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[1] The field-aligned current of standing Alfvén waves is mainly carried by electrons
travelling parallel to the magnetic field. During the upward current phase, magnetospheric
electrons travel downward to the ionosphere. In large-amplitude Alfvén waves, where
current densities reach a few mAm�2 above the ionosphere, the electrons achieve energies of
the order of keV. This problem has been addressed recently in terms of two-fluid theory. The
present paper builds on these studies by employing a distribution function formulation.
When the electron motion is dominated by the parallel velocity component, we find the B/n
curve is central to interpreting the solution: B/n has a peak (i.e., d(B/n)/d‘ = 0, where ‘ is path
length along the field line) below which ionospheric electrons are trapped. Above the peak
we find the parallel electric field is balanced by the convective plasma acceleration, as
suggested by Rönnmark [1999] and has a value of the order of mV/m for �1 RE above the
B/n peak. The maximum Ek occurs where d

2(B2/n2)/d‘2 = 0 and is located a couple of
density scale heights beyond the B/n peak. INDEX TERMS: 2451 Ionosphere: Particle acceleration;
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electric field, Vlasov equation

Citation: Wright, A. N., and A. W. Hood, Field-aligned electron acceleration in Alfvén waves, J. Geophys. Res., 108(A3), 1135,

doi:10.1029/2002JA009551, 2003.

1. Introduction

[2] The single-fluid Magnetohydrodynamic (MHD) ap-
proximation has proved to be very successful for describing
ULF waves in the Earth’s magnetosphere: Southwood
[1974], Chen and Hasegawa [1974], andWright and Thomp-
son [1994] showed how resonant Alfvén waves (referred to
as field line resonances, or FLRs) could be excited preferen-
tially on certain L-shells.
[3] Numerical simulations demonstrated that fast cavity

modes [Allan et al., 1985; Lee and Lysak, 1989] or wave-
guide modes [Wright, 1994; Rickard and Wright, 1994] were
the likely agent for exciting Ultra-Low-Frequency (ULF)
Alfvén waves, whose existence is very well established
observationally [e.g., Samson et al., 1971; Walker et al.,
1979]. Alfvén waves are well known for the field-aligned
current they carry, and the last decade has established a strong
link in some observations between optical auroral emissions
and Alfvén wave fields [Samson et al., 1991, 1992; Xu et al.,
1993; Liu et al., 1995]. These studies have demonstrated that
the auroral luminosity is modulated with the same frequency
as simultaneously observed Alfvén wave fields. This sug-
gests the periodic precipitation of energetic field-aligned
electrons into the ionosphere, associated with the field-
aligned current, are modulating the optical emissions.
[4] The energy of the precipitating particles for a current

of �mA/m2 is �keV, and interest has focused recently on
how the electrons are accelerated. The traditional, and very

successful, single-fluid MHD approximation is not suitable
for this work: formally this limit neglects the electron mass
compared to that of the ions. Massless electrons are infin-
itely mobile, and can move with ease to where they are
required to preserve charge neutrality and carry the required
current (r^B/m0). Electrons of negligible mass require a
negligible electric field to accelerate them to high speeds
and corresponding negligible energies. Evidently this limit
is of little use for investigating the electric fields thought to
be responsible for accelerating electrons to energies of the
order of a keV.
[5] Early studies of Ek generation were based upon the

requirement of quasi-neutrality in a mirroring distribution of
electrons and ions [Alfvén and Fälthammar, 1963; Persson,
1966]. Subsequently Ek associated with the equilibrium of
different plasmas, such as a hot diffuse magnetospheric
plasma bounded by a cold dense ionospheric plasma were
considered [Chiu and Schultz, 1978; Stern, 1981]. These
studies found potential differences along auroral field lines
of the order of a kilo-Volt. Chiu and Schultz [1978] found
the Ek was concentrated between altitudes of 1 to 2 RE and
had a value of 0.5 mV/m, whereas Stern’s [1981] solutions
favored the formation of double layers.
[6] The importance of electron inertia in auroral currents

