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Abstract. Two basic processes for producing twisted 
magnetic flux tubes are reconnection between skewed 
magnetic fields, and plasma motion causing twining or 
braiding of flux tubes/flux elements. The properties of 
the latter mechanism are studied for flux that is 
reconnected across a neutral sheet. If the neutral sheet 

is formed by skewed magnetic fields with a flow shear 
across the sheet, the direction of the twist may be 
predicted in terms of background magnetoplasma 
quantities. If the results are applied to flux transfer 
events (FTEs) we expect that the vast majority of FTEs 
have a twist and axial By component determined by IMF 
By. However, we also expect there to be a few cases 
where the flow shear will reverse the sense of both of 

these quantities. 

1. Introduction 

Twisted and tangled magnetic fields naturally occur in 
many situations such as the solar corona and planetary 
magnetospheres. Specific features in the solar corona 
(e.g., a twisted flux tube, braided tubes, crossed flux 
tubes, arcades) have been described in terms of magnetic 
helicity [Berger, 1988], which is indeed a natural measure 
of the topology of a magnetic field [Berger and Field, 
1984]. In this paper we continue to discuss the twisting 
and braiding of magnetic flux tubes using helicity, placing 
particular emphasis on twisting. 

When space is divided up into distinct flux tubes, the 
total helicity may be split into two contributions [Berger 
and Field, 1984; Song and Lysak, 1989; Wright and 
Berger, 1989]. There is mutual helicity due to the linking 
and knotting of different flux tubes with one another, and 
there is self-helicity due to the interior structure of each 
flux tube (i.e., twisting and kinking). In a high magnetic 
Reynolds number plasma, Taylor [1974] suggested that the 
total helicity would be approximately conserved, even 
during reconnection. More recently Berger [1984] has put 
rigorous limits upon helicity dissipation, and it has been 
shown that total helicity is conserved to an excellent 
approximation during the reconnection of terrestrial and 
solar fields at the dayside magnetopause [Song and Lysak, 
1989; Wright and Berger, 1989]. 

Satellite observations of sporadic dayside reconnection 
has identified plasma and field signatures, referred to as 
Flux Transfer Events, that are thought to be due to the 
motion of newly reconnected flux [Russell and Elphic, 
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1978]. The interior of the reconnected flux tubes (RFTs) 
is found to be twisted [Cowley, 1982; Paschmann et al., 
1982; Saunders et al., 1984]. The (statistical) direction 
of the twist can be predicted given the sense of IMF B. 
and the hemisphere to which the KFT is connecte• 
[Cowley, 1982]. Over the past few years considerable 
effort has been devoted to investigating the mechanism 
which produces the observed internal twist [Lee and Fu, 
1985; Sato et al., 1986; Sonnerup, 1987; Wright, 1987; 
Scholer, 1988a,b; Southwood et al., 1988; Song and 
Lysak, 1989; Wright and Berger, 1989]. The models can 
be classified broadly as single reconnection line models, 
and those employing multiple reconnection sites. 

There are two fundamental processes whereby a 
magnetic flux tube may become internally twisted. The 
first one is when reconnection changes the linkage of flux 
tubes (i.e., the mutual helicity). If helicity is 
approximately conserved we shall require an equal but 
opposite change in the self-helicity of the reconnected 
flux tubes. This would most easily manifest itself as a 
twist. Using this mechanism the question "why are FTEs 
twisted?" is answered simply that helicity is not dissipated 
sufficiently rapidly to form untwisted RFTs. The second 
basic mechanism relies on some plasma motion to move 
the "foot points" of the flux tubes relative to one 
another. This may cause an individual tube to become 
twisted, or different flux tubes to twine about each other. 
In either case helicity flows across the boundary 
(containing the foot points) to account for changes in the 
helicity (i.e. topological complexity) of the magnetic field 
[Berger, 1988a]. 

