
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 96, NO. A1, PAGES 209-216, JANUARY 1, 1991 

Magnetic Geometries That Carry Decoupled Transverse or Compressional 
Magnetic Field Oscillations 

ANDREW N. WRIGHT AND N. W. EVANS 
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In general, the eigenmodes of a cold inhomogeneous magnetoplasma have magnetic field pertur- 
bations with components both parallel and transverse to the background magnetic field direction. 
Recently, constraints have been derived which the medium must satisfy for the field perturbation 
to be either entirely compressional, or entirely transverse. Here these criteria are investigated to 
yield all planar and axisymmetric magnetic field configurations allowing pure decoupled transverse 
and compressional oscillations. For example, in an axisymmetric dipole field the azimuthal field 
perturbations decouple exactly, but solely poloidal transverse ones do not. The magnetic field 
geometry and background plasma density for the most useful decoupled solutions are listed in a 
table at the end of the paper. 

1. INTRODUCTION 

One of the simplest ways to investigate the properties of a 
cold magnetoplasma is to look for coherent, harmonic MHD 
disturbances of small amplitude. Such an analysis provides 
information about the characteristic time scales of the sys- 
tem and even its stability. However, in a general medium 
with spatially varying magnetic fields and plasma density 
this analysis is formidable because the magnetic field pertur- 
bation has components both parallel and perpendicular to 
the background field. The analysis is simplified considerably 
by concentrating upon oscillations where the magnetic field 
perturbation is either quasi-parallel or quasi-perpendicular 
to the background field [Fejer, 1981; Sin9er et al., 1981; 
Chiu, 1987; Glassmeier et al., 1989]. We shall refer to these 
modes of oscillation as being compressional and transverse, 
respectively. The application of decoupled compressional or 
transverse modes to field fluctuations observed in the terres- 

trial and jovian magnetospheres has met with considerable 
success [Cummings et al., 1969; Sin9er et al., 1981; Hopcraft 
and Smith, 1986; Glassmeier et al., 1989]. 

When using the decoupled equations, it is obviously im- 
portant to know how good an approximation this is. For 
example, the jovian satellite Io launches two (transverse) 
AlfvSn waves into Jupiter's magnetosphere [Acmia et al., 
1981; Barnett, 1986]. Will these waves remain as a trans- 
verse field disturbance, or will they couple to the fast mode 
and decay? It is well known that in a nonuniform medium a 
compressional wave will mode convert to a (kinetic) Alfv•n 
wave [Hasegawa and Chen, 1976]. Recent work by Cross 
[1988a, b/ derived a restriction that the system must sat- 
isfy if it is to support solely transverse field perturbations, 
namely, that the oscillation frequency must be constant 
along perturbation magnetic field lines b. Subsequently, 
Wright [1990a, b/ determined constraints on the geometry 
of the magnetic field, the plasma density distribution, and 
the form of the medium's boundaries. These latter papers 
state all the conditions that the medium must satisfy if the 
transverse and/or compressional oscillations are to decon- 
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pie from one another exactly. This provides a useful yard- 
stick with which to compare mediums that are of interest to 
us, for example, dipole or toroidal geometries, stratified or 
torus-like density distributions, ionospheric or photospheric 
or eve n "empty" boundaries. 

In this paper we concentrate on the geometrical aspect 
of the problem. The geometry of a magnetic field may 
be expressed in terms of three scale factors (see section 2). 
The geometrical criteria derived in previous studies [Wri9ht, 
1990a, b] are given in terms of one or more relations that 
these factors must satisfy. Given these, it is not always an 
easy task to write down the corresponding set of field ge- 
ometries. Indeed, this is the principal aim of our paper. We 
begin by defining a coordinate system with which to work in 
section 2. The following three sections derive the most use- 
ful geometries permitting pure decoupled transverse and/or 
compressional oscillations. The results are discussed in sec- 
tion 6, which concludes the main text. 

