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Abstract. The topological properties of a magnetic 
field are interpreted in terms of magnetic helicity. The 
total helicity of a collection of flux tubes arises from the 
linking of flux tubes with one another (mutual helicity) 
and the internal magnetic structure of each flux tube 
(self-helicity). Reconnection changes the topology and 
magnetic connectivity of flux tubes. This can also be 
viewed as a redistribution of self- and mutual helicities. 

If total magnetic helicity is approximately conserved, it is 
possible to put quantitative limits upon the changes in 
self- and mutual helicities. This can be interpreted as 
the change in magnetic flux tube linkage (due to 
reconnection) and amount of twist present in the 
reconnected flux tubes. The implications for reconnection 
in the terrestrial magnetosphere are also discussed. 

1. Introduction 

There are many systems in nature where topological 
properties are important. For example, divergence-free 
vector fields (vortex lines, incompressible flow lines, 
magnetic field lines) have no end points and often form 
closed loops. The topology of curves has also been 
applied to polymer chains and the structure of DNA [see 
Berger and Field, 1984, and references therein]. In a 
recent study [Berger and Field, 1984] the properties of a 
magnetic field have been investigated in terms of 
magnetic helicity. By dividing space into magnetic flux 
tubes they presented a formalism with which to calculate 
the helicity of a collection of flux tubes (see Berger 
[1988] also). The total helicity of a system can be 
thought of in terms of two contributions: There is 
"mutual helicity" due to linking or knotting of different 
flux tubes with one another, and there is "self-helicity" 
which arises from the internal structure of each flux tube 
(i.e., twisting and kinking). It is interesting to note the 
related concepts used in mathematical biology of 
"writhing" and "twist" numbers. 

The magnetic helicity is dissipated in a resistive 
plasma. However, Taylor [1974] has suggested that the 
net dissipation will be small on reconnection time scales, 
in high magnetic Reynolds number plasmas. This 
suggestion has been proven analytically by Berger [1984] 
(see Appendix A). Reconnection allows the magnetic 
field to diffuse and thus change its topology and linkage. 
If helicity is approximately conserved, reconnection would 
redistribute the total helicity between self- and mutual 
helicities. For example, if reconnection were to unlink 
two flux tubes (i.e., decrease the amount of mutual 
helicity), the new magnetic flux tubes may be twisted 
(i.e., increased self-helicity). This concept forms the 
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foundation of this paper. Two sections of this paper 
present worked calculations of the effect of reconnection 
upon the topology and distribution of self- and mutual 
helicities. 

The best studied examples of reconnection in nature 
occur in the terrestrial magnetosphere. Dungey [1961] 
suggested that on the Earth's dayside, solar wind and 
geomagnetic fields would reconnect and produce open 
magnetic field lines. These open field lines move to the 
Earth's nightside where they form a tail and can 
reconnect with each other. There has been considerable 

detail added to the open magnetosphere model in recent 
years. In particular, the reconnection process on both 
the dayside and nightside is thought to have a sporadic 
and transient nature. On the dayside, isolated open flux 
tubes are observed frequently [Russell and Elphic, 1978]. 
These open flux tubes have a twisted interior [Cowley, 
1982; Paschmann et al., 1982; Saunders et al., 1984], 
and there has been considerable effort over the last few 

years to explain the origin of this twist [Lee and Fu, 
1985; Sato et al., 1986; Sonnerup, 1987; Wright, 1987]. 

Reconnection on the nightside is thought to occur in 
a quasi-steady fashion about 60 Earth radii away from 
Earth. There is also some sporadic reconnection much 
nearer to the Earth (15 RE). The transient reconnection 
is associated with substorms and produces plasmoids 
(closed magnetic field loops) between the two 
reconnection sites [Hones, 1984]. Twisted magnetic field 
structures have been observed on the nightside [Sibeck et 
al., 1984; Elphic et al., 1986]. In the discussion we 
compare our topological notions with observations and 
models of dayside and nightside reconnection. 

The paper is structured in the following fashion: 
section 2 presents useful results for calculating the 
magnetic helicity of flux tubes; section 3 examines how 
reconnection affects the distribution of mutual and 

self-helicities in a simple system of flux tubes; section 4 
considers more realistic reconnection systems that are 
governed by prescribed reconnection lines; section 5 
discusses the results of the preceding sections and the 
implications for reconnection events on the Earth's 
dayside and nightside; and section 6 summarizes the main 
points of our work and concludes the paper. Appendix 
A gives the criteria for small helicity dissipation, and 
Appendix B discusses the partition of self-helicity between 
two reconnected fluxes. 

2. Relation of Magnetic Helicity to Field Topology 

Helicity integrals provide a natural measure of 
topological structure in a vector field [Moffatt, 1969; 
Berger and Field, 1984]. We wish to discuss the relation 
of helicity to topology for fields undergoing reconnection. 
In order to concentrate on structure near the reconnection 

site, we restrict the helicity integral to a subvolume of 
space u containing the site. For simplicity this 
subvolume will be the space between two parallel planes. 
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These planes have no physical significance; plasma and 
fields can pass through them freely. The planes are 
chosen to be perpendicular to the mean magnetic field. 