We shall confine our attention to the fate of flux tubes 
that are reconnected across a neutral sheet. The first 

mechanism described above is effective in this situation 
when the field directions on either side of the neutral 

sheet are skewed relative to each other. No background 
plasma motion is required, and we shall refer to this 
mechanism as the "skewed field" mechanism, [see Wright, 
1987; Scholer 1988a; Southwood et al., 1988; Song and 
Lysak, 1989; Wright and Berger, 1989]. If the two field 
directions are antiparallel, then reconnection produces two 
bent (but untwisted) flux tubes. Both Wright [1987] and 
Southwood et al. [1988] have noted that if the feet of 
these RFTs are moved along the neutral sheet, the flux 
tubes become internally twisted. Indeed this is the 
simplest example of the second mechanism mentioned 
above. For this mechanism to operate it is sufficient 
that there is a difference in plasma flow either side of 
the neutral sheet. (The relative velocity must have a 
component orthogonal to the two antiparallel field 
directions.) We shall refer to the latter mechanism as 
"sheared flow" [c.f. Southwood et al., 1988]. The 
calculations that we present here enable us to describe 
the twisting of magnetic flux tubes due to sheared plasma 
flows in a quantitative fashion, complementing earlier 
qualitative discussions. 
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It turns out that single X-line reconnection in skewed 
fields and no plasma flow shear produces RFTs with the 
same sense of twist, when viewed along the direction of 
the magnetic field [Wright, 1987; Wright and Berger, 
1989]. We show here that flux tubes produced by 
reconnection in antiparallel magnetic fields in the presence 
of a constant flow shear have an opposite twist to each 
other. For a general skewed neutral sheet with arbitrary 
flow shear, the two mechanisms will compete with one 
another. We have been able to classify (interms of 
background quantities) when each mechanism will be 
dominant, and hence which sense of twist is expected. 
When this criterion is applied to FTEs we expect that 
the vast majority of RFTs will have a twist sense 
governed by IMF By. However, we are able to define 
conditions when the plasma flow shear will reverse the 
direction of twist, giving an "irregular" magnetic 
signature. 

The paper is structured as follows; section 2 derives 
the results needed to analyse the flow of helicity across a 
boundary; section 3 studies the twisting of reconnected 
fluxes in antiparallel fields and sheared plasma flow; 
section 4 extends the results of the preceeding Section by 
introducing skewed magnetic fields; section 5 applies the 
results to dayside reconnection; section 6 summarizes and 
concludes the paper. 

2. Helicity and Helicity Flux Equations 

The magnetic helicity of a subvolume of space, and the 
flux of helicity entering that subvolume has received much 
attention in the past. We shall quote useful results that 
are taken from Berger and Field [1984], Jensen and Chu 
[1984], Berger [1986, 1988a,b] and references therein. We 
shall assume that all magnetic field lines have both 
endpoints in the plane z=z0, and consider the helicity of 
the subvolume z>z 0. Furthermore, this space will be 
divided up into portions containing magnetic flux tubes, 
or sometimes small elements of magnetic flux. The total 
(relative) helicity may then be expressed as a sum of 
self- and mutual helicities. 

Self-Helicity 

For an individual element (i) of the magnetic field with a 
uniform twist T, the self-helicity may be written 

H i = +_Toby: (1) 

T is the angle through which field lines rotate about the 
tube axis divided by 2•r, and cb i is the magnetic flux of 
the element i. The flux emerges from the plane z=z 0 at 
r+i and returns at r_ i. If the footpoints remain fixed the 
self-helicity of the tube may change due to rotational 
fluid motions centred on r+i and r_ i (i.e. a twisting of 
the flux tube element about its axis r_.). If the footpoints 
rotate at a rate o•+i and o•_ i respectively, then 
self-helicity evolves according to 

dHi= 3I B 2(r )o• d 2 - B 2(r+ d:r+ ] dt [ z -i -i r-i z i)cø+i i 

Z='Z 0 

(2) 

If the footpoints are not being turned (o•ñi=0) the 
self-helicity may still change if the footpoint move in a 
simple linear fashion relative to one another. Define 

tan(O/) = (y+i - y_i)/(x+i - x_ i) 

8 i = 9.A(r+i - r_i)/Ir+i - r_il 
(3) 

The angle 0 i is a measure of the linkage of the two 
footpoints. For example if a tube is initially untwisted 
and 0i increases by 2•r the new positions of the 
footpoints may coincide with the old ones. The new 
tube has two complete twists in it (T=2 in equation (1)), 
and the change in self-helicity is governed by the 
equation 

dlt i -1[ dO. d2r+ d 2 dt -- 2--• Bz(r+i) B(r i)•' i r . (4) 

Z•Z 0 

Note that in this case there is no net rotation of field 

lines about the tube axis at a given footpoint, however 
the foot points themselves (at r+i and r_i) rotate about 
each other. Equations (2) and (4) describe the flux of 
magnetic helicity across the plane z-z0, that is required 
to account for the changing self-helicity of the element 
•i' If o•_. i and dSi/dt are both nonzero, then 
contributions from (2) and (4) can be added together. 