was first stressed by Goertz and Boswell [1979]. Recently,
studies have retained a finite electron mass and used the
two-fluid equations (one fluid for the electrons, and another
for the ions) to study FLRs. Streltsov and Lotko [1997] and
Streltsov et al. [1998] showed how finite electron inertia
introduces dispersion and can produce latitudinal structur-
ing [see also Liu et al., 1995]. Rönnmark [1999] suggested
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that the large observed electron speeds and finite electron
mass could account for parallel electric fields of the order of
mV/m at altitudes of �1 RE. Wright et al. [2002] applied
Rönnmark’s ideas to FLRs and found similar energization.
[7] Although the two-fluid equations permit an investiga-

tion of electron energization, this approximation only yields
information about the center of mass speed of the distribu-
tion, and so fails to capture a lot of the details of the complete
solution, such as the penetration of an energetic beam of
magnetospheric electrons into a dense low energy iono-
spheric plasma. Rönnmark and Hamrin [2000] addressed
this problem within the electron fluid approximation by
using separate fluids for the magnetospheric and ionospheric
populations.Wright et al. [2002] identified the regions of the
FLR flux tube where a single electron fluid would be useful,
and discussed the qualitative form of the solution elsewhere.
[8] A more accurate scheme for describing the electrons

is to use an electron distribution function, and is the
approach we adopt in this article. Following observations
that show the accelerated electrons have parallel speeds
much greater than their perpendicular speed we focus on
field-aligned motion as a first approximation. The limit of
small perpendicular speed means magnetic mirroring is
neglected. However, since this effect is not properly
accounted for in studies using the electron fluid description,
our calculation can be thought of as a useful refinement to
these studies. We find great simplification by considering
field-aligned motion to the extent that our results are
analytical and provide considerable insight into the physics
involved in electron acceleration. These results provide a
useful benchmark with which to compare calculations
which do include magnetic mirroring. For example, Rönn-
mark [2002] finds similar behavior, except that Ek increases
by a factor of 4. Rankin et al. [1999] also found that
mirroring could enhance Ek, as did Nakamura [2000] who
gives a lucid description of the physics involved.
[9] As noted by Rönnmark [1999] and Wright et al.

[2002], the presence of a nonuniform (dipolar-like) mag-
netic field causes the field-aligned current density to
increase dramatically over a scale �1 RE. The resulting
FLR electron dynamics are nonlinear, (Vkrk)Vk � @Vk/@t
(Vk is the parallel component of the electron fluid velocity),
at altitudes of less than a few RE for field-aligned currents of
� mA/m2 reaching the ionosphere, even if Vk/VA � 1 (VA
being the Alfvén speed). The nonuniform magnetic field is
an essential ingredient, and the increase in number density
(n) in the ionosphere is a new feature that we model
quantitatively in the present calculation and is possible
through the use of a kinetic description.
[10] The importance of the variation of B/n has been raised

in previous studies: Swift [1975] identified the ratio as being
proportional to the mean, or fluid, electron speed. Lysak and
Hudson [1979] found B/n peaked at altitudes of �1 RE. Our
calculation also stresses the importance of B/n. We find, in
accord with previous studies, that maximum energization
occurs where d(B/n)/d‘ = 0 (‘ being the field-aligned coor-
dinate). Moreover, we find the maximum Ek for downgoing
electrons occurs at slightly higher altitudes and is identified
by d2(B2/n2)/d‘2 = 0. These locations are consistent with
those of the field-aligned potential drop inferred by Shiokawa
et al. [2000] based upon mapping observed electron distri-
butions between high and low altitude satellites.

[11] The paper is structured as follows: Section 2 outlines
our model and approximations. Section 3 derives the
solution for the case of an upward field-aligned current.
Section 4 interprets the details of our solution and compares
with previous studies, and section 5 summarizes our results.