2. COORDINATE SYSTEM 

Throughout the paper we make use of a field aligned co- 
ordinate system (a,•, 7), where a/ is parallel t o the local 
background magnetic field B. The coordinates a and • 
label individual field hnes since they are constant on any 
given field line (cf. Euler potentials or Clebsch variables). 
The background magnetic field is represented in terms of a, 
/3, and 7 by 

B = f(c•,/•) ß Vc•^VJ• (la) 

The transverse coordinates (a, •) may be expressed in terms 
of matched Euler potentials, in which case f is the Jacobian 
of this mapping [Stern, 1970; Wrioht and Smith, 1990]. An 
arbitrary magnetic field may always be written at least lo- 
cally in the form (la), but the functions (a,O) are densely 
multivalued for stochastic fields and cannot be used to de- 

fine a global coordinate system (see below). The second re- 
lation (1 b) is always valid in the absence of any background 
field aligned current. If there is a nonzero background field- 
aligned current, 7 does not form a single-valued globM co- 
ordinate. We note that similar coordinates have been used 
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in previous studies [Southwood and Hughes, 1983; Singer et 
al., 1981; Murata, 1986; Walker, 1987; Wright and Smith, 
1990]. 

To proceed further, we assume that the background field 
is irrotational and that V'c• and V'/• are orthogonal (at least 
throughout the region of space carrying perturbed fields). 
Without loss of generality the field-aligned coordinate 7 is 
taken as a function of the magnetic scalar potential •b, so 
that g is now equal to 0•b/07 and independent of c• and 
fl. The local geometry of the field is contained in the three 
scale factors ha, ht•, and h•. A real space vector dr is equal 
to &hadc• + f•ht•d/• + •/h•d7, and there are well-known 
expressions for grad, div, and curl in terms of the scale fac- 
tors [Davis and Snider, 1979]. The fact that the background 
magnetic field B is solenoidal and irrotational can be stated 
quite simply (in orthogonal coordinates) as [Wright, 1990a] 

= 

= 
For the remainder of this section we try to develop some 
insight into the field-aligned coordinates by showing how 
they may be determined. 

A suitable point to begin is with the set of two- 
dimensional planar fields. Let the background magnetic field 
be independent of the z coordinate and have Bz = 0. Each 
field line is confined to a plane z =const. So, z is a suit- 
able choice for one of the transverse coordinates and we set 
) = •.. The remaining transverse coordinate a is a function 
of (x, y) describing the shape of the field lines in a surface of constant z. Indeed, this shape coincides with contours of 
the f• (i.e., •.) component of the vector potential [cf. Stern, 
1970]. Thus a general choice for the remaining transverse 
coordinate is a = a(A•). The field-aligned coordinate is 
general function of the magnetic scalar potential, yielding 
our coordinates 

A three-dimensional field geometry that renders relatively 
straightforward results is the axisymmetric poloidal field. 
Introducing cylindrical polars (R, ck, z), the field is inde- 
pendent of the azimuthal • coordinate, and the azimuthal 
field component B, is everywhere zero. Thus the field lines 
are confined to meridional planes and a suitable choice for 
one of the transverse coordinates is /• = •b. The inter- 
section of surfaces of constant a with meridional planes 
yields the shape of the magnetic field lines. The former 
surfaces coincide with surfaces of constant R. A, [cf. Stern, 
1970]. Hence the coordinates may be expressed in terms 
of the vector and scalar potentials, and the azimuth as 

= = 4, = These methods are directly applicable to magnetic fields 
for which the field lines lie on stationary surfaces. Stochas- 
tic magnetic fields, on the other hand, have field lines that 
pass arbitrarily close to every point in a spatial region. The 
coordinates (a, fl, 3') are then densely multivalued functions 
on configuration space. 
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ba perturbations along any line (]%, 7o) are divergence free. 
It is shown that these requirements constrain the permissible 
field geometry thus 

ha _ P(a,/?)Q(/•,7) (3a) 

3. TYPE I GEOMETRIES 

Wright [1990a] uses the linearised induction and momen- 
tum equations to investigate the existence of pure decoupled 
transverse MHD oscillations with perturbed magnetic field 
component ba and velocity component ua. The physical re- 
quirements are that bt•, b•, and ut• remain zero and that the 

where P(a,/•) and Q(/•,7) are arbitrary functions. In this 
type of oscillation the perturbed magnetic field lines are con- 
fined to planes of constant/3. There is the additional restric- 
tion on the background plasma density p0 that 

O (B.••) (lb) •aa =0 
as well as constraints on the boundaries (see Wright [1990a] 
for a full discussion and Table I for a summary). We denote 
geometries satisfying (3a) as "type I geometries". Decou- 
pling requires the geometry, density, and boundaries to be 
of the specified forms. Not surprisingly, the (ba,ua) wave 
operators and eigenfrequencies are then independent of rr. 
Planar Fields 