Mutual Helicity 

Total magnetic helicity depends upon the interior structure 
of each flux element (self-helicity) and the linking and 
knotting of different flux elements with one another 

(mutual helicity). Consider two flux elements •i and •j 
with footpoints (r+i,r_i) and (r+j,r_j) as shown in Figure 
1. The two angles v and p are constructed by joining 
the footpoints of the elements i and j and labeling the 
angles at the feet of the tube that passes over the other 
flux element. If the cross section of the tubes is much 

less than the separation of the footpoints the mutual 
helicity of the two elements is given by 2Hij 

Hij = ñrbirbj(v+p)/2 •. (5) 

The sense of Hij depends upon the order in which the 
fluxes cross one another. In Figure 1 Hi. i is positive. 
For example, if the position of the two foolpoints of •i 
were moved under •j and brought very close together, 

r. 

r+i 

! 

Fig. 1. The two flux tubes i and j have pairs of 
footpoints in the plane z=z 0 of (r+i,r_i) and (r+i,r_j) 
respectively. The angles v and p are formed 15y 
constructing lines between the footpoints. The mutual 
helicity of this configuration is 2Hij=cbicbj(v+p)/,r. 
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then v+p•2x and 4• i would link with 4•] once. In this 
case equation (5) yields the familiar result 2Hij=+24•i4• j. 
For tubes with arbitary cross section and footpoint 
locations, the mutual helicity (2Hi j) may be found more 
generally from 

-- B )Bz( )(v+p)d2r d +n• •j(6) Hij 2•] z(r+i r+j +i r+j i 
Z----Z 0 

where v and p are functions of r+i and r+]. The last 
term takes into account that 4• i and 4•] may-also twine 
about one another an integer number of times (n). 

The rate of change of mutual helicity can be found 
from the derivative of equation (6) in terms of dv/dt and 
dp/dt. An equivalent expression that is sometimes used is 

dtiJ -- Bz(ra)Bz(rb). •- .d r d r b 

Z----Z 0 

(7) 

The right hand side is summed over the pairs (a,b) -- 
(+i,+]), (+i,-]), (-i,+j), (-i,-j). 

tan(0ab) -- (Yb - Ya)/(Xb - xa) 

8ab -- •A(rb - ra)/ir b -ral 
(8) 

If the footpoints of 4• i in Figure 1 are brought together, 
but around the side of 4•] rather than underneath it, the 
mutual helicity 2Hi]=0 rather than +24•i4•]. This is due to 
the differing time histories of v and p-(or O ab ) in the 
two cases. 

Total Helicit¾ 

The total helicity of a collection of flux tubes may be 
calculated by suming the contributions to self- and mutual 
helicities, 

H -- Y-H/ + Y.H/j (9) 

3. Reconnected Fluxes in Antiparallel Fields and 
Sheared Flow 

The relations for helicity and helicity flux in the last 
section will now be applied to magnetic flux that is 
reconnected across a tangential discontinuity. The 
unperturbed magnetoplasma (which is taken to be ideal) 
will be modeled in the following form 

B•: x<O B = o 
-B•: x>0 

o 

v={ v9 x<O -v9 x > 0 

(lO) 

Figure 2a shows two columns of flux that will be 
reconnected by a reconnection line of length Ly at the 

z 

x 

Ly z=O 

) .... i[t ..... 
....... .... / (a) 

(b) 

(c) 

Fig. 2. Two columns of flux extend between z=0 and 
z=-L z (a). (The field and flow are defined in equation 
(10).) In Figure 2b the fluxes have reconnected and their 
footpoints have drifted apart with the background plasma 
motion. In Figure 2c the fluxes did not reconnect, but 
are distorted to overlap with one another. 

center of the box. This reconnection line could a short 

section of a much longer reconnection line, in which case 
the cross section of the flux columns will be a thombus. 