Let B be the magnetic field, A its vector potential, 
and B 0 the vacuum field (VAB0-0) sharing the same 
normal components at the boundary planes (B.fi-B0.fi). 
Choose a vector potential A 0 for the vacuum field whose 
transverse components at the boundaries coincide with A 
(AAfi-AoAfi). Then the gauge invariant form of magnetic 
helicity (the "relative helicity") can be written [Berger 
and Field, 1984' Jensen and Chu, 1984] 

H--/v(A.B-Ao .Bo)d3r (1) 

First consider a single flux tube extending between the 
two planes. If this tube were axisymmetric and uniformly 
twisted, then H-T• e, where • is the flux within the tube 
and T is the net angle (divided by 2x) that a field line 
twists about the central axis while traveling between the 
two planes. For a nonuniformly twisted tube, let •b(r) be 
the flux within radius r, T(r) the twist of field lines at r, 
and R the maximum radius. Then [Kruskal and Kulsrud, 
1958; Berger and Field, 1984] 

r)•(r) (d•/dr) dr (2) 

The helicity of more general fields can be expressed as a 
sum of "winding numbers" or "linking numbers" 0•e 
between individual lines [Berger, 1988]. This will prove 
useful in our calculations. We suppose all field lines 
extend between both planes (say z=0 and z-L). Consider 
two field lines described by the curves (x • (z),y • (z)), 
(xe(z),ye(z)) ' (See Figure 1.) At z=0, these curves have 
endpoints r•=(x•(0),y•(0)), re=(xe(0),ye(0)). At each z, 
consider the line segment between the two points 
(x • (z),y • (z)), (x e(z),y e(z)). This line segment rotates by 

z=O 
z=L 

rl 

z=O 

Fig. 1. (a) The field lines with endpoints r•(0) and 
re(O ) at z=0 rotate about each other by a net angle 
0• e=p(L)-•0). (b) After reconnection the angle between 
the endpoints at z=L becomes p'(L)=p(L)-•r, and so 
O' 2'-0 2--•'. 1 1 

some net amount 0• e in going from z=0 to z=L (in 
other words, the field lines twine about each other by a 
net angle 0• 2)' Suppose we replace the field lines in 
Figure l a by two tubes, each of flux •. If these are thin 
tubes (compared to the distance I r•-r e I), 0• e is roughly 
constant between fieldlines inside the two tubes. 

H = II(0 a-) r )B (r)der d•r 1 2 • 2/2 BZ ( 1 Z 2 • 2 
Z•O 

(3) 

Here r• ranges over the endpoints of field lines in tube 
1, and similarly for r e and tube 2. If the two tubes are 
internally untwisted, the total helicity 
H=2H• 2=2(0• e/2•r)•be. Often one may wish to subdivide 
the field into a collection of flux tubes. In this case the 

helicity may be expressed as a sum of self- helicities H i 
arising from internal structure or twist within tube i, plus 
a sum of mutual helicities Hi/arising from the braiding 
of tubes about each other. We can write this for N 

tubes: 

H-- EHi + EHij (4) 

As an example, a bundle of flux whose total helicity is 
not large may yet contain filaments which are highly 
twisted. Consider N parallel, cylindrical flux tubes each 
with twist T and flux •b/N. The total helicity is H = 
NT(•b/N)2 = (T/N)•b e. Thus this configuration has the 
same helicity as a single flux tube of flux •b, but with a 
twist of only T/N. (One might note that the latter 
configuration has considerably less magnetic energy.) 

What happens when we reconnect field lines? Again, 
regard Figure l a as showing two flux tubes crossing each 
other. The total helicity is 

H = H• + H e + 2H•e (5) 

and H• 2=(0• 2/2•r)• 2. If the tubes reconnect, as in Figure 
lb, the mutual helicity is reduced to 

(6) 

As discussed in Appendix A, magnetic helicity 
conservation is an excellent approximation during rapid 
reconnection. Thus for the reconnection in Figure 1, the 
self-helicities must increase by one unit: 

' + H' = H• + H 2 + •2 H• 2 (7) 

Appendix B shows that under fairly general conditions (no 
creation of crossover/anticrossover pairs; these terms will 
be defined below) the extra self-helicity produced will be 
partitioned between the two flux tubes equally. Thus 

'- + •be Define the mean twist of '=H +:•2 and He-H e H• • . 
flux tube 1 by r •=H•/cb e, and similarly for tube 2. Then 
both r• and r• increase by • (half a complete unifoem 
twist) during reconnection. 

Figure 1 has been drawn so that 0•-•r. As seen in 
projection, the two lines cross over each other. Of 
course, if 0• e•r, then there would be projection angles 
where no crossovers exist. However, for our purposes we 
will always draw our lines so that 0•e=ñ•r. This simplifies 
the interpretation of the diagrams without creating any 
essential difficulties. We are interested in the transfer of 

mutual helicity to self-helicity; this transfer depends upon 
the change in 0• e due to reconnection. As shown in 
Figure 1, 0• e changes by exactly a. (or -a.). Crossovers 
can be either positive or negative (anticrossovers). The 
crossover in Figure l a is positive; but if tube 1 went 
behind tube 2 at the crossover rather than in front, then 
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the cross over would be negative (and 012'z--•'). Removal 
of an anticrossover adds a negative (left-handed) half 
twist to each flux tube involved. 