We begin with a planar field (Bx(x, y), By(x, y), Bz = 0) 
in which the field lines are confined to surfaces of constant 
z. The first type of transverse mode that is easy to consider 
is when the perturbation field has only a • component. In 
order to apply the criterion (3a) we define our coordinates 
with & parallel to •., i.e., (a = z,/? =/3(A•), 7 = 7(•b)). The 
scale factors are 

f(ft) g('•) (4) 
ha = I ht• - B(/•, • h• = •(fi, 7• 

which are readily verified to be of form (3a). Taking the 
background plasma density as p0 = pc(x, y) enables (3b) to 
be satisfied and so any planar field can support oscillatory 
field perturbations confined to the z direction. Such gener- 
ality is an artifact of two dimensions and does not hold in 
three dimensions. 

The second type of transverse mode that we investigate 
has field perturbations that are confined to the planes of 
constant z and so our coordinates are (a = a(Az),/• = 
z, 7 = 7(•b)) ß Exploiting the the homogeneity in z, the 
general form of the scale factors is 

(5) = = = 
This yields the simple conclusion that any two-dimensional 
field (B•(x, y), By(x, y), 0) carrying oscillatory field pertur- 
bations confined to the (x,y) plane is a type I geometry. 
Defining the plasma density through (3b) gives one condi- 
tion for the existence of a decoupled solution. 

Given that the general irrotational and solenoidal back- 
ground field (Bx(x, y), By(x, y), 0) can support transverse 
field perturbations both confined and perpendicular to 
planes of constant z, it is natural to ask if a quite arbi- 
trary transverse perturbation can satisfy (3a). This may be 
investigated by defining a new set of transverse coordinates 
(a', fl') so that the trial field perturbation is always aligned 
with the local &' direction. The details of the calculation are 
given in Appendix A, where it is shown that (3a) cannot be 
satisfied for arbitrary (c•', fl'). Some simple geometries that 
are able to support arbitrarily oriented transverse field per- 
turbations are a uniform background field, a purely toroidal 
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B, and a field aligned with the cylindrical radial direction 
B = •l. Bo(a/R). (Of course, the field geometry need only be 
of this form in a subvolume of space that contains perturbed 
fields and necessarily excludes the z axis.) 

Axisymmetric Fields 

The simplest field with which to start is axisymmetric and 
purely toroidal. By identifying the •b coordinate with q, and 
choosing c• and • as any orthogonal coordinates in a merid- 
ional plane it is evident that the restriction (3a) is fulfilled 
because of the independence of the metric coefficients of •b. 
Hence this geometry can support transverse oscillations of 
arbitrary orientation if the density and boundaries are of the 
permitted forms (see Table 1). 

For an axisymmetric and purely poloidaJ field it is much 
more difficult to satisfy (3a). The properties of the poloidal 
field geometry can be found by investigating the cases 
where the perturbation flux is either completely toroidal (az- 
imuthal) or poloidal. Beginning with the toroidal mode and 
aligning & with •, we take (c• = 6, fi = fi(RA•), 'r = 7(•b)). 
Condition (3a) is satisfied as all scale factors are indepen- 
dent of azimuth, while (3b) implies p0 = po(R, z). This con- 
firms the well-known result of, for example, Dungey [1967]; 
azimuthal oscillations decouple exactly in an axisymmetric 
poloidal background field. 

Now consider the axisymmetric poloidal mode. In this 
case, the field perturbations are confined to meridional 
planes. To apply the constraint (3a), /• is matched with 
• so that (c• = (•(RA•), fi = •b, 7 = 7(•b)). The scale factors 
are given by 

f(a) 1 g(')') 
= ß = = (6) 

which gives 

h•h• g(-•) R• 
(7) 

So, a poloidal axisymmetric field can support pure trans- 
verse oscillations if and only if R is a separable function of 
c• and 7, i.e., 

In Appendix B it is shown that the only orthogonal field 
aligned coordinates satisfying (8) are cylindrical polars, 
spherical polars, and spheroidMs. Surprisingly, these are 
the only geometries in which the poloidaJ oscillations can 
decouple exactly. 