If Ly represents the entire length of the reconnection line 
then the cross section will be slightly distorted from a 
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rhombus. Nevertheless, it will preserve the important The parameter 1 ranges from -•.Ly -, +«Ly. Equation 
property that field lines closest to the neutral sheet are (3) yields the angle between pa•rs of endOoints, which 
reconnected at earlier times than those furthest from the turns out to be independent of 1; 
neutral sheet. For the purposes of this paper we shall 
only consider the rhombus cross section. The reconnection 

0i = arctan[VT(1-t/t i)/L x] (13) rate is uniform for times 0<t<T, and zero otherwise. 
The depth of the reconnected flux columns, L x, defines 
the total flux reconnected by the length of reconnection There is no rotational motion around the footpoints, so 
line Ly, the self-helicity of this flux sheet evolves according to 

equation (4) which may be integrated to give 

•0 -- LxLyB0 (11) 

Figure 2a shows the situation at t = 0, when the two 
sheets of flux with endpoints 0 < +-x < _+Ax and 

-«Ly<y<+«.Ly are reconnected. At time goes by sheets 
of flux further from the neutral sheet are reconnected, 
until at time T the last sheet with foot points 

+-Lx<+-x<-+Lx-+Ax and -«.Ly<y<+«Ly is reconnected. 
(The rhomboid is a rectangIe that has been sheared by 
an angle arctan(VT/Lx); thus the footpoints of the last 
reconnected field lines have drifted by VT which brings 
them into alignment with the reconnection line at time 
T.) After time T no more reconnection takes place and 
the footpoints of the columns continue to move apart, as 
shown in Figure 2b. By calculating the helicity of sheets 
of reconnected flux it is possible to evaluate the helicity 
of the large flux columns •0' 

Flux Sheet Helicity 

We shall consider the reconnection of the two columns in 

Figure 2a as a continuous reconnection of fine sheets of 
flux. In this subsection we shall confine our attention to 

flux sheets connected to the z=-L z plane. The ith flux 
sheet is reconnected at a time t i and has footpoints 
mapping to x i in the interval &x at x=*-Lxti/T, 
-iLy<y<+•Ly. The flux of the sheet is d•=;BoLyAx. 
The coordinates of the endpoints of individual field lines 
in the i th flux sheet may be written (when t>ti) 

r+i = (-Lxti/T, V(t-ti)+l, -L z) 

r_ i -- (+Lxti/T, -V(t-ti)+l, -Lz) 
(12) 

dHi/dt - dO i/dt. (d•) 2/•r 
or (14) 

Hi(t ) - arctan[VT(1-t/ti)/Lx]. 

The second relation in equation (14) is true if Hi(t=ti)=O 
(i.e., the ith flux sheet is untwisted immediately after 
reconnection). H i has an asymptotic value of -«(d•) 2 as 
tooo. This would correspond to the flux sheet evolving a 
negative half twist (T=« in equation (1)). Hi(t ) is 
sensitive to the time of reconnection, t i. Figure 3 shows 
the variation of self-helicity for three flux sheets 
reconnected at times t•=T/4, t2=T/2 and ta=T. The 
earlier a flux sheet is reconnected the more twisted it is 

at later times. This is because they have longer to 
acquire twist, and also dOi/dt is greater for small t i. 
The flux sheets connected to the plane z=0 have an 
equal, but opposite, self-helicity to their counterparts 
connected to z=-L z. 

Flux Tube Helicit¾ 

The helicity of the flux columns •0 may be calculated 
by suming the self- and mutual helicities of their 
constituent fluxsheets, as in equation (9). Perhaps the 
easiest way to envisage these nested flux sheets (like the 
layers of an onion) is by considering the last sheet, or 
layer, to be reconnected. In Figure 2b (for the lower 
reconnected column) this layer has its footpoints along the 
front edge (at x=+Lx) and along the back edge (at 
x=-Lx) in the z=-L z plane. Indeed the lines shown in 
Figure 2b from the front corners at x=+L x are coincident 

t3 
o 

o T 2T 3T 
Time 

Fig. 3. The variation of self-helicity with time for three flux sheets reconnected at 
different times. The last sheet to be rec0nnected (at t a=T) is slow to increase its 
self-helicity. The sheets reconnected earlier (at t2=T/2 and t•=T/4) acquire hellcity much 
more rapidly, suggesting that the earlier a sheet is reconnected the more twisted it appears 
at later times. 
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with the field lines at the edges of the last flux sheet to 
be reconnected. Flux sheets that were reconnected before 
this outer-most flux sheet form nested surfaces. Consider 

the mutual helicity of two nested flux sheets 4• i and 
when t>T. Although equation (6) can be evaluated as a 
function of time for two flux sheets, the expression is 
extremely cumbersome. Moreover, the mutual helicity 
cannot be sumed easily over all pairs ij, so we shall not 
discuss Hi}(t) further here. The behaviour of Hij can be 
illustrated by using the following simplifying assumptions. 
First, we allow reconnection to occur so rapidly that the 
plasma motion during 0<t<T is negligible compared with 
L x. Hence e•=VT/Lx{1, and the cross section of the flux 
columns becomes rectangular. Second, we shall only 
consider the mutual helicity at t=T and very large t 
(when e2=Vt/Lx•l). At t=T we have essentially two 
rectangular reconnected flux columns. Equation (13) gives 
0i=0, and equation (14) states that Hi=0 (to zeroth order 
in • •). Also, in equation (6) v+p=0+O(• •), so 
Hij=0.+.O(e•). Summing the self- and mutual helicities 
according to equation (9) one finds that the total helicity 
of the lower (and upper) reconnected flux column is zero 
to lowest order in e •. 