For the remainder of this paper we shall only use the 
following two results; the mutual helicity due to a 
crossover (0 I 2z-+• -) of fluxes •1 and •2 is -+•1•2; a tube 
of flux ß that has a uniform twist T has a self-helicity 
of T• 2. 

3. Simple Flux Tube Systems 

In this section we shall discuss some possible 
reconnection topologies that can be achieved with four 
flux tubes, each of flux •. Throughout this discussion we 
shall assume that the flux tubes are initially long and 
straight and cross one another in such a fashion that 
Oij=+•- (positive crossover) or Oij=O (coplanar, perhaps 
parallel, flux tubes). The initial state is shown in Figure 
2a. The arrows denote the direction of the magnetic 
field. In order to discuss the field geometry we shall 
introduce the following nomenclature: "Upper" and 
"lower" refer to the top and bottom half of the figure, 
respectively. Flux entering or exiting the central region of 
the figure will be termed "incoming" or "outgoing," 
depending upon the direction of the magnetic field. 
Finally, we shall refer to a collection of flux tubes as a 
"flux bundle." Thus Figure 2a consists of four flux tubes 
of flux • which can be viewed as two flux bundles of 
flux •0=2•. The upper incoming flux bundle (top left) 
maps entirely to the lower outgoing flux bundle (bottom 
right), and the lower incoming flux bundle (bottom left) 
maps entirely to the upper outgoing (top right)one. All 
of the flux tubes (and flux bundles) are initially 
untwisted, and there is no self-helicity. The total helicity 
of the system is entirely mutual helicity, due to the 
crossover of fluxes. The total helicity can be calculated 
either as a single crossover of a flux bundle (•0) with a 
similar flux bundle, or equivalently as four crossovers of 
flux •=«•0 with each other. This yields a total helicity 
of 

H = 4• (8) 

In Figure 2b each flux tube has been reconnected once 
at the reconnection line indicated in bold. Reconnection 

has destroyed two crossovers (each of • with •) which 
produced a mutual helicity of 2•. The total helicity (8) 
is now composed of a mutual helicity contribution (2•) 
and also some self-helicity (2•). Appendix B shows how 
the new self-helicity is shared equally between 
reconnected fluxes, and so each tube • has a 
self-helicity of «•. This could be due to a positive half 
twist in each tube. (The detailed structure of the interior 
of each flux tube will depend upon whether there is 
additional reconnection between field lines in the same 

flux tube; see below.) 
The two remaining crossovers in Figure 2b have been 

removed by reconnection at two new reconnection lines in 
Figure 2c. Now there are no crossovers at all, and the 
total helicity (8) is the sum of self-helicities. If we 
interpret self-helicity as being due to a uniform twist, the 
following description is evident: The uppermost and lowest 
flux tubes will both have a half twist each, and the two 
central flux tubes both have one and a half twists. 

Figure 2 can also be viewed as two bundles of flux 
(•0) which have a positive crossover in Figure 2a, and 
no crossovers in Figures 2b and 2c. Therefore the 
self-helicities of both the flux bundles in Figures 2b and 
2c are «•. Consider only the upper flux bundle' In 
Figure 2b it is composed of two flux tubes (each of flux 
cb•--«•0) that have a half twist and wrap around each 
other by •r (a positive crossover). In Figure 2c the upper 

Fig. 2. (a) Four untwisted flux tubes. These have 
undergone (b) single neutral line reconnection and (c) 
triple neutral line reconnection. With multiple neutral 
lines it is possible to produce flux tubes with more than 
a half twist. (The arrows denote the direction of the 
magnetic field.) 

flux bundle has the same self-helicity as that in Figure 
2b, but it is distributed among its constituent flux tubes 
in a different manner. Additional reconnection has 
removed the positive crossover of the flux tubes that 
comprise the flux bundle, so that they do not twine 
about one another. Instead they have an increased twist. 
This is another example of how the self-helicity from a 
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given flux can be composed of detailed structure within 
flux elements, rather than a uniform twist. In particular, 
a flux that has a self-helicity equivalent to a uniform 
half twist may have some elements of flux that have 
significantly more than a half twist (cf. Figure 2c). 

