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Abstract. The normal MHD modes of the tail lobe are calculated for a simple
model that is stratified in 2. An important feature of our equilibrium field is
that it may be tilted at an arbitrary angle () to the antisunward direction, i.e.,
B = B(cos0,0,sinf). When 6 = 0, the familiar singular second-order equation
of Southwood [1974] is recovered. When 6 # 0, the system is goverened by a
nonsingular fourth-order equation. Hansen and Harrold [1994] (hereafter HH)
considered exactly this system and concluded that (for  # 0) energy was no longer
absorbed by a singularity but rather over a thickened boundary layer across which
the time-averaged Poynting flux ((5,)) changed. Our results are not in agreement
with those of HH. We find (S5,) is independent of z and find no evidence of boundary
layers, even for § as small as 1076 rad. Our solutions still demonstrate strong mode
conversion from fast to Alfvén modes at the “resonant” position, but the small
component of Alfvén speed in the z direction permits the Alfvén waves to transport
energy away from this location and prevents the continual accumulation of energy
there. The implications for MHD wave coupling in realistic tail equilibria are

discussed.

1. Introduction

Large-scale reconfigurations of the geomagnetic tail
from internal or external driving mechanisms are de-
scribed naturally in terms of MHD waves. Recently,
Elphinstone et al [1995] observed the clear signature of
a fast magnetosonic wave in the magnetometer data of
IMP 8 recorded in the tail lobe. There is also a long
history of studying the normal modes of the tail, and
it is thought that these can account for Pi 2s [Edwin et
al., 1986; Hopcraft and Smaith, 1986].

Detailed studies of magnetotail modes frequently as-
sume an equilibrium field B(z)%x and a harmonic de-
pendence on the z and y (GSE) coordinates, which re-
duces the normal mode equations to a second-order or-
dinary differential equation (ODE) in z. Formally, these
equations are similar to the singular field line resonance
equations of Southwood [1974] and Chen and Hasegawa
[1974], which describe wave coupling on closed field
_ lines. Seboldt [1990] and Liu et al. [1995] have calcu-
lated these normal modes, which describe MHD wave
coupling on open tail field lines.

Recently, Hansen and Harrold [1994] (hereafter HH)
have argued that the one-dimensional equilibrium used
in all these previous studies (in which xB and p are
solely functions of z) is unrealistic, since there must be
some, albeit small, variation of p along the equilibrium
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field lines. HH proposed a modified equilibrium (see
Figure 1) in which p(z) is still a function of z, but the
equilibrium field is tilted so that it has a small z com-
ponent B = (B,,0, B,). Even for the simple case of B
= const, (B - V)p = B,(9p/8z) will be nonzero, and
HH claim that this condition removes the Alfvén singu-
larity even if B, is very small. They go on to show that
the energy deposition now occurs continuously over a
thickened layer rather than at a singularity and is qual-
itatively unaffected from the singular (B, = 0) case. We
find this conclusion peculiar: A one-dimensional solu-
tion of the ideal equations with oscillatory time depen-
dence and no singularities should have a time-averaged
energy flux in the z direction that is independent of z
— a property that is clearly violated in Figures 4 and 8
of HH.

We have performed our own analytical and mamerical
investigations of the system in Figure 1 and find that
(1) there is no Alfvén singularity even as B, — 0% (it
needs to be identically zero to get a singularity); (2)
there is no energy accumulation in a layer centered on
the B, = 0 singularity as B, — 0%; (3) the z compo-
nent of the energy flux is independent of z; and (4) the
B, = 0 singularity marks an important position where
an incoming fast wave can couple efficiently to an Alfvén
wave. However, the Alfvén wave propagates along B
and away from this z position when B, # 0, thus pre-
venting a continual accumulation of energy there.

It is interesting to note that if perfectly reflecting line-
tied boundary conditions were employed in the z direc-
tion, such as on closed field lines, the resulting partial
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Figure 1. Model equilibrium and coordinates. The
magnetic field B = B(cos#,0,sinf) has constant

strength. The density varies only with 2z, so if 8 is
nonzero there is a field-aligned density variation.

differential equations in « and z would be singular even
when B, # 0 [Thompson and Wright, 1993]. In this
case, each field line has a well-defined set of natural
Alfven frequencies.