At much later times (e2 large) the self-helicity of each 
flux sheet tends to -:•(d•i) 2 according to equation (14), 
for endpoints at z=-L z. The mutual helicity (equation (6)) 
is particularly simple in this limit also since 
u+p=•r+O(• •) for every pair of field lines in the sheets 
(rbi,rb]). Thus the mutual helicity, to lowest order in e•, 
is 2Hij=-•i•j. If •0 is divided into N equal sheets of 
flux then d•=•i=•0/N, and the total helicity of the lower 
flux column (equation (9)) becomes 

(15) 

This would correspond to the lower flux column acquiring 
a negative half twist (to lowest order in e• and l/e2). 
If a similar calculation is done for the upper reconnected 
flux column, all the helicities have the opposite sense. 
Hence the upper flux column (in Figure 2b) has a 
positive half twist. 

It is interesting to note that the helicity inside the box 
shown in Figure 2 due to upper and lower reconnected 
fluxes is always zero. This is because the helicity flowing 
into the upper flux elements (across the plane z=0) is 
equal to the helicity flow out of the lower flux elements 
(across the plane z=-Lz). One may also intuit this result 
with the following argument, given that helicity dissipation 
is neglected during reconnection: Consider the two flux 
columns in Figure 2a. If no reconnection occurs then the 
two columns will simply move apart along the y axis. In 
Figure 2c the footpoints have drifted to the same 
locations as the reconnected columns in Figure 2b, and 
the tubes have been bent so that they overlap each 
other. Distorting the tubes does not change any of the 
helicities. Each tube is still untwisted, however the two 
cross overs contribute to the mutual helicity of the flux 
columns. The upper/lower cross over is positive/negative 
and produces a mutual helicity of +4•/-4•. Thus the 
total mutual is still zero. The two flux columns can now 

be reconnected via localized reconnection at one of the 

cross overs. It does not matter which site reconnection 

takes place at, so we shall choose the upper, positive 
crossover. Wright and Berger [1989] have shown that 
when two crossed flux tubes are reconnected the decrease 

in mutual helicity (4•) is divided equally between the 
reconnected flux tubes and increases their self-helicity. 
Hence reconnection at the upper crossover in Figure 2c 
will produce two reconnected flux tubes, and the upper 

one will have a self-helicity of «• •. The lower 
reconnected tube has a contribution of «• • to its 
self-helicity from reconnection at the upper crossover, 
and -4• due to the negative crossover with itself (i.e., a 
net self-helicity of -•4•). Both reconnected flux columns 
in Figure 2c may relax to a shape like that shown in 
Figure 2b, and by the above analysis we expect the 
upper one to have a positive half twist, and the lower 
one a negative half twist in agreement with the earlier 
calculation. This suggests that the corrections of order e 1 
and 1/e: are identically zero. 

4. Reconnected Fluxes in Skewed Fields and Sheared 
Flows 

When reconnection occurs across a neutral sheet where 

there are skewed magnetic fields and no background 
plasma motion, both the reconnected flux tubes (RFTs) 
gain a half twist. The sense of the twist is the same for 
both tubes and is determined by the sense of the 
crossover prior to reconnection [Wright and Berger, 
1989]. The last section showed that reconnected fluxes in 
antiparallel magnetic fields and sheared flows produces 
two RFTs that both have a half twist, but always of 
opposite senses. In this section we consider recOnnection 
across a general neutral sheet that has skewed magnetic 
fields and sheared flows. Both the "skewed field" and 

"sheared flow" mechanisms will compete to twist the 
RFTs, and a full calculation of this problem i s beyond 
the scope of this paper. However, we give below an 
approximate criterion for deciding which mechanism will 
dominate. 

