper; we employed computer
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algebra software. To decide if there is a singularity at
the Alfvén layer, we see if the coefficient A4 is zero
there. For this reason, WA only give A4 explicitly. A4
does not vanish at the Alfvén layer so there is no Alfvén
singularity in the two-fluid normal mode.

B claims we have not calculated the coefficients cor-
rectly, which is surprising as we only give A4 explicitly
in the two-fluid approximation. (The other coefficients
are much longer than A4, which itself is six lines long,
and so were not given explicitly as they do not make
very interesting reading and would have exceeded the
Journal of Geophysical Research’s 9-page limit. This is
something to be avoided in a Brief Report.)

We take B’s suggestion that we miscalculated the co-
efficients very seriously and so have performed extra
checks on WA’s computer algebra programs. In partic-
ular, B claims that we do not recover the well-known
uniform plasma limit (B’s equations (8) and (9)). We
are happy to be able to set the reader’s, and B’s, mind
at rest: After taking the uniform plasma limit of WA’s
full fourth-order ordinary differential equation (ODE)
we can confirm that the standard result is found. (All
the coefficients have several common factors which are
cancelled to yield this result.) Also, note that we have
retained the general definitions for S, P, and D, rather
than the approximate forms employed in B’s equation
(1).

We never doubted the correctness of WA’s fourth-
order equation coefficients for a two-fluid plasma as we
had already performed several other tests before pub-
lishing the result. In a small aside occupying one para-
graph, WA mentioned briefly one such test which in-
volved taking the single-fluid limit. Much of B is based
upon this paragraph, which is of no consequence to the
conclusions described in section 2 of this Reply.

B criticises the dimensions of our two-fluid and single-
fluid coefficients as not being consistent. B correctly
surmises that we have cancelled some common factors
after taking the single-fluid limit. Thus the single-fluid
coefficients in WA equation (8) are self-consistent and
employ a different normalisation from that employed in
the two-fluid coefficient WA equation (7). The differ-
ence in normalization is not important since it is not
meaningful ever to combine these two results.

B criticizes our choice of E, as the subject of the
fourth-order equation we derived in WA equation (6)
as it is not a “fundamental quantity.” We are not
clear what constitutes a “fundamental quantity,” and
this terminology does not appear in textbooks devoted
to simultaneous ODEs. B notes the trivial “k, = 0,
uniform-plasma, w/w.; — 0” limit for which the gov-
erning equations split into two decoupled second-order
ODEs. Each equation describes one of the decoupled
wave modes. (This is also true even for a nonuniform
medium.) However, WA consider the much more gen-
eral problem of a finite w/w¢;, two-fluid plasma with
arbitrary ky. WA constructed their fourth-order ODE
in E, to investigate the existence or otherwise of a sin-
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gularity due to wave coupling. Thus it seems patently
obvious that WA’s single ODE is addressing the gen-
eral situation in which there is wave coupling. In ad-
dition the choice of Ey as our subject for the ODE is
just as suitable as any other component of the elec-
tric field that is nonzero to leading order: If there is
a singularity, it will be evident in the Frobenius analy-
sis of the £y, ODE. B suggests that “the coefficients of
the fourth-order Ey equation are very complicated mak-
ing calculations unintuitive and prone to error.” This
criticism is irrelevant to the correctness, or otherwise,
of our result. We have checked our (computer alge-
bra) calculations extensively and recover all standard
results. B’s intimation that the choice of another more
“fundamental quantity” will simplify the coefficients is
sheer speculation. Although B derives a fourth-order
equation in E, (B’s equation (16)) this is done after
the limit of w/w.; — 0 has been taken, which simplifies
the equations considerably. Moreover, we noted at the
beginning of our Reply that if the scale of the waves is
larger than the electron inertia length, then E, is zero
to leading order. (Note that B acknowledges that “E,
[is] small.”) This seems to make B’s subject choice of
E, a particularly unsuitable one for this analysis.

B demonstrates a number of misinterpretations of
WA’s analysis. For example in B’s cumbersome “g3”
notation it is stated that “WA omit the non-uniform
plasma term (s in their equation (8), so to be consis-
tent with this WKB-like assumption (made by WA),
both By and B4 should be omitted from (21) giving...”
WA never mention nor employ the WKB approxima-
tion. The only terms WA neglect are through taking
the well-known single-fluid limit.

B develops equations describing a uniform two-fluid
plasma (B’s equations (12)-(15)), and “WKB” equa-
tions for a weakly nonuniform two-fluid plasma (B’s
equations (22)-(25)). B is concerned about the WKB-
like description employed breaking down at the Alfvén
layer, suggesting that his WKB solution is inadequate
for describing the Alfvén layer. For simplicity, let us
suppose that V4 is constant, and the medium uniform
so that we can be assured of B’s equations (22)-(25) re-
maining valid. It is, perhaps, worth using B’s uniform
medium results to show the correctness of WA’s conclu-
sions and that B’s are wrong. For example, WA explain
that when the single fluid limit is taken the terms con-
taining As and A4 are smaller than the other terms by
a factor of V2/c?. We note that B considers the ratio
of the coefficients (which is not dimensionless) rather
than, as we do, the the ratio of the terms containing
the coefficients, which is dimensionless. B claims that
B’s equations (14) and (15) disprove WA’s assertion. It
is straightforward to show that B is wrong and WA are
right: The medium is assumed to be uniform at this
point by B (consequently Az = 0), so we may replace
d/dz by iky, and find the ratio of the fourth derivative
to the second derivative term in B’s equation (15) is
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k2w?
|wciwce|(w2/vj - kg) -

where C = (ckky)?/[weiwee(w?/VE — k2)]. The similar-
ity above results from the details of how the single fluid
limit is taken: V2/c? — 0 and w/we; — 0, but the ra-
tio w/(kVa) ~ 1. Put simply, w & Va. The low Alfvén
speed limit may be taken by letting the density increase
(but keeping w/Vy4 constant) in which case everything
in C is constant, and we recover WA’s ordering.

It is also equivalent to order in terms of frequency (as
this is proportional to V), in which case it is evident
that the fourth derivative term in the form given in B’s
equation (15) becomes negligible in the low-frequency
limit. Yet another alternative is to retain wge in favor
of |wciwce|c2/Vj in which case the ratio in (5) becomes
~ k202, The latter form confirms what WA and Wes
et al. [1994] claimed at the outset: Equation (25) of B
may be written

VZ
Cc3 (%)

o KZVZ
1+ (2L, /As)?

Thus we find a positive note of support from B’s analy-
sis. It is only when the scale of the wavelength perpen-
dicular to the field (A;) is of order the electron inertial
length that there is a significant departure from the
well-known single-fluid Alfvén wave dispersion relation
w? = k?Vj. Thus, if Ay > £, the two-fluid correction
is negligible. Since this correction comes directly from
the fourth order derivative term it confirms that this

term is small even for w? ~ k2V2, in contrast to B’s
claim that the fourth derivative will dominate! We can
only assume that B has become confused by writing
the Alfvén factor (w?/VZ — k?) in the denominator. It
is probably clearer to multiply B’s equations (14) and
(15) through by this factor. (Of course, this will not
affect the solutions to the equations.)

We find nothing in B’s Comment to suggest our anal-
ysis and conclusions are wrong. In fact, we find the
opposite: interpreting the correct parts of his analysis
appropriately vindicates our original claims! We shall
finish on this positive note of agreement.

(6)
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