4. Multiple Magnetic Reconnection Lines 

In the previous section we discussed the reconnection 
of discrete flux tubes to one another. This approach will 
not be continued here, but we shall generalize the 
description to continuous flux. Throughout this section we 
shall assume that reconnection occurs along prescribed 
reconnection lines in a uniform fashion, and for a 
specific duration. Figure 3a shows the situation that will 
be produced given two neutral lines, both of length D. 
(We have only shown the fluxes that have undergone 
reconnection, since the contribution to total helicity from 
any other flux is the same before and after 
reconnection.) Before reconnection, the system consisted 
of a flux 4) o (cl)0=•+•2) crossing over another flux 4) 0. 
After reconnection the system is somewhat more 
complicated. The fluxes can be divided using separatrices 
to illustrate the topology more clearly. The upper 
incoming flux bundle (4)o) is composed of a flux tube 
which is only reconnected once, and a flux tube 4) 2, 
which may undergo reconnection more than once. If the 
angle of inclination of the magnetic field to the neutral 
lines is /5 and these lines are a distance d apart, then 

a 

b 

(I) 1 

Fig. 3. Reconnection of continuous flux along prescribed 
neutral lines: The bold horizontal lines represent two 
reconnection lines. The flux that is reconnected by these 
lines is bounded by the solid and dashed separatrices. 
(The solid ones lie above the dashed ones.) The arrows 
denote the direction of the magnetic field, which forms 
an angle /5 to the reconnection lines. (a) The two neutral 
lines both have a length D and separation d. Thus the 
flux entering and leaving the shaded region is divided 
equally between the upper and lower magnetic fields. (b) 
The lower neutral line has a length D-dcot/5. This 
produces an asymmetry in the way flux leaves the region 
between the neutral lines. 

cl)• = cl)2(D/d)tan/5 (9) 

The length along the neutral lines for a half twist of the 
magnetic field lines in the shaded region of Figure 3a is 
l=dcot/5. If D=nl (n integer), then the incoming flux 4) 2 
from the upper bundle maps to the outgoing flux 4) 2 in 
the upper/lower bundle for n odd/even (similarly for the 
incoming flux 4) 2 in the lower flux bundle). If d;•nl, then 
each outgoing flux cl)2 is composed partially of the upper 
incoming flux 4) 2 , and the lower incoming flux 4) 2 . 

The total helicity before reconnection is due to a 
crossover of 4)0=• • +4) 2 with • 0, 

H = •o • (10) 

After reconnection, the two fluxes cl)• each have a half 
twist, and no crossovers. This contributes 2.(«•) to the 
total helicity. There are two obvious methods to calculate 
the helicity due to the 4) 2 fluxes. One possibility would 
be to divide the 4)• fluxes into four elements. For 
example, the upper incoming flux 4) 2 would be divided 
into flux that emerged in the upper outgoing flux cl)• and 
flux that emerged in the lower outgoing flux 4)2, etc. 
The position of these separatrices can be determined by 
mapping the endpoints of the reconnection lines along the 
magnetic field lines through the shaded area in Figure 3a. 
This would decompose the fluxes 4) 2 into four flux 
elements, from which it would be easy to calculate the 
self- and mutual helicities. The problem with this 
approach is that the separatrices are dependent upon the 
position of the ends of the neutral lines and their 
separation' this necessitates some tedious algebra. 

A simpler description of the fluxes 4) 2 is achieved by 
considering the sections of flux outside the neutral lines 
separately from those inside the neutral lines (i.e., in the 
shaded region). The combined exterior sections constitute 
a crossover of flux cl)• with cl)•. This gives rise to a 
helicity of cl)•. The only fluxes whose helicity we have 
not calculated are those in the shaded region, between 
the neutral lines. From conservation of total helicity, we 
can anticipate that this volume Contributes 2•(D/d)tan/5. 
This is exactly what we would expect for a tube of flux 
24) 2 that has a uniform twist T=«(D/d)tan/5 (given the 
pitch length above). This is probably the most 
straightforward way to view the flux between the neutral 
lines. 

If the ends of both reconnection lines are level, then 
the flux entering or exiting from that end will be 
distributed equally between the upper and lower flux 
bundles. This is not true if the neutral lines are not 

level. Figure 3b shows an extreme case where all of the 
outgoing flux from between the neutral lines lies in the 
lower outgoing flux bundle. (This requires that the length 
of the lower reconnection line is D-dcot/5.) It is also 
possible to generate configurations somewhere between the 
two examples in Figures 3a and 3b by choosing a suitable 
overlap, as we shall see below. 