FigUre 4a shows an element of flux immediately after 
having been reconnected between the fields B• and B• 
which form a tangential discontinuity, The motion of the 
reconnected tube is complex, particularly for sporadic 
reconnection. The plasma motion is communicated from 
the reconnection site (r) along the RFT by Alfv6 n waves. 
Figure 4a only shows half of the reconnected flux. This 
half propagates Alfv•n waves at speeds VA• and -VA• 
along B• and B•, respectively. (The lower tube that is 
not shown would excite waves with velocities -VA• and 
VA2. ) After a time t has elapsed from reconnection 
information will have reached the points p and q on the 
RFT (assuming no background plasma motion, V•). It 
is not possible to describe the magnetic structure in 
detail, however we do know that beyond the points p and 
q there are no MHD disturbances and also that the field 
lines pass from p to q. The tube shown in Figure 4b is 
the simplest configuration, althought it is possible that the 
section between p and q could be bent [cf. Sonnerup, 
19871. 

If there is some relative plasma motion either side of 
the neutral sheet (V•;e0) we may get configurations like 
those in Figures 4c and 4d. The figures are drawn in 
the rest frame of the plasma on B•, so q remains 
unchanged but p is displaced by V•t. in Figures 4b 
and 4c the "skewed field" mehanism dominates and the 

section of tube between p and q has a positive half twist. 
In Figure 4d the "sheared flow" mechanism dominates 
and reverses the twist of the tube between points p and 
q to a negative half twist. It is possible to define which 
mechanism will dominate in terms of the quantities V A•, 
VA• and V2•. Define the velocity U 

tl = v^, + v^; * v;, (16) 

The upper and lower signs correspond to the upper and 
lower reconnected fluxes. In Figure 4 the direction of the 
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(a) 

a 2 

B1 (b) t B1 
q q 

B 2 

p p =o 

{c) (d) + B 1 B 
B 2 

p 

--, p B1 V21 
V21 q q 
Fig. 4. A neutral sheet exists at the boundary of two magnetic fields B• and B 2. There is 
some rapid localized reconnection at the site r between the fields B, and B2: (a) A 
reconnected field line is shown immediately after reconnection. (b) If there is •no relative 
plasma motion, information is communicated along the field lines from the reconnectiOn 
site, r, at the local Alfvin speeds to sites p and q. (c) Relative plasma motion across the 
neutral sheet may distort the tube without altering its internal twist. (d) In some cases the 
plasma motion may reverse the sense of twist of the flux tube. 

V21 
a 1 

b B2 

Fig. 5. Reconnection at two long parallel reconnection 
lines (shown in bold). The flux rope formed between 
the reconnection lines can be characterized by its sense 
of twist and axial field direction. If field lines are 

reconnected at both lines at the same time, then no 

matter how large V2• is, the sense of twist and axial 
field are unchanged. However, if condition (17b) is 
satisfied, these quantities may be reversed provided that 
following reconnection at site._b, point a has time to drift 
beyond point c before being reconnected by the upper 
reconnection line. 

magnetic field lines joining p and q is coincident with the 
direction of U. If I•(C) is the angle of any vector C 
projected onto the neutral sheet then the "skewed field" 
mechanism dominates when 

•(-v^,) < •(•) < •(-v^•) (17a) 

and the "sheared flow" mechanism dominates when 

•(-v^•) < •(u) < •(-v^,) (17b) 

Note that this criterion is only approximate because we 
have assumed that the Alfvt!n waves launched from r are 

quite localized. The discussion above can be applied to 
sporadic three-dimensional reconnection, but is rather 
heuristic. Steady reconnection along an infinite 
reconnection line has been modeled quantitatively by 
Biernat et al. [1988], who also found that inside the 
reconnection layer the magnetic field was aligned with U. 
This agrees with our qualitative discussion, and the 
criteria (17) may be used when considering steady 
reconnection as discussed by Biernat et al. [1988], in 
addition to localized sporadic reconnection. 

5. Discussion 

An obvious application of the results derived: here iS 
dayside reconnection between the terrestrial and solar 
wind magnetic fields. in this case Figure 4 would 
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correspond to the northern connected flux tube viewed 

toward the Earth with IMF Bz<0 and IMF By>0 (B• is 
the magnetospheric field and B 2 is the magnetosheath 
field). Typical dayside parameters are VA•-q500 km s TM, 
VA2',-V • •',-250 km s- •. This ordering of quantities means 
that it will not be possible for the "sheared flow" 
mechanism (equation (17b)) to dominate when there is a 
significant IMF By component. Thus we anticipate that 
the vast majority of FTE observations will have a twist 
governed by the "skewed field" mechanism [Wright and 
Berger, 1989], which is sensitive to the sign of IMF By 
as reported by Cowley [1982] and Paschmann et aI. 
[1982]. The skewed field mechanism also has the property 
that the By component inside the reconnection layer 
(between p •tnd q in Figures 4b and 4c) is in the same 
direction as the IMF By component. 