2. Model and Governing Equations

For simplicity, and to facilitate direct comparison
with the results of HH, we take B to be constant and
inclined at an angle # to the x direction (see Figure 1).
The density is solely a function of z,

B = B(cos$,0,sinf) (1)

p= p(2) @)

and we neglect plasma pressure, so the model equilib-
rium could describe low-3 regions of the tail lobe or
possibly the plasma sheet boundary layer.

For an ideal plasma the linear MHD perturbations
to the plasma velocity (u) and magnetic field (b) are
governed by the momentum equation

ou

E = (VAb)AB/ﬂo (3)

and the induction equation

b
= V/\ (u,\ B)

G g

Considering a single Fourier mode exp [k, + kyy — wt]
reduces (3) and (4) to a set of ODEs in z. If we write
d/dz as a prime, the components of (3) and (4) become

. -kZ
b, = Bsecf [%— zw—"”] Uy
. ikgkyB
+sin QTyuy (5a)
k2B ’ 1
b, = sin §— Uy —cscﬁz;—?uy
—sec HZkz ky B u, + iky cot 6b,
w
—ikg cot 0by (5b)
u, = —csc Hl—w—by — kg cot fuy (5¢)

B
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u, = cos B%bx — iky cos? Qu, (5d)
In the above equations, V is the Alfvén speed (V2 =
B?/pop), and we have eliminated b, and u, as they are

determined algebraically,

(6a)

u, = —tanfu,
b_z = —k—zcos6u2+k—xsin9ux
B w w
k
+ - sin fu, (6b)
w

Note that the wave fields in (5) and (6) are complex,
having nonzero real and imaginary parts.

3. Singularities

To identify the existence, or absence, of singularities
in the solution to (5), we write these equations as a
single fourth-order ODE. Singularities may occur when
the coefficient of the highest derivative vanishes. To
ease comparison with HH, we write the equation in their
notation and work with plasma displacement in the z
direction; £, = iu,/w. The resulting equation is

Adl" + Al + Azl + A€ + Aok, =0 (7)

The coefficients are given by

Ay = npt4q? (8a)
A3 = (n*+1°)S'JA+ 2iks(n® + 1) (8b)
A, n*k2 + 2iS'nks /A + S + 1n°k2

—n?A + in5k$5’/,§ +7°R

+kZ + 3in’k, S /A (8¢)
Ay = —2in’kok] — 2inkokZ — S'n*k2/A

+k2S' /A + 2ink, R + 20° R

+0°k2S'JA - 2i°k3 + S'*R/A (8d)
Ao = 7’R"+n0'kIR—nk} +20°k2R

+2inks R’ — n*k2kZ +iS'n*k, R/ A
—ik2konS' JA + An?k? — 2ik3n°S’ /A
+S'R' A - iS'°k3 [ A — 2kt
—ik2n®k.S' | A+ 2iS'nk, R/ A
—AR - n4k§k§ (8e)
where a common multiplicative factor of A = n’kZ +
2n%k2 + n*k2 — S has been omitted from all coefficients
in (8). The following quantities are defined by HH:
R=w?/V2, — k2,8 =w?/V} —k2 - k2, and V2, =
B3, /(pop). Note that HH took B = By,(1,0,7), so the
results may be converted to our notation by substituting
Byy = Bcosf and n = tané.

It i1s a tedious task to derive the coefficients in (8)
without approximations or dropping terms. Indeed, HH
focused on the small § (or ) limit and omitted many
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of the higher-order terms (see their equation (19)). We
employed Maple to derive the result in (8), which is
valid for arbitrary #. We were also able to check our
result by recovering the constant density (arbitrary 6)
limit, which reduces (7) to the fast and Alfvén disper-
sion relations.

As we noted above, any singularities will occur when
the coefficient of the highest derivative is zero. This
condition is not satisfied for a special value of z but
is achieved by setting 6 (or 7)) to zero exactly. When
§ = 0 we find A4 = Az = 0 identically, and (7) is re-
duced to the familiar second-order ODE of Southwood
[1974]. The Alfvén singularities of this equation are
well documented. Note that this system has constant p
along field lines. If we wish to study equilibria for which
p varies along B, then 6 (and 7) must be nonzero, and
so A4 will never vanish indicating that there is no sin-
gularity in the fourth-order (6 # 0) equation. HH also
reached this conclusion. However, as the coefficients of
the highest derivatives (A3 and A4) will be small when ¢
is small, they suggested that a boundary layer solution
would be appropriate and found that energy could be
deposited in the boundary layer. We find this claim sur-
prising, and in the following sections we develop what
we believe to be the correct solution.