2. Model

2.1. Equilibrium

[12] The acceleration of electrons occurs at altitudes of
�1 RE and over a distance along the field line of the order of
an Earth radius. Thus, we shall focus upon the section of
field line within a few RE of the Earth. The transit time of a
keV electron over 1 RE is �1 s. Given the period of a ULF
wave is hundreds of seconds, we shall model the upward
current phase as a steady solution by setting @/@t = 0. We
shall show later that the neglect of @/@t is consistent with
the ordering (Vkrk)Vk � @Vk/@t mentioned above and is
discussed more fully in subsection 4.4. In the region of
interest the field lines are approximately dipolar, and we
take

B ¼ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 sin2 q

p
cos6 q

ð1Þ

where B0 is the (notional) equatorial field strength and B is
parameterized in terms of q, the latitude. The radial distance
to a point on the field line is

r ¼ LRE cos
2 q ð2Þ

and we set the L-shell to be L = 10, which gives field lines
entering the ionosphere at a latitude of 71.5�.
[13] The ion number density (n) in the magnetosphere is

taken to be constant (n0) and in the ionosphere is stratified
by gravity with a scale height h,

n ¼ n0 þ nm � n0ð Þ exp � r � REð Þ=hð Þ ð3Þ

nm is the maximum ion density at the base of the F region,
which we take to be at r = 1 RE for convenience. We assume
the ions are singly charged and the plasma quasi-neutral so
(equation (3)) is also the total number density of electrons.
[14] For illustrative purposes we take B0 = 25 nT (giving

B in the ionosphere of 5 � 104 nT), n0 = 106 m�3, nm/n0 =
103, and h = 400 km, and show the variation of B/n
(normalized by B0/n0) in Figure 1. The coordinate s is the
path length along the field line measured from the iono-
spheric end.

2.2. Electron Distribution Function

[15] We assume the plasma is collisionless in the region
of interest and describe the electrons via a distribution
function f (‘, vk, v?, t) which depends upon the distance
along the field line (‘), the parallel and perpendicular
components of the guiding center drift velocity (vk and
v?, respectively), and time (t). The gyrotropic distribution
function satisfies Vlasov’s equation

@f

@t
þ vk

@f

@‘
þ
dvk

dt

 @f
@vk

þ dv?

dt

 @f

@v?
¼ 0 ð4Þ
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and remains constant on an electron trajectory. We assume
the magnetic moment

m ¼ mv2?
2B

ð5Þ

is conserved. Seeking a solution of the form

f ¼ F ‘; vk; v?; t
� �

g mð Þ ð6Þ

and noting that the parallel component of the electron
guiding center drift velocity evolves according to mdvk/dt =
�eEk � m@B/@‘, equation (4) becomes

g mð Þ @F

@t
þ vk

@F

@‘
�

eEk ‘; tð Þ
m

þ v2?
2B

dB

d‘

� ��

 @F
@vk

þ
vkv?

2B

 dB
d‘


 @F
@v?

�
¼ 0

ð7Þ

To focus on field-aligned motion we let g(m) = (m/p)d(m)
and integrate equation (7) over v? space, giving

B
@F

@t
þ vkB

@F

@‘
�
eEkB

m

 @F
@vk

¼ 0 ð8Þ

and F = F(‘, vk, v? = 0, t). Once F has been found from
equation (8) the number density (n) and field-aligned
current ( j) are given by

n ‘; tð Þ
B ‘ð Þ ¼

Z þ1

�1
F ‘; vk; t
� �

dvk ð9aÞ

j ‘; tð Þ
B ‘ð Þ ¼ �e

Z þ1

�1
vkF ‘; vk; t
� �

dvk ð9bÞ

Quasi-neutrality is imposed in our calculations by requiring
that the electron number density in equation (9a) be equal to
the ion number density defined in equation (3). Following

the suggestion that the fields are treated as steady in the
acceleration region we set @/@t = 0 and use a potential (f) to
describe the electric field

E ¼ �rf; E ¼ � @f
@‘

ð10Þ

Defining � = ef/m, equation (8) reduces to

vk
@F

@‘
þ @�

@‘

 @F
@vk

¼ 0 ð11Þ

which expresses the fact that the total energy of an electron
(W ) is conserved along a trajectory W(‘, vk) = const.