The sheared flow inechanism is likely to come into 
operation during dayside reconnection when there is a 
strong magnetosheath flow in the IMF •? direction and the 
fields are approximately antiparallel. In this case (if 
equation (17b) is valid) the twist sense will be opposite to 
that predicted by Cowley [1982] and Paschmann et al. 
[1982]. If a spacecraft were to enter such a RFT, the 
B n signature would be discontinuous, and the sense of By 
between p and q in Figure 4d would be opposite to that 
of IMF By.. It would be interesting to look for such 
anomalous signatures in the data. 

Besides single reconnection line models of FTEs there 
are multiple reconnection line models [e.g., Lee and Fu, 
1985; Fu and Lee, 1986]. The role of a flow shear in 
determining the sense of twist depends upon the sequence 
in which a given field line is reconnected at the different 
neutral lines. For exmaple, if the field line B2 in Figure 
5 is reconnected at the same instant at both reconnection 

lines then the flow shear has no effect upon the magnetic 
geometry of the flux rope produced between the two 
reconnection lines. On the other hand, if the field line is 
reconnected at the lower line first (site b), then the new 
field line may evolve like those in Figure 4. If it evolves 
in a similar fashion to that depicted in Figures 4b or 4c, 
then no reverse twist can be produced. However, if 
condition (17b) is valid and the field line assumes a 
shape like that in Figure 4d it is possible for the twist 
sense to reverse if reconnection at the upper line occurs 
after point a has drifted beyond point c. When this is 

especially if the magnetopause field is bent less than 
Scholer suggests.) 

6. Conclusions 

There are two principal methods for producing twisted 
magnetic flux tubes within MHD theory. One relies upon 
reconnection redistributing helicity amongst the RFTs in 
such a way that their internal structure changes, i.e., they 
gain a positive or negative twist. This is most easily 
achieved during reconnection between magnetic fields that 
are skewed relative to one another [Wright and Berger, 
1989]. The other method requires some sort of fluid 
motion to braid or twine the magnetic field lines about 
each other [Berger, 1988b]. We have concentrated upon 
the latter mechanism and studied its effect on RFTs 
across a tangential discontinuity. We find that a pair of 
RFTs in antiparallel fields and a flow shear will steadily 
increase their twist up to a maximum of a half twist. 
The sense of twisting in a given flux tube is always 
opposite to that its partner. It can also be shown that 
the elements of flux reconnected first become more 
twisted than those reconnected later [cf. Southwood et 
al., 1988]. 

When the neutral sheet is formed by magnetic fields 
that are skewed relative to each other and has no flow 
shear, the pair of RFTs both have the same sense of 
twist. If a flow shear is introduced both twisting 
mechanisms will compete with one another. An 
approximate relation is derived (equation (17)) for 
determining which twisting mechanism will dominate. 
When this condition is applied to dayside reconnection, 
we find that the skewed field mechanism will nearly 
always dominate. Nevertheless there will be some 
occasions when the sheared flow mechanism predominates 
and this is expected to produce FTEs with an irregular 
twist and axial By component. 

Acknowledgments. This work was carried out while 
both authors were U.K. SERC research assistants. 

The Editor thanks M. Hesse and another referee for 

their assistance in evaluating this paper. 

References 

satisfied the sense of twist and axial field of the flux Berger, M.A., Rigorous new limits on magnetic helicity 
rope will be opposite to that if V2•=0. dissipation in the solar corona, Geophys. Astroph¾s. 