Cylindrical and spherical polars are very well known and 
generate the background magnetic fields B = •Bo(a/R) 
and B = i'Bo(a/r) 2, respectively. Although the field can- 
not be aligned with the cylindrical or spherical radial vector 
throughout all space (as B must be solenoidal), it certainly 
can assume this form in a subvolume of space. On the other 
hand, spheroidal coordinates (A,c•,v), which are sketched 
in Figure 1, can be used to define a global magnetic field. 
Surfaces of constant A are spheroids of revolution while sur- 
faces of constant v are two-sheeted hyperboloids of revolu- 
tion. Magnetic field lines are confined to the latter surfaces, 
and the three-dimensional structure may be obtained by ro- 
tating Figure 1 about its central axis. The coordinates A 
and v are defined as the roots for r of [Morse and Feshbach, 
1953]: 

-I- • =1 (9) v -- a 2 v -- b 2 

TABLE 1. The Permitted Decoupled Oscillations in a Variety of Inhomogeneous Media 

Background Boundary Field Coordinate 
Type Perturbations Plasma Density Conditions Geometries Alignment 

Planar (Bz=O) z= c• or 
Uniform B z= z(c•,/3) 
Cyhndrical •Bo(a/R) z= z(c•,/3) 

Transverse Toroidal •Bo ( 
I (ha, ua) ba(O/Oc•)[ B4/Pol = 0 ba(O/Oc•)S = 0 Axisymmetric (B• = 0) •b = c• 

Spherical •Bo(a/r) • • = c• or/3 
Rotational Parabolic •b = c• or/3 
Spheroidal 

Torsional Uniform B z= z(c•,/3) 
Transverse Arbitrary (%^ V)$ = 0 Toroidal •Bo(a[R) z= z(c•,/3) 

II (ha, bp, u•, up) Spherical i'Bo(a/r) 
'' Compressional Uniform B z= 

(b.•, u•, up) b•(O/Oqt)(poqø ) = 0 OS/Oqt = 0 Toroidal •,Bo(a/R) z=z(a,fi) 
Plnr 

III Compressional (&^V)[pohaa/B 2] = 0 (&^V)S = 0 Toroidal qSBo(a/R) z=z(c•,/3) 
(b.•, ua) (/3^•7)S M = 0 Axisymmetric (B• = 0) 

Spheroidal 
The first column states the type of geometry according to the classification in the text. The nature of the oscillation is given in 

column 2, along with the nonzero perturbation fields. Certain types of oscillations require a prescribed variation in the plasma density 
- these are dehneated in column 3. The presence of a boundary is described in terms of a surface function S(c•,/3, •) =constant. 
Such a boundary is termed "massive" or "empty" depending upon whether the plasma density becomes very large or very small on 
S. (SM denotes a massive boundary only.) The fifth column lists the appropriate magnetic field geometries for the subclasses of 
planar magnetic fields (Bz = 0) that are invariant in z, and axisymmetric fields (B•: 0) that are independent of azimuth (•b). The 
% coordinate is always aligned with the local ambient magnetic field direction. The final column details the choice of orientation of 
the transverse coordinates relative to the invariant coordinate (z or •b). For example, consider a transverse oscillation in a Type I 
geometry: The (b•, ua) solution is only valid in a general axisymmetric (B•: 0) field if & is aligned with •. Whereas the same 
oscillation in rotational parabolic or spheroidal geometry is permitted when either & or /} is aligned with •. Finally, the same 
oscillation is allowed in a toridal •Bo(a/R) geometry for an arbitrary orientation of & and/•. 
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5 

R (in units of semi-focal distance) 

Fig. 1. The figure is sketched in a meridian plane. B is aligned 
with •. The axisymmetric field can be constructed by rotating 
the field about the z axis. (In this case the field is supported by 
a toroidal current (R > a) in the plane z = 0.) 

where a and b are constants and b 2 < v < a 2 < •. The 
background field is aligned along f• and the field perturba- 
tions along i are decoupled. This is a useful configuration 
for, say, approximating the flux emerging from a sunspot. 
The complete details of the magnetic field and plasma den- 
sity for all the solutions constructed in this section are listed 
in Table 1. Furthermore, we have established an important 
result; the poloidal oscillations of an axisymmetric poloidal 
background field do not in general decouple. 

4. TYPE II GEOMETRmS 

In this section we turn our attention to a different set of 

geometries, which we shall term "type II geometries". The 
required form of the scale factors is 

ha = p•(oe, /3)q(7) 

= 

Using the above relations and (2), we find that h• = 
P-•(a,t•)q'•(7), where p.• = P•,Pts/f and q-• = gq2. There 
is an elegant physical interpretation of a magnetic field of 
this form, namely, the shape of the cross section of any back- 
ground flux tube is invariant along the length of the tube, 
since the ratio of ha to ha is constant on a given field line. 