F Wð Þ ¼ F W ‘; vk
� �� �

; W ¼ m
1

2
v2k � � ‘ð Þ

� �
ð12Þ

Our task is to determine the function �(‘ ) which yields an F
whose moments (equations (9a) and (9b)) give the required
electron number density and current density subject to
appropriate boundary conditions.

3. Upward Current Solution

3.1. Overview

[16] We begin with an outline of the results to help
orientate the reader through the following calculation.
Figure 2 shows a sketch of a converging flux tube para-
meterized in terms of the field-aligned path length (‘ ) which
increases as the ionosphere is approached. In this calcula-
tion we consider upward currents, i.e., electrons are accel-
erated downward into the ionosphere. We shall show that
the point ‘c is a critical position: It coincides with the peak
of B(‘)/n(‘). We take ‘0 to be a reference point at higher
altitudes than the acceleration region, and whose exact
location is not important. For convenience we let ‘0 be
located in the equatorial plane.
[17] Over the section ‘0 < ‘ < ‘c we only find magneto-

spheric electrons and these are accelerated to form a beam
over the acceleration region which extends to altitudes �1
RE above ‘c. The upward Ek in this region has a value of
�mV/m, and peaks at ‘E which is at an altitude of a couple
of density scale heights above ‘c.
[18] The region ‘c < ‘ < ‘m corresponds to the F region.

Trapped ionospheric electrons are found here as well as a
keV beam of magnetospheric electrons. There is no sig-
nificant energization of the beam in this region. The
boundary between the E and F region occurs at ‘m, and
the field-aligned current leaving the F region will be closed
by perpendicular currents in the E region, although we do
not describe that part of the circuit in the present calculation.

3.2. Boundary Conditions and Constraints

[19] The boundary condition on F(‘, vk) is imposed at ‘m,
where both ionospheric electrons and energetic magneto-
spheric electrons are present. The ionospheric population is
trapped and characterized, for simplicity, by the top-hat
distribution F(‘m, vk) = F1, �am � vk � + am. This
distribution could be replaced by a Gaussian, but has the
great advantage of keeping the following results analytical
and permitting considerable insight into the acceleration

Figure 1. The variation of B/n, normalized by B0/n0, along
an L = 10 field line. The path length is measured from the
base of the F region (s = ‘m � ‘ ). The peak of B/n occurs at
s/RE = 0.56.
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process. In a similar spirit the magnetospheric beam has a
speed bm � am, and is represented by the distribution
F(‘m, vk) = F2, bm � em � vk � bm + em, the beam width
being 2em. F(‘m, vk) is zero elsewhere.
[20] The electrons are much more mobile than the ions, so

we adopt Rönnmark’s [1999] suggestion of taking the ion
density to be constant and given by equation (3). Formally
this assumption gives us the leading (short timescale)
solution to our problem. Since the plasma is quasi-neutral
on the timescales of interest, we shall require the electron
number density given by equation (9a) to be equal to that of
the ions in equation (3). Indeed, a general � (‘ ) will map F
into the domain ‘0 < ‘ < ‘m in such a way that quasi-
neutrality is not met. Thus relating equations (3) and (9a) in
this way imposes a fundamental constraint on our solution.
[21] Another important constraint is that of current con-

tinuity. Over the acceleration region current is predomi-
nantly field-aligned, and its strength is focused by the
convergence of field lines: r 
 j = 0 in curvilinear
coordinates may be expressed as

j ‘ð Þ
Bð‘Þ ¼

jm

Bm

ð13Þ

where jm = j(‘m) ( j being the field-aligned component of the
current density) and Bm = B(‘m), and is used to constrain the
integral in equation (9b).