The total helicity of the system shown in Figure 3b 
before reconnection is simply due to the crossover of 
with 4)• +4) 2' H=cl)• (4)• +4)2). After reconnection, the upper 
tube of flux cl)• has a half twist and contributes «• to 
the total helicity. Similarly the lower tube of flux 
(4)• -4)•) contributes a self-helicity of «(• •-•b 2) 2. The 
remaining fluxes are best considered in terms of the 
sections inside and outside the shaded region shown in 
Figure 3b. The sections outside this region constitute a 
flux of cl)• erossing another flux of 4) 2 that has a half 
twist (this produces a helicity of cl)•+«•). Conservation 
of total helicity requires that the helicity of the shaded 
region be 2cl)•[(D/d)tan/5-1]. Again, this is consistent with 
what is expected for a tube of flux 2•b 2 that has a pitch 
length 2dcot/5 and length (D-dcot/5), i.e., 
T-- •(D/d)tan/5- •. 
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The properties of flux that is reconnected (at a 
uniform rate) by two parallel reconnection lines can be 
characterized by the overshoot at the ends and the 
overlap in the middle. For example, the overlap (AD •) is 
zero for both left and right ends in Figure 3a. In Figure 
3b the left-hand overlap is again zero, but the 
right-hand one is AD•=-dcot/g. (We shall use the 
convention that AD• is positive if the lower neutral line 
extends beyond the upper one, and AD• is negative if 
the upper neutral line extends beyond the lower one.) It 
is convenient to use the angle /5 to classify the way that 
flux enters or exits a given end. The parameter /5 is 
defined by tan/5=AD•/d. If I/5 I >,r/2-tS, the flux from 
that end maps entirely to the upper/lower flux bundle for 
/5 positive/negative. If I/5 I<,r/2-•5, the flux at that end 
maps to both the upper and lower flux bundles. The 
fraction of flux mapping to the upper bundle is 
:•(l+tan•an/5), and the fraction mapping to the lower 
bundle is :•(1-tant%an/5). The overlap of the reconnection 
lines (AD2) is simply the length of the shaded regions in 
Figures 3a and 3b. The flux in this region will have a 
twist of T=:•tanBAD 2/d. 

The extension of this type of analysis to several 
neutral lines is obvious. However, maintaining a general 
description becomes rather cumbersome for even three 
neutral lines as the position of each neutral line end 
relative to the others can change the field configuration 
dramatically. Further generalization, by allowing 
nonuniform reconnection rates, produces an even wider 
variety of magnetic field topologies that can be described 
with the techniques presented here. We shall only 
consider a particularly simple limit of these 
generalizations: Suppose that reconnection occurs over a 
finite area via a fine tearing mode whose island spacing 
is much less than the width of the incoming flux bundle. 
Furthermore, we shall assume that the reconnection rate 
varies across this area such that it is greatest in the 
center, and decreases toward the edges. The upper 
incoming flux bundle would map, almost entirely, to the 
upper outgoing flux bundle (similarly for the lower flux 
bundles). Although each reconnected flux bundle would 
have a self-helicity coresponding to a uniform half twist, 
it would be composed of filaments that could have many 
more times this twist (cf. section 2). A similar 
c0nfiguratio•n could be obtained by the magnetic field 
per•½olation'process described by Galeev et al. [1986]. 
(T•is mechanism allows field lines to wander stochastically 
rather than be confined to a magnetic island.) It is rather 
difficult to imagine the topology of these field lines. A 
crude picture can be obtained by allowing, say, one half 
of the self-helicity of the reconnected tube to be due to 
a uniform one-quarter twist. If the tube is then 
considered in terms of N flux elements (cf. section 2), 
each of these elements could have a twist T=N/4. In 

reality the helicity would probably arise from magnetic 
fields over a continuous spectrum of spatial scales. 

5. Discussion 

In the preceding sections we have developed a 
formalism that is able to put quantitative limits upon the 
amount of twist produced in magnetic flux tubes by a 
change in magnetic flux tube linkage. This description 
relies upon the approximate conservation of magnetic 
helicity, as discussed in Appendix A. We shall now apply 
the results of the preceding sections to magnetospheric 
reconnection. 

Dayside Reconnection 

Reconnection between the terrestrial and interplanetary 
magnetic fields is thought to occur on the Earth's dayside 
[Dungey, 1961]. This process can take place in a 

quasi-steady or sporadic fashion. We shall only discuss 
the latter here. Spacecraft observations suggest that 
isolated reconnected flux tubes are formed during transient 
reconnection [Russell and Elphic, 1978 ]. These 
reconnected flux tubes move poleward [Rijnbeek et al., 
1984] and appear to have a twisted interior [Cowley, 
1982; Paschmann et al., 1982]. The flux transfer events 
(FTEs) studied by Saunders et al. [1984] had a twisted 
interior that appeared to be a propagating torsional 
Alfv6n wave. Recently Rijnbeek et al. [1987] have 
reported some small-amplitude field fluctuations about the 
ambient interior field twist. They also identified a 
transition region between the reconnected and background 
fields. 

The original model of Russell and Elphic envisaged 
reconnection producing a transition from a configuration 
like that in Figure l a to one like that in Figure lb. 
However, it was not realized until recently that these 
reconnected flux tubes would indeed be twisted [Wright, 
1987]. Wright pointed out (using a qualitative description 
of the reconnection site) that these flux tubes would both 
have a half twist. The present paper gives this statement 
a firm quantitative footing. Wright [1987] also showed 
how the sections of tube leaving the reconnection region 
could have the twist distributed along them via torsional 
Alfv6n waves, in agreement with the observations of 
Saunders et al. [1984]. If twist is produced in this fashion 
during FTEs, then there can be no more than a half 
twist in each reconnected flux tube. The Russell and 

Elphic scenario requires pairwise formation of northern 
and southern reconnected flux tubes. These tubes may 
move poleward due to field line tension. 