Type II geometries are suitable for carrying either trans- 
verse or compressional magnetic field perturbations. The 
transverse solution corresponds to a slim tube of background 
flux supporting a torsional Alfv4n wave [Wright, 1990a]. 
Thus the perturbation magnetic field lines form closed loops 
(encircling the background field) whose diameter is much 
smaller than the scale on which the ambient field varies. 

There are no restrictions upon the density distribution for 
this mode of oscillation, but any massive boundary must be 

perpendicular to the background field to avoid generating 
a compressional field perturbation. We note that the de- 
coupled transverse equations governing b• and bo become 
identical in geometries of the form defined by (10a). Type 
II geometries can also carry purely compressional field per- 
turbations. This mode is not localized to a slender flux 

tube but extends across the background field lines [Wright, 
1990b]. The compressional transverse velocity perturbations 
(u•, ua) move the background field lines without bending 
them and so only generate a parallel field perturbation b, 
For this mode of oscillation the background plasma density 
is restricted by 

0 (p0[q(7)16) = 0 (10b) 
and there are also constraints on any bounding surfaces, as 
discussed in more detail by Wright [1990b]. 

Planar Fields 

We begin with the general two-dimensional field 
(B•,(z,y), By(z,y),B:• = O) and identify /3 with the z co- 
ordinate, which implies that the function q is constant. Re- 
turning to the general form of the scale factors for planar 
fields (4), we see that the field strength must be independent 
of the 7 coordinate to match the form dictated by (10a). As 
a result, ha does not change along the length of any given 
field line (i.e., the separation in the & direction of a pair of 
background lines of force will remain constant along their 
length). Clearly, a uniform background field meets this very 
restrictive criterion, but are there any other geometries too? 
The only other possible geometry is a planar axisymmetric 
toroidal field, where the B lines lie on concentric circles. 

Axisymmetric Fields 

Now let us consider axisymmetric poloidal fields, where 
/3 = 4 and B, = 0 everywhere. The general form of the 
scale factors for such geometries is stated in (6), and it is 
evident that the cylindrical radius R must be a separable 
function of a and 7. We have already derived the set of 
axisymmetric fields with this property in Appendix B. Of 
these solutions, only the spherical polar geometry (with as- 
sociated background field B = fBo(a/r) •) has a scale factor 
ha of the form required by (10a). A simple physical way 
to drive at this result is to envisage the shape of the cross 
section of a background flux tube in the different geome- 
tries. Only the radial spherical polar field has the property 
of preserving the shape along the length of the tube. 

õ. TYPE III GEOMETRIES 

The final mode of oscillation we investigate is purely com- 
pressional. Here the only nonzero components of the per- 
turbation magnetic and velocity fields are b• and tt•, re- 
spectively. We show that this less general compressional 
mode may be realized in more geometries than the arbitrary 
(b•,tta, tt•) mode considered in section 4. Wright [1990b] 
proves that (b•, tt•) oscillations are possible only if 

h• 
= P(a)Q(/•, 7) (11a) 

hah•s 

which we take as defining "type III geometries". The above 
requirement is not too restrictive. For example, any field 
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B that can be represented by true Euler potentials whose 
gradients are orthogonal (i.e., f(c•, •) = const.) will satisfy 
(11a). Once again, there are constraints upon the density 
distribution 

04)[ ] = 0 
and the massive bounding surfaces compatible with this 
mode (see Table 1). 

Planar Fields 

As in section 3, our coordinates are (a : a(Az),/• : 
z, 7 = 7(•)). It is straightforward to use (4) to deduce 

= 
f(-) 

Any two-dimensionai field (Bx(z, y), B•(z, y), 0) can sup- 
port compressional oscillations with a perturbation velocity 
field in the (•, y) plane. Equally, by taking coordinates such 
that (c• = z,• = •(Az), 7 = 7(;b)) we find that compres- 
sional oscillations with perturbation velocity parallel to • 
are also permissible. This augments the results of section 3 
- any planar field is a type III geometry and permits alecou- 
pled oscillations if the density is of form (11b). 