The remaining models of FTEs are due to Scholer Fluid Dynamics, 30, 79, 1984. 
[1988a,b] and Southwood et al., [1988] who both discuss Berger, M.A., Measures of Topological Complexity in 
the bubble-like structures produced by unsteady magnetic fields, Proc. NASA workshop on solar 
reconnection along a single long reconnection line. It is flares, Austin Texas, 1986. 
interesting to compare these models with the single short Berger, M.A., Three dimensional reconnection from a 
reconnection line model of Russell and Elphic [1978] (see global viewpoint, p83-86, Reconnection in Space 
also Wright [1987]). The velocity U in equation (16) Plasma, edited by T.D. Guyenne and J.J. Hunt, 
corresponds to the speed at which two Alfv6n waves on ESA SP-285, vol 11, Paris, 1988a. 
either side of the neutral sheet separate. This can be Berger, M.A., An energy formula for nonlinear force free 
combined with the length of the reconnection line, L¾, to magnetic fields, Astron. Astrophys., 20.•_1, 355, 1988b. 
give a characteristic time, r=Ly/U. If the RFT is Berger, M.A., and G.B. Field, The topological 
observed a time t after reconnection, and t<r, then the properties of magnetic helicity, J. Fluid Mech., 147, 
quasi two-dimensional models of Scholer [1988a] and 133, 1984. 
Southwood et al. [1988] will be appropriate. If the time Cowley, S.W.H., The causes of convection in the Earth's 
of observation after reconnection is greater than r, the 
three-dimensional nature of the RFT becomes important 
and the isolated flux tubes suggested by Russell and 
Elphic [1978] may be a more useful way to describe 
FTEs. Clearly the length of the reconnection line is an 
important parameter. Scholer [1988b] has estimated this 
length to be as much as 5R E. (His calculation requires 
that an equilibrium is achieved between the poleward 
force of the RFT and the equatorward force of the 
"magnetopause field". This may not be realized - 

magnetosphere: a review of developments during the 
IMS, Rev. Geoph¾s., 20, 531, 1982. 

Fu, Z.F., and L.C. Lee, Multiple X line reconnection, 2. 
The dynamics, J. Geophys. Res., 91, 13373, 1986. 

Jensen, T.H., and M.S. Chu, Current drive and helicity 
injection, Phys. Fluids, 2_•7, 281, 1984. 

Lee, L.C., and Z.F. Fu, A theory of magnetic flux 
transfer at the Earth's magnetopause, Geophys. Res. 
Lett., 12, 105, 1985. 

Paschmann, G., G. Haerendel, I. Papamastorakis, N. 



8036 Wright and Berger: Reconnected Flux Tubes in a Sheared Plasma Flow 

Sckopke, S.J. Bame, J.T. Gosling, and C.T. Russell, 
Plasma and magnetic field characteristics of magnetic 
flux transfer events, J. Geophys. Res., 87, 2159, 
1982. 

Russell, C.T., and R.C. Elphic, Initial ISEE 
magnetometer results: magnetopause observations, 
Space Sci. Rev., 22, 681, 1978. 

Sato, T., T. Shimada, M. Tanaka, T. Hayashi, and K. 
Watanabe, Formation of field-twisting flux tubes on 
the magnetopause and solar wind particle entry into 
the magnetosphere, Geoph¾s. Res. Lett., 13, 801, 
1986. 

Saunders, M.A., C.T. Russell, and N. Sckopke, Flux 
Transfer Events' scale size and interior structure, 

Geoph¾s. Res. Lett., 11, 131, 1984. 
Scholer, M., Magnetic flux transfer at the magnetopause 

based on single X line bursty reconnection, Geoph¾s. 
Res. Lett., 15, 291, 1988a. 

Seholer, M., Strong core magnetic fields in magnetopause 
flux transfer events, Geophys. Res. Lett., 15, 748, 
1988b. 

Song, Y., and R. L. Lysak, Evaluation of twist helicity of 
FTE flux tubes, J. Geoph¾s. Res., 94, 5273. 1989. 

Sonnerup, B.U.O., On the stress balance in flux transfer 
events, J. Geoph¾s. Res., 92, 8613, 1987. 

Southwood, D.J., C.J. Farrugia and M.A. Saunders, What 
are flux transfer events?, Planet. Space Sci., 36, 
5O3, 1988. 

Taylor, J.B., Relaxation of toroidal plasma and generation 
of reverse magnetic fields, Phys. Rev. Lett, 33, 
1139, 1974. 

Wright, A.N., The evolution of an isolated reconnected 
flux tube, Planet. Space Sci., 35, 813, 1987. 

Wright, A.N., and M.A. Berger, The effect of 
reconnection upon the linkage and interior structure 
of magnetic flux tubes, J. Geophys. Res., 94, 1295, 
1989. 

M. Berger, Mathematics Department, University 
College, Gordon Street, London, England. 

A. Wright, School of Mathematical Sciences, Queen 
Mary and Westfield College, Mile End Road, London E1 
4NS, England. 

(Received June 27, 1989' 
revised October 11, 1989' 

accepted November 6, 1989.) 