4. Analytical and Numerical Solutions

To develop some understanding of the wave modes
in the nonuniform equilibrium, we begin by considering
the limit in which &y = 0. This simplification decouples
the Alfvén wave (characterized by b, and u,) from the
fast mode (bg,b,, uz, u,).

4.1. Decoupled Solutions

A WKB solution may be determined for the field-
guided Alfvén perturbations. The length scale of the
field-aligned density variation (L) is given by 1/L =
(B/B)-VInp =sinfd(In p)/dz and may be made arbi-
trarily large by choosing 6 sufficiently small. The paral-
lel wavelength of the Alfvén wave (27/kj ) is determined
by the local dispersion relation kﬁ(z) = w?/V2(2),
where V(z) is the Alfvén speed. Provided that k’ﬁ >

1/L?% a WKB solution can (normally) be employed, and
this can generally be satisfied for small 4. (Strictly, we
require k, > 1/L,, as we are solving equations in z
only; see later.)

A WKB solution assumes a dependence on z of
exp i[k;(z)z]. Setting k, = 0 and replacing d/dz by
ik, in equations (5) yield the following equation for the

Alfvén wave:
Uy
by

( —kg cot 6
-e (i) o

—wB/(V?%sin )
which is an eigenvalue equation for k,. The roots are

—w/(Bsin§)
~kg cot @
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EE = (:I:% — kg cosf)/sinf (10)

That these roots correspond to the Alfvén wave may be
confirmed by calculating k:

(11)

S0 kﬁ does indeed satisfy the Alfvén wave dispersion

relation. Clearly the +/— roots correspond to propa-
gation parallel/antiparallel to B. This property is also

kl:ll: =kycosf +kEsingd=+w/V

. evident from the eigenvectors of (9),

ko= kE; (uy,by) = a()(1,—B/V)
k= k53 (uyby) = a(2)(1L,+B/V)

(12a)
(12b)

where a(z) is some arbitrary function of z for the mo-
ment. The result in (12) that b, /uy = +/— B/V for
an Alfvén wave propagating antiparallel/parallel to B
1s also familiar.

A graphical interpretation of the wavevector (eigen-
value) is instructive. Figure 2 shows the solution in
(ks, k) space. Consider Figure 2a first. Our solution
has a prescribed k;, which is marked by the vertical
dashed line. The wave vector must have an z compo-
nent equal to this &, and so its tip will lie on the vertical
dashed line. The z component of k may be determined
from the Alfvén wave dispersion relation, k| = +w/V,
and the two tilted dashed lines delineate this constraint.
The two points of intersection of the lines represent our
solution for k* and k~. Evidently, their projection onto
the field-aligned direction will yield a k) that satisfies
the Alfvén wave dispersion relation.

Regarding (10), we see that k] is always negative,
as is k'”_ . Thus the phase velocity and group velocity
of the k™ solution are always in the —z direction. The
k* solution is more unusual, and from (10) we see that
kF = 0 when
%z—) =k, cosf (13)
This condition is satisfied for some special value of z (as-
suming V' and p vary monotonically). Note that when 6
is zero, (13) defines the position z, (the location of the
resonant Alfvén wave singularity). When 6 is nonzero,
(13) defines a critical position (z.) which is approxi-
mately equal to z, for small 8,

ze = 2, + 0(6%) (14)
Since k} changes sign across z = z., the phase veloc-
ity in the z direction (V;© = w/k}) also changes sign.
(This behavior is quite different to V,” = w/k;, which
is always negative.) A graphical view is given in Figure
2: in Figure 2a kf > 0, so w/V(z) > kycosf. This
inequality is satisfied for z values where p(z) > p(z.).
The situation p(z) < p(z.) is shown in Figure 2b, from
which it is clear that k} is negative.

The group velocity can be determined from rewriting
(10) as
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(b) AN

Figure 2. Graphical Alfvén wave solution in (kz,ky = 0,k,) wavenumber space. The normal
mode has a prescribed k, (vertical dashed line) and w. The parallel wave numbers are found from
kﬁ = w?/V2(z) and so must lie on the tilted dashed lines. The roots correspond to the points of

intersection of these lines. The sign of k} changes sign according to whether V(z) is (a) smaller

than or (b) larger than w/(k; cos$).