Axisymmetric Fields 

Toroidal axisymmetric fields allow compressional oscilla- 
tions of arbitrary orientation. This follows immediately from 
the independence of the scale factors of azimuth. More sur- 
prising, in view of the restrictive results of section 3, is that 
both toroidal and poloidal compressional oscillations can de- 
couple exactly in an axisymmetric poloidal background field. 

Turning to poloidal B fields, let us examine the toroidal 
(b-•,u4,) mode by taking 
Condition (l 1 a) is satisfied as all scale factors are inde- 
pendent of azimuth. For the poloidal (b• •) mode, • is 
matched with • so that 
The scale factors are given in (6), and we readily find 

-- (13) 
f(-) 

which is of the required form. This generality is partic- 
ularly astonishing in view of the scarcity of axisymmetric 
geometries permitting decoupling of transverse oscillations. 
It should be noted, however, that the exclusion of the per- 
turbations from the currents that generate the ambient field 
will necessitate the introduction of boundaries. Since these 

boundaries may not lie across background field lines (see Ta- 
ble 1) it may be difficult to find suitable boundary surfaces 
for some examples. 

In Table I the details of the magnetic fields and back- 
ground plasma densities permitting decoupled modes of os- 
cillation are collected. This summarizes the most important 
results derived in the last three sections. 

6. DISCUSSION AND CONCLUSIONS 

When confronted with a nonuniform magnetoplasma, a 
preliminary investigation of the system often involves con- 
sidering the quasi-transverse and quasi-parallel field pertur- 
bations independently [e.g., Glassmeier et al., 1989; Singer 

et al., 1981]. Whilst this is an instructive step, it is impor- 
tant to know to how good approximation any given mode is 
truely decoupled from other modes. For example, in an ax- 
isymmetric dipolaf background magnetic field the azimuthal 
field perturbations decouple exactly [Dungey, 1967]. How- 
ever, in the same geometry the purely poloidal field pertur- 
bations do not [Cross, 1988a; Wright, 1990a]. Evidently, 
one may anticipate that the azimuthal field perturbations 
will be longer hved than their poloidal counterparts (which 
will probably couple to a compressional mode and decay 
more rapidly). 

Transverse azimuthal perturbations are frequently ob- 
served in planetary magnetospheres. The excitation mech- 
anism will affect the symmetry of such oscillations. For ex- 
ample, ion pick-up from the Io torus in the Jovian mag- 
netosphere provides, to lowest order, axisymmetric excita- 
tion [Glassmeier et al., 1989] and can generate perturbations 
with a vanishing azimuthal wave number naturally. On the 
other hand, in the terrestrial magnetosphere transverse az- 
imuthal field perturbations can be excited by nonaxisym- 
metric compressions at the magnetopause [Inhester, 1987]. 
Although such a resonant coupling cannot be described by 
our equations, the spatial variation of the eigenmodes along 
the field lines is identical in both calculations to lowest or- 

der. 

What happens when one calculates, for example, the de- 
coupled transverse modes of a medium which is not of the 
required form? Fejer [1981] notes that a paradox may arise 
if a disturbance is expressed in terms of the two decoupled 
transverse modes (termed "toroidar' and "poloidal" in his 
paper): The state of the perturbed field may be constructed 
at later times by considering only one of the set of trans- 
verse modes- the other transverse field perturbation may 
be inferred from V. ha. = 0. The paradox arises because, 
in general, the inferred solution at later times depends upon 
which set of modes is used at the outset. 

The use of the word "decoupled" is something of a mis- 
nomer in this situation. In fact, the arbitrary (and often un- 
physical) setting of the compressional field perturbation to 
zero actually couples the two transverse field perturbations 
via V.ba. = 0 [Fejer, 1981; Wright, 1990a]. Mediums incor- 
porating a type II magnetic field geometry have the special 
property that b• and bt• may evolve "independently" of one 
another without violating the solenoidal restriction at later 
times. Type II geometries guarantee that a torsional Alfv•n 
wave will not generate a parallel field perturbation bll (if 
the boundaries are also suitable). It is interesting to con- 
sider the fate of a torsional Alfvdn wave when the medium is 

not suitable for its survival: Fejer [1981] suggests that mis- 
matched transverse modes will lead to a breakdown of the 

assumption that bll = 0. Alternatively, Chiu [1987] insists 
upon keeping bll = 0 and invokes the generation of "para- 
sitic" transverse modes that maintain V. ba. = 0 at later 
times. If the medium only departs slightly from the required 
ideal form, then there may develop a relatively small bll. One 
possible result would be a coupling to the fast mode which 
would tend to propagate isotropically [Walker, 1987]. In 
these circumstances it is possible that the disturbance would 
appear to be a torsional Alfv•n wave that slowly decays in 
amplitude as a result of coupling with the (compressional) 
fast mode. On the other hand, Cross [19S8a, b] has found 
Alfv4n wave solutions with a finite bll. In this circumstance 
there is an energy flow across B, but this amounts to no 
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more than a circulation of energy around background lines 
of force. 