3.3. Electrostatic Potential Solution

[22] The above boundary conditions and constants can be
used to determine �(‘ ). For a general �(‘ ) we have

1

2
v2k ¼ � ‘ð Þ þW0=m ð14Þ

where W0 is the total energy of the electron. An electron
with speed vkm at ‘m will have a different speed at ‘ given by

vk ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2km þ 2�� ‘ð Þ

q
ð15Þ

where �� is the change in normalized potential,

�� ‘ð Þ ¼ � ‘ð Þ � � ‘mð Þ ð16Þ

Ionospheric electrons are confined to regions where �am
2 /2

� ��(‘) � 0. Defining ‘c by ��(‘c) = �am
2 /2, this

condition identifies the region ‘c � ‘ � ‘m, within which the
boundary speed am maps to a ‘ð Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m þ 2�� ‘ð Þ

p
.

Thus the ionospheric electrons make a contribution to
equation (9a) of 2F1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m þ 2�� ‘ð Þ

p
.

[23] Similarly, the beam speed (bm) and width (em) map,
using equation (15), to

b ‘ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2m þ 2�� ‘ð Þ

q
ð17aÞ

e ‘ð Þ � bm

b ‘ð Þ em � bmemffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2m þ 2��

p ð17bÞ

contributes � 2F2bmem=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2m þ 2�� ‘ð Þ

p
to the integral in

equation (9a). Note we have neglected thermal effects in the
beam (em � bm), and these electrons access the larger
domain �bm

2 /2 � �� � 0 compared to their ionospheric
counterparts. Thus equation (9a) requires in the ionosphere
(�am

2 /2 � �� � 0)

n ‘ð Þ
B ‘ð Þ ¼ 2F1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m þ 2��

q
þ 2F2bmemffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2m þ 2��
p ð18aÞ

and in the magnetosphere (�bm
2 /2 � �� < �am

2 /2)

n ‘ð Þ
B ‘ð Þ ¼

2F2bmemffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2m þ 2��

p : ð18bÞ

Noting that the trapped ionospheric electrons carry zero net
current, the constraint (equation (9b)) becomes

j ‘ð Þ
B ‘ð Þ � �2eF2b ‘ð Þe ‘ð Þ � �2eF2bmem ð19Þ

Note the final relation, found by employing equation (17b),
is exact even if em/bm is not small and confirms that j(‘ )/
B(‘ ) is indeed constant. This is consistent with the relation
in equation (13), which together with equation (19) gives

2F2bmem ¼ �jm= eBmð Þ ð20Þ

(Assuming that bm > 0 we require jm to be negative, i.e.,
j flows antiparallel to B.)

Figure 2. Schematic of the model equilibrium converging
field. For an upward current the electrons travel downwards
and must carry an increasing current density (/B) as they
approach the Earth. Some important locations are: ‘0, a
reference point far out in the magnetosphere; ‘E, the point
where Ek has its greatest magnitude; ‘c, the peak of B/n; and
‘m, the base of the ionospheric F region. The region in
which most of the electron acceleration takes place extends
for about 1 RE beyond ‘c.
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[24] A further relation, for F1, is found by evaluating
equation (18a) at ‘m (i.e., �� = 0) in conjunction with
equation (20),

F1 ¼
nm

Bm

þ jm

eBmbm

� �
1

2am
ð21Þ

where nm = n(‘m). Substituting the two relations above into
equations (18a) and (18b) yields, in the ionosphere (�am

2 /2
� �� � 0),

n ‘ð Þ
B ‘ð Þ ¼

nm

Bm

þ jm

eBmbm

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2��=a2m

q
� jm

eBm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2m þ 2��

p
ð22aÞ

and in the magnetosphere (�bm
2 /2 � �� < �am

2 /2)

n ‘ð Þ
B ‘ð Þ ¼

�jm

eBm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2m þ 2��

p : ð22bÞ

Evidently�� = �am
2 /2 corresponds to a critical value of the

potential (say, ��c) for which n = nc and B = Bc;

nc

Bc

¼ �jm

eBm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2m � a2m

p : ð23Þ

Performing a series expansion of equation (22a) in the
variable d� =�� ���c � 0 we find the change in (n/B) is

d
n

B

� �
� nm

Bm

þ jm

eBmbm

� � ffiffiffi
2

p

am

ffiffiffiffiffiffi
d�

p
þ jm

eBm b2m � a2m
� �3=2