(15)

from which we find the z component of the group ve-
locity,

w = £(kE sin 0 + kg cos )V

vE ﬁu}_ =4Vsinf

= 16
= 5 (16)
Thus the group velocity is parallel/antiparallel to B for
the +/— solutions and has a magnitude equal to the
component of the Alfvén speed in the z direction. Em-
ploying (15) and (16), we find the ratio of the z com-
ponents of group and phase velocities is

+
Yy

L= (17)

1F ki‘—/— -cosf
w

Hence the k; solution (i.e., taking the lower sign in
(17)) always has V™ parallel to V,~ (both negative).
The k} solution has V' parallel to V;* when p(2) >
p(ze), (V(2) < V(z.)), and they are of opposite sense
when p(z) < p(z.),(V(z) > V(2.)). This behavior is a
result of V;* (and k) changing sign at 2.

To illustrate further features of these solutions, we
turn to a numerical solution. In all the numerical so-
lutions, normalized quantities are employed. Length is
normalized by the extent of the domain () in z, veloc-

ities by V/(0), density by p(0), magnetic field strength
by B(0), and time by {/V(0). The model density and
Alfvén speed on the normalized interval 0 < z < 1 are

1

V= T0A71

p=(102* +1)% (18)
The normalized version of (5) is solved by specifying
boundary conditions at z = 0 and then integrating with
a fourth-order Runge-Kutta scheme to z = 1. In all the
results presented here, 8000 grid points in z were used,
and this resolution determined the solution fields to 1
part in 106.

Figure 3 (top) was generated by applying the ki
eigenvector (uy,,by,) = (1,—1) at z = 0, whereas Fig-
ure 3 (bottom) used the k; eigenvector (uy,,by,) =
(1,1) as a boundary condition. (Other parameters were
k; = 3.0, ky = 0.0, w = 1.0, and & = 0.03 rad.)
The point where k} changes sign for this model is
2z, = 0.669, and is indicated by the dashed line in Fig-
ure 3. Indeed, at this position A} = 2x/k} is locally
very large. We can go further and compare A* with the
wavelengths in Figure 3. For example, A} (0) = —0.094,
AF(1) = 0.024, A7 (0) = —0.047, and A (1) = —0.014.
A careful examination shows that these WKB wave-
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Figure 3. Decoupled Alfvén wave eigenfunctions:
(top) kF and (bottom) k; . The dashed lines represent

the WKB amplitude envelope oc p~1/4.

length estimates are in excellent agreement with the
numerical results. The ratio of A; to A} is easily cal-
culated from (10),
A, kf 1 —cosbk,V/w
M T kT —1-cosfkV/w
so A; /At — 0 as z — z.. The following limits are also
found:

(19)

1 V() < V() (202)
—;—f—:— — +1; V(Z) > V(Zc) (20b)

The trend toward these limits is also visible in Fig-
ure 3. (V(0)/V(z.) = 3.0, V(1)/V(z.) = 0.273.) The
lowest-order WKB solution developed so far (geomet-
rical optics) determines the phase of the solution. It
is evident from the numerical solution that the ampli-
tude also varies, and this may be analyzed by solving
the next order of the WKB equations (physical op-
tics). Physical optics has the advantage that the so-
lution amplitude satisfies energy conservation. We can
use this as a shortcut to deduce the amplitude varia-
tion; in a constant magnetic field the Poynting vector
is proportional to uyb,, and this must be constant, as
the (small wavelength) wave suffers no reflection. Since
uy = by (V/B), we find u, o p~'/* and b, x p'/%.
The amplitude envelope p~1/4 is shown in Figure 3 and
1s an excellent approximation, except near z, for the
kT solution, where A} — oo and the WKB ordering
discussed earlier is violated. Hence the previously un-
specified amplitude a(z) of the eigenvectors in (12) is
now determined to be a(z) o< p~1/4(2).