In addition to quasi-transverse modes, magnetospheric 
physicists are also interested in compressional modes, for 
example, the transmission of a compressionM impulse from 
the outer to the inner magnetosphere. If the background 
field is taken to be that of an axisymmetric dipole, we know 
that this (type III) geometry is suitable for carrying a purely 
compressional disturbance. However, the boundaries and 
density distributions found in planetary magnetospheres are 
not of the required form [ Wright, 1990b]. As a result, we ex- 
pect a coupled compressional/transverse oscillation. Indeed, 
such a mode has been observed in the Jovian magnetosphere 
[Glassmeier et al., 1989] where the compressional and trans- 
verse poloidal field perturbation oscillate coherently. This 
could be anticipated on physical grounds from the solenoidal 
nature of b and the fact that bll • 0 at the equator but must 
vanish at the ionospheric footpoints. 

The aim of this paper has been to present the most use- 
ful magnetic geometries for which some type of completely 
decoupled mode may exist. Often we may be interested in 
the properties of a field that has a geometry which is un- 
suitable for decoupled modes. In this situation, some idea 
of how realistic quasi-transverse or quasi-parallel modes are 
may be gained by seeing how much the background medium 
departs from one of the 'idea]' mediums in this text. This is 
perhaps the most interesting direction in which to continue 
this work. 

One approach is to investigate the strength of coupling 
between transverse and compressional field perturbations. 
For example, the models given in this paper can be used as 
a ]owest-order solution which can be perturbed by appro- 
priately small changes in the plasma density (p) or the field 
geometry (his). Alternatively, a multiple-scMe analysis of 
the perturbed fields may prove useful to investigate systems 
where there are weak gradients of the perturbations (for ex- 
ample, low azimuthal wave number transverse toroida] field 
perturbations in a background poloidal field). In contrast 
to weak gradients, the existence of strong gradients occurs 
naturally in resonance problems [Allan et al., 1985; Inhester, 
1986; Inhester, 1987], and boundary layer techniques often 
prove useful. Besides these analytical tools, numerical meth- 
ods can provide solutions that are otherwise untractab]e. 

Our work can be extended in a different direction by relax- 
ing the assumption of ideal Ohm's law. Including nonideal 
effects such as finite resistivity or kinetic effects will permit 
finite Ell , for example, as in the kinetic Alfv•n wave. De- 
spite this wave being transverse the group velocity will have 
a small perpendicular component. Such calculations can be 
particularly relevant to laboratory plasmas. 

APPENDIX A 

In this appendix we investigate the ability of a gen- 
eral planar field (B:(z, y), By(z, y), Bz = 0) to carry ar- 
bitrary transverse oscillations. A suitable way to pose 
the problem is to introduce new transverse coordinates, 
leaving the field-aligned coordinate remaining unchanged; 
(c•'= c•'(c•, •3), •3'= $'(c•, •), 7'= 7). The new coordinate 
$' is chosen so that the perturbation field line lies in the 

In order to determine the function c•'(c•, •3), which provides 
an orthogonal coordinate to f•', we take the vector product 
&' = f•'^%' to get 

&'=& h/• oq/• h•, oqa 
Alternatively, &' may be expanded in a form similar to (A1) 

& 0a' • 0a'] (A3) + 
Whilst we can be assured that the form for &' given in (A2) 
will complete a right-handed triad, there is no such restric- 
tion upon the expression (A3). Orthogonality can be ef- 
fectively imposed upon the latter relation by equating its 
& and • components with those of (A2). Matching the & 
components (assuming c9o//0o/is nonzero) gives 

h•,, [ h•, ] c9•'/c9• (A4) hwh. •, = h•h.• 
We require that the left hand side (lhs) is of the general 
form P'(a',/•')Q'(/•', 7'), (cf. equation (3)). Given the old 
coordinate system (in which/• is taken as z), we know that 

term in square brackets may be written as P(c0Q(7 ) 
because of invariance in the/• (not/•') coordinate. Noting 
that the last term in (A4) is a function of c•' and /•', and 
that c• depends only upon c•' and /•', it follows that (A4) 
can always be be written in the required form. Equating 
/} components of (A2) and (A3) gives (assuming 0c•'/0/• is 
nonzero) 