Most other FTE models have invoked multiple 
reconnection lines. This has the advantage that some 
elements of reconnected flux can have much more than a 

half twist (see Figure 2c). Lee and Fu [1985] have 
suggested that reconnection is likely to occur via the 
tearing mode. In their view, the magnetic islands between 
the neutral lines are the twisted flux tubes observed by 
spacecraft. This means that the number of FTEs 
produced is equal to the number of magnetic islands. The 
tearing mode will not necessarily produce FTEs in a 
pairwise fashion (cf. Figure 3). The twisted flux tube 
shown in Figure 3a does not experience any net magnetic 
force up or down. The motion of this tube will probably 
be determined by the background plasma flow. Lee and 
Fu [1985] assumed that reconnection would occur via 
three neutral lines. This yields pairwise FTEs. More 
recent simulations [Fu and Lee, 1986] have also 
demonstrated this type of evolution. However, these 
simulations imposed symmetry requirements that encourage 
the formation of two magnetic islands [Fu and Lee, 1986; 
Figures 2 and 8]. When this symmetry is not imposed, 
the system does not evolve into two islands [Fu and Lee, 
1986; Figure 12]. These simulations are two dimensional, 
and so cannot address the question of magnetic 
connectivity at the ends of the neutral lines (i.e., where 
does the incoming flux originate, and the outgoing flux 
terminate?). The situation described qualitatively by Lee 
and Fu [1985] consisted of a separate northern and 
southern flux tube with a connectivity reminiscent of that 
described by Russell and Elphic [1978]. This would 
require an overlap of two adjacent neutral lines like that 
shown on the right-hand side of Figure 3b. In practice it 
would be sufficient that the majority of the flux 
comprising the twisted flux tube entered/exited the 
reconnection region in one bundle. However, it seems 
unlikely that even this criterion would be met with any 
consistency in nature. If a given FTE did satisfy this 
condition, then the twist residing between the neutral 
lines could redistribute itself along the incoming/outgoing 
flux tube via torsional Alfv•n waves in the fashion 

described by Wright [1987]. 
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It has been suggested by Galeev et al. [1986] that 
reconnection may not occur via single or multiple neutral 
lines. Instead, magnetic field lines wander stochastically 
across the current sheet. This percolation process could 
produce a great deal of structure inside the reconnected 
flux, as could a fine tearing mode. Rijnbeek et al. [1987] 
have reported small-scale magnetic fluctuations on 
reconnected field lines. It is not clear whether the field 
oscillation has a spatial or temporal origin. The 
reconnection process described by Galeev et al. [1986], or 
a fine tearing mode, could provide a spatial variation that 
would produce field fluctuations like those reported by 
Rijnbeek et al. [1987]. 

Nightside Reconnection 

The open flux tubes formed by dayside reconnection 
form an elongated tail on the nightside. There is some 
quasi-steady reconnection at a distant neutral line (about 
60 R E from Earth), and transient reconnection much 
closer to Earth (about 15 RE). If the solar wind magnetic 
field has no dawn-dusk component (IMF By=O), the tail 
is symmetric and the northern and southern flux tubes 
are antiparallel to one another. (See Figures 3a and 3b 
when •?-•,r/2.) Before any flux is reconnected, the 
magnetic helicity of the tail is zero. Hones [1984] has 
described the geometry of the magnetic field after 
reconnection; closed field lines are produced earthward of 
the near-Earth neutral line; closed magnetic loops are 
formed between the two reconnection sites; field lines 
with both ends in the solar wind lie beyond the distant 
neutral line. The region occupied by closed magnetic 
loops is called a plasmoid. It is eventually expelled down 
the tail due to increased reconnection at the near-Earth 
neutral line that envelops the plasmoid in field lines 
connected to the solar wind. (See Hones [1984] and 
references therein.) 

There have also been observations of flux ropes 
(twisted flux tubes) in the geomagnetic tail. Elphic et al. 
[1986] reported flux ropes in the near-Earth tail (20 RE) 
that had a dawn-dusk alignment. Sibeck et al. [1984] 
observed flux ropes much deeper in the tail (100 RE) 
that were oriented antisunward. To produce such magnetic 
structures it is likely that IMF Bye0, so that the fields in 
the tail are not antiparallel (•?;•,r[2 in Figures 3a and 3b). 
The near-Earth flux ropes could be produced by the 
formation of two or more near-Earth neutral lines, or a 

"nightside FTE," as suggested by Elphic et al. [1986]. 
Recently Hughes and Sibeck [1987] have considered 

the three-dimensional structure of plasmoids. They 
presented data that show that the dawn-dusk magnetic 
field in the tail does indeed correlate with the same 

component in the solar wind. The magnetic connectivity 
of plasmoids was also discussed by Hughes and Sibeck 
[1987]. They suggest that the rope (whose axis was 
oriented antisunward) would evolve naturally from a flux 
rope that has field entering one end from solely the solar 
wind and exiting the other end exclusively to Earth. The 
flux rope observed by Sibeck et al. [1984] could also be 
produced by a configuration like that shown in Figures 3a 
and 3b if there were a strong enhancement of 
reconnection at the near-Earth neutral line. This would 
cause field lines (with both ends in the solar wind) to 
drape over the flux rope and exert a magnetic force 
antisunward. If this force is distributed unevenly along the 
length of the flux rope, it will encourage the rope to 
bend and distort (especially if it is connected at either 
end to the Earth) (see Figure 2 of Hughes and Sibeck 
[1987]). The stretched and distorted tube will naturally 
evolve sections where the tube axis points antisunward. 
Alternatively, the flux ropes reported by Sibeck et al. 