4.2. Coupled Solutions

When ky = 0 (such as in Figure 3), the decou-
pled Alfvén waves carry constant (time-averaged) en-
ergy flux. The k}/k; solution carries a flux in the
+/— 2 direction. When ky # 0, the Alfvén waves cou-
ple to the fast mode; both real and imaginary parts of
the four complex ODEs in (5) become coupled together.
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Although we solve for all these coupled components nu-
merically, for the purposes of studying the solutions it
is sufficient to plot uy, and u,, (the real parts of u,
and u,), which represent the Alfvén and fast modes,
respectively.

In Figure 4 we plot uy,(z) and wu,.(z) for k, =
30, ky, = 1.0, w = 1.0, and § = 0.03 rad. The
boundary conditions at z = 0 are (uyr, Usr, bor, byy)
= (0.2, 0.1, 0.0, —0.2) and (’U,yi, Uyz, b;,;i, byi) = (0.0, 0.0,
—0.1,0.0). The A scale seen in Figure 3 is evident in
this figure, but note how the amplitude envelope of the
uyy is discontinuous. (We have overplotted portions of
the WKB envelope, scaled suitably, on either side of
zc.) The energy flux carried by the Alfvén wave over
the range 0 < z < 0.5 is evidently much less than that
carried over the section 0.8 < z < 1.0. Where does the
extra energy come from? The time-averaged z com-
ponent of the Poynting vector is shown in the bottom
panel and is calculated from

(S:) = —5Re{(urB)rb}-2
= %[uzrbxer — Ugrbgr B, — UyrbyrBz

(21)

(Re indicating the real part). As there are no singu-
larities in our ideal equations, we would expect (S,) to
be independent of z, and Figure 4 is in accord with
this. (Numerically, (S,) was constant to 11 significant
figures.) Our results are in contradiction with the nu-

+t5bei By — Ugibei B, — uyibyiBz]
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1 ]
Y = =
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Z
Figure 4. Variation of uy, (Alfvén wave), wu,,

(fast mode), time-averaged total energy density, and
time-averaged z component of the Poynting vector.
The dashed vertical line marks the position z, where
V(2:) = w/(kycosf). Note that (S,) is independent
of z. (Here, k; = 3.0, ky = 1.0, w = 1.0, § = 0.03;
at 2 = 0 (Uyr, Usr, bor, by, ) = (0.2,0.1,0.0,—0.2), and
(uy,’, Uzq, bm', byi) = (00, 0.0, —0.1, 00))
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merical results of HH (their Figures 4 and 8) who found
that (S,) varied by the order of 100%.

Not only does (S,(z)) show a complete absence of
an energy absorption signature near z., but the time-
averaged total energy density (Er) (also displayed in
Figure 4) shows no remarkable features or accumulation
of energy around this position. In normalized units,

ET—1

=3 (22)

b-b* + i- pu-u*
(where the asterisk denotes the complex conjugate).
Note that in (21) and (22) the fields are the Fourier
coeflicients, which are solely a function of z.

The second panel in Figure 4 shows the variation of
U, with z and. to a good approximation, describes the
fast mode. The turning point near z, is the demarcation
line between the oscillatory (2. < z < 1) and evanes-
cent (0 < z < 2.) regions. We noted above that the
time-averaged flux associated with the Alfvén wave is
not independent of z, since the amplitude of the WKB
envelope is different on either side of z,. However, the
(S:) panel demonstrates that total enegy flux (of the
Alfvén and fast wave) is constant. The obvious. inter-
pretation is that the fast mode has a negative (S,) in the
region z. < z < 1 but mode converts to an Alfvén wave
propagating in the positive z direction at z & z.. Hence
the Alfvén wave energy flux in-the region z. < z < 1is
greater than that in 0 < z < 2.

To confirm our interpretation of fast Alfvén wave cou-
pling, we modified the boundary conditions to