Once again, we require (AS) to be of the general form 
P'(a',ff)Q'(/•', 7'). As before, the square-bracketed term 
and the final term are consistent with this expression. How- 
ever, the additional term in the middle of the right hand 
side (rhs) is more problematic. It may be written as 

[B(c•, 7)/f(a)] 2 where we have used (2a), invariance in 
and a n = 1. Since we have c•(cJ,/•') and 7(7'), (A5)is 
only of the required form if B is independent of either 
or 7'. Such a requirement rules out most field geometries. 
Some planar geometries for which the field strength is in- 
dependendent of 7' are a uniform field, or a purely toroidal 
field. If a subvolume of space has the background magnetic 
field aligned with the cylindrical radial vector this geometry 
will satisfy (3) in an arbitrary primed system since the field 
strength will always be in dependent of 

Note that if our assumptions of c9a'/Oa and 0a'/0• being 
nonzero are not true, then &' will coincide with either & 
or 1} from the original coordinate system and we shall be 
considering one of the modes already discussed in section 3. 

APPENDIX B 

In this appendix we derive the set of axisymmetric ge- 
surface/•' =const The vector is equal to he, V/•' and so ometries for which the cylindrical radius R is a separable 

function of c• and 7. The metric of the axisymmetric field 

[0/•' 0/•' ] [ & 0/•' •__.• 0•'] aligned coordinate system is k + _= + J 
2 2 

(A1) ds 2 = h•d(• • + h•dfl • + h•d7 (B1) 
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where ]• is identified with the •b coordinate and h• = R 2 = 
z 2 + y•. We wish to find all geometries satisfying 

= 

where fo and f• are arbitrary functions of indicated argu- 
ment. First, we must apply the condition that the space is 
flat, i.e., the Riemann tensor is zero [Synge and Schild, 1956]. 
The nonvanishing components of the Riemann tensor yield 
the coupled partial differential equations 

01og h• 01og h• _ 01og h• 01og h2o _ 01og h• 01og h2• = 0 
O• O'r 0c• 07 07 0c• 

(BS) 

1 2021og h• ( Oc, 01ogh• O log h• I (2021ogh • 
(B4) 

0log h2• O h2• • 1 0log h• 0log h2• =0 

where all cyclic combinations are taken. If the vector fields 
Va, V]•, and V7 are to mesh to give smooth and mutually 
orthogonal surfaces, then we must additionally impose the 
integrability condition [Schutz, 1980]' 

ß 

O'lo Olo al Olog = 0 0a0'•-- + 07 0a 
Using (B3) and (BS), it is straightforward (but lengthy) to 
show that the scale factors are of the form 

h• = fo + f-• (B6a) 
h• = fof• (B6b) 

where fo is at most a function of a and hkewise for ft. The 
investigation may usefully be divided into three cases. 

If f,is a constant, then the coordinates may be rescaled 
to give 

h2• = •b•2(c•) h• = •b22(a) h2• = I (B7) 
Imposing the so far unused three equations (B4) gives the 
solution without loss of generality as •b• = 1 and •b2 = a, and 
so the coordinates are rec0gnised as cylindrical polars. An 
exactly analogous method may be used when fo is constant 
to generate spherical polars. 

Finally, if neither fo nor f• are constant, substituting 
(B6) into (B4) gives tn• PDEs 

(BS) 

: 
which can be integrated to yield 

(B9) 

When c = 0, the coordinates are the rotational parabolic 
system [Morse and snocn, 531. the general c • 0 
case, straightforward rescaling gives the spheroidal coor- 
dinates defined in (9). Hence we have proven that the 
only axisymmetric coordinates for which R is of the given 
form (B2) are cylindrical polar, sphdrical polar, rotational 
parabolic, and spheroidal. These are the axisymmetric con- 
focal quadric surfaces first written down by Eisenhart [1934]. 

Although rotational parabolics formally satisfy (B2), they 
cannot be used to define a sensible global magnetic field. 
The apphcations of the other coordinate systems are dis- 
cussed in section 3. 
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