[1984] could be produced by an uneven overlap of near 
and distant neutral lines (Figure 3b). The twisted section 
(that lies across the current sheet) can unravel itself along 
the flux tube that lies approximately parallel to the tail 
[cf. Wright, 1987]. 

6. Conclusions 

We have presented a description of the topology, or 
magnetic linkage, of a system of flux tubes in terms of 
magnetic helicity. We have used results from Berger and 
Field [1984] and Berger [1988] that show how helicity 
arises from knotting and linking of individual flux tubes 
with one another (mutual helicity), and also from the 
twisting and kinking of each flux tube (self-helicity). 
Reconnection changes the topology and internal structure 
of flux tubes, and we have been able to put quantitative 
limits upon the redistribution of self- and mutual 
helicities during reconnection. Our formalism has been 
used to analyze the current models that describe 
reconnection in the Earth's magnetosphere. It is not 
obvious that any particular model is right or wrong. 
Indeed, it may be the case that they are all important, 
under the appropriate conditions. The main properties of 
the models are as follows. Single neutral line reconnection 
produces reconnected flux tubes in a pairwise fashion. 
Each tube has a half twist and a simple magnetic 
connectivity. Multiple neutral line models may produce 
elements of magnetic flux with significantly more than a 
half twist. The number of flux ropes formed is dependent 
upon the number of neutral lines and their positions; 
there need not be pairwise production. The magnetic 
connectivity of each flux rope is complex. In general both 
incoming and outgoing flux (for each flux rope) will be 
composed of solar and terrestrial magnetic fields. 

The general formalism that we have presented may be 
useful in modeling many other situations where 
reconnection is important, e.g., solar corona, pulsar 
magnetospheres, and plasma fusion. 

Appendix A 

The arguments in this paper assume that magnetic 
helicity dissipation during reconnection is negligible. This 
assumption can be proven rigorously in the limit of high 
magnetic Reynolds number [Berger, 1984; Boozer, 1986]. 
Here we briefly discuss the situation of magnetospheric 
reconnection. 

For simplicity, assume a uniform (or mean) resistivity 
r/. The magnetic energy dissipation rate (dW/dt) and 
helicity dissipation rate (dH/dt) go as 

dll//dt •-l•j2dv dH/dt • -2I• J .Bdv (A1) 

A Schwarz inequality relates dH/dt to dW/dt, and 
J'•B2dv=2/z0•'W. (W is the magnetic energy, and ,/' is 
the averaged resistivity: ,/'=J',/B2dv/J'B2dv.) One finds 

(dH/dt): < -8/z0•/'W(dW/dt) (A2) 

Suppose a reconnection event takes place over a time At. 
Then the maximum helicity dissipation is 

(AH): < 4,Uor/'At (A3) 

where W i is the energy before reconnection and W f the 
final energy. 

Let us look at the reconnection of two bundles of 
flux as in Figure 1. The regions where the tubes cross 
the planes have an area A and normal field strength B z. 
Before reconnection the field lines have an angle ,y with 
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respect to the •-direction. The initial magnetic energy of 
both tubes is Wi=LAsec('),)B•//x 0. After reconnection the 
tubes are parallel to •-, with possibly some internal twist. 
The final energy is greater than that of two untwisted 
flux tubes, Wœ>LAcos(3,)B•//z 0. The initial helicity is 
H=• 2. Thus eqfiation (A3) gives, after some algebra, 

ZIH/H ( 2. (v/'At//•o) «. (L/A). (sec27-cos27) « (A4) 

The classical resistivity is given by r/c=10-6T•3/: • 
[Berger, 1984]. Using this result and writing '),=•r/4; 
A•-L:; L=LR.R e (1 R E is an Earth radius, 6.4x10 6 m); 
At=At2.102 s; T=T6.10 • K and /z0=4•rx10-7 we find 

AH/H < 3.4x10-3(At2r/')«/L R 

< 3.4x10-•(z•t2•,/%)•/[LR T •/4] 
(AS) 