T
—-
[9)1
L AL L L N R R R R RN ARSI RN R

0.2 0.4 0.6 0.8 1.0

Z

Figure 5. Same format and parameters as in
Figure 4. The boundary conditions at z =
0 are (uyr,Usr,ber,byr) = (0.0,0.15,0.0,0.0) and
(tyi, Ui, bei, by;) = (0.0,0.0,—0.05,0.0). In the region
ze < z < 1 a fast mode propagates from z = 1 to
z = 2., where it mode converts to an Alfvén wave which
propagates from z = z, to z = 1. There is no net time-
averaged energy flux in the z direction.
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(Uyr, Uar, bgr, byr) = (0.0,0.15,0.0,0.0) and
(%ys, Uzi, bzi, byi) = (0.0,0.0,—0.05,0.0). As before, k, =
3.0, ky, = 1.0, w = 1.0, and § = 0.03. The bound-
ary conditions correspond to (S,) = 0 (from (21)), and
the numerical solution shown in Figure 5 verifies this
property. Moreover, at z = 0 the boundary conditions
contain no Alfvén wave eigenvector (for k} or k; so-
lutions) but do contain an evanescent fast mode. The
Uy, and u,, panels confirm these features in the region
0 < z< 2. For z, < z < 1 the solution is quite dif-
ferent. An Alfvén wave with At scale (i.e., carrying
energy in the +2z direction) exists. Since (S,) = 0, the
fast mode in z. < z < 1 must be carrying energy from
z =1 to around z., where it converts to an Alfvén wave
propagating from z, to larger z. Although there is no
singularity in the equations when 8 # 0, there is still
efficient mode coupling between fast and Alfvén waves
near z = z..

5. Summary

In summary, we have investigated fast and Alfvén
wave coupling for the HH equilibrium, which corre-
sponds to that employed by Southwood [1974] except
that the background magnetic field is confined to the
(%, z) plane and allowed to tilt at an arbitrary angle 6
to z.

1. When 6 = 0, the system is governed by the famil-
iar singular field line resonance equation of Southwood
[1974]. There is a singularity at z,, w? = k,°V2(z,),
and (for ky # 0) a jump in (S,) across z,.

2. If 0 is not identically zero, there is no singular-
ity, no jump in (S,), and no accumulation of energy
evident in our solutions. (We even determined numeri-
cal solutions for § = 10~° rad and found no qualitative
difference from the results shown in Figures 4 and 5.)

3. Strong mode coupling does occur between fast and
Alfvén waves around z., but because the Alfvén speed
has a small component in the Z direction, the Alfvén
wave energy is not trapped at z.

It is interesting to consider why the § = 0 (singular)
solution is so different from the § # 0 (nonsingular)
solution, even when § — 0%. Mathematically, the dif-
ference arises because the two cases (§ = 0,7and 8 # 0)
are governed by a singular second-order ODE and a non-
singular fourth-order ODE, respectively. Physically, the
difference can be understood by considering the contin-
ual coupling of fast energy to Alfvén waves at z = z,:
Once the Alfvén waves have been excited, they propa-
gate along the equilibrium field. If § = 0, the Alfvén
waves propagate in z but remain at z = z.; thus the
Alfvén wave energy density increases in time at this
position and manifests itself in a normal mode as a sin-
gularity. If & # 0, the Alfvén waves may propagate
in z but also in z (at a speed Vsin6). Even when 6
is small, the Alfvén waves’ ability to propagate away
from z. prevents an accumulation of energy there, and
no singularity results. Note that a normal mode with
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real frequency has, in principle, existed for an indefinite
time, so even a small Alfvén speed component in z will
have allowed the Alfvén waves to propagate to z = foo
(unless V(z) — 0 for some z2).

The implications of this study for wave coupling in
the tail are that fast and Alfvén wave coupling will still
occur if § # 0, but it is a little difficult to interpret nor-
mal mode solutions (which oscillate indefinitely) with
realistic time-dependent behavior in a detailed manner.
Naively, it seems reasonable that if wave coupling has
been taking place for a time (¢9) such that the dis-
tance propagated by Alfvén waves in the z direction
(Az = Vigsinf) is much less than the phase mixing
length (Lyn = 27/(todwa/dz); wa = k;Va(2)), then en-
ergy is still confined to around z., and the width of the
“resonance” (Lpy) is sufficiently broad that the third-
and fourth-order derivatives in (7) will be negligible. In
this limit the tilt of the field is insignificant, and the so-
lution should be similar to the untilted time-dependent
calculations [e.g., Mann et al., 1995].

For longer times when Az >> Ly, the tilt of the field
can not be neglected, and the solution should be asymp-
toting to the normal modes described here. Future work
will calculate the time-dependent behavior of this sys-
tem numerically and confirm the precise nature of the
solutions in different regimes. It should then be possi-
ble to assess the significance of the nonsingular normal
modes for describing wave coupling in the magnetotail.
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