Clearly the ratio of the true averaged resistivity to the 
classical resistivity would have to be extremely large 
before helicity dissipation becomes significant. We can 
estimate the dissipation rate for dayside reconnection by 
choosing suitable values for At2, r/' and L R as follows: 
The magnetopause current sheet has a thickness (w) 
500 km, and since B -• 50 nT the current density is of 
order 2B/(/z0w ) • 1.6x10 -7 Am -•. The inflow speed of 
plasma toward the reconnection site (u) can be estimated 
from the duration of the reconnection event (At •- 3 min) 
and the diameter of the reconnected flux tube (a • 1 
RE). Along the reconnection line the resistivity is given 
by the ratio of the electric field (uB) and the current 
density, suggesting r/ •10 4 ["•Ti. We require the average 
resistivity. Since most diffusion will occur within the 
magnetopause current sheet, r/' can be approximated by 
r/.(w/2a) •. 390 12m. Using these values for L, r/' and At 
in (A5) it follows that AH/H < 0.09, i.e. helicity should 
be conserved to better than 10%. This limit on helicity 
dissipation is an upper limit for two reasons: The energy 
dissipation term due to perpendicular currents has been 
omitted in (A2). This has the effect of making the 1.h.s. 
even smaller than the r.h.s. in that equation. Secondly, 
the estimate for the final energy (Wœ) is taken as the 
lowest possible value (that of two untwisted flux tubes). If 
the two final flux tubes have some twist and a larger 

value of Wtf ø is appropriate, then AH/H will be reduced, according (A3). For the example discussed above 
(where no more than 10% of the helicity is dissipated 
during reconnection) the reconnected flux tubes would 
have some twist, suggesting our estimate of Wf is too 
low, and hence the upper limit on AH/H could be less 
than that given in (A5) of 10%. 

Appendix B 

In this appendix the partition of mutual helicity that 
is released during the reconnection of two flux bundles is 
discussed. The two flux bundles have been distorted 

where they cross one another, and the local picture is 
shown in Figure 4. Each flux bundle (•) has been 
subdivided into N flux tubes of equal flux (Cbai=Cbbj=CblN). 
The flux bundles are required to be reconnected 
according to the following criteria: The upper/lower 
incoming reconnected flux bundle maps entirely to the 
upper/lower outgoing flux bundle; there is no linkage of 
any upper reconnected field lines with any lower 
reconnected field lines. 

The problem can be viewed as a NxN grid (N=4 in 
Figure 4) over the reconnection area. The flux 

•a2 % 

Fig. 4. Two flux bundles have •en su•i•ded into N 
flux tubes of equal flux •/N. The flux bundles reconnect 
•a reconnection of the smaller flux tubes Mth one 
another. 

entering/exiting any side of the grid also maps to the 
same quadrant of the figure (i.e., flux entering the top 
left-hand side of the grid originates from the top 
left-hand corner of the figure). Consider the flux tube 
•a•. If reconnected to •b• this would satisfy our criteria. 
Could •a• reconnect to •b2 instead? The reconnected 
upper flux tube Cba•-Cbb2 satisfies the mapping condition. 
However, the flux tube •b• will violate this condition, 
unless it is reconnected. When •b• is reconnected with 
thai, the lower tube will be linked (with the upper 
Cba•-Cbb2 ) for i•2. (That is, if the criteria are to be met, 
it is necessary, but not sufficient, that reconnection occur 
at the •a • -•b • crossover.) 

Given that reconnection takes place at the left-hand 
corner grid point, we need only consider the reduced grid 
(N-1)x(N-1), neglecting the Cba•,•b• grid points. (This 
can be done because additional reconnection between •a• 
or •b • with any Cbbj or Cbai will not affect the 
requirement that flux entering/exiting any side of the grid 
maps to that quadrant of the figure.) By applying the 
previous analysis to the reduced grid we find that it is 
necessary for reconnection to occur at the •a2-•b2 
crossover. Repeating this procedure it is evident that 
reconnection must take place along the horizontal axis of 
the diamond-shaped grid. There may be further 
reconnection at any other grid points too. 

It is now possible to calculate the helicity of the 
upper and lower flux bundles after reconnection. This is 
done most easily by summing the helicity contributions 
from the flux tubes. The initial crossover of •a• with 
•b• gave rise to a helicity of (•/N) 2. After reconnection 
this will be distributed as self-helicity between the 
reconnected flux tubes. We shall assume that helicity is 
conserved during reconnection, but we shall not require 
that the new self-helicity be divided equally between the 
reconnected fluxes. The upper reconnected tube can have 
an increased self-helicity of c•(•/N) 2, and the lower one 
(1-c•).(•/N) 2. At crossovers off the horizontal axis where 
reconnection may not have occurred (e.g., Cbaa-Cbb2 in 
the upper flux bundle), the crossover will contribute 
(•/N) 2 to the helicity of the (upper) flux bundle. If 
reconnection does occur at this site, then the helicity 
(•/N) 2 will be divided (perhaps unequally) between the 
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two reconnected flux tubes. Since both tubes involved 

belong to the same reconnected flux bundle and we are 
only interested in the sum of helicities for each bundle, 
we shall simply allow a contribution of (•/N) 2 to the 
total helicity for each grid point, regardless of the 
reconnection details off the horizontal axis. 

Thus the total helicities for the upper and lower 
reconnected flux bundles are 

H u = («N2-N). (•/N) 2 + E•i (•/N) 2 (B1) 

H l = (J.•N2-N).(•/N) 2 + r.(1-c•i).(•/N) • (B2) 

If the flux bundles are divided very finely (N-•o), the 
mutual helicity of the initial flux bundles (•2) is 
partitioned equally between the reconnected flux bundles 
(Hu, H/-•«•2), under the criteria stated at the begining of 
this appendix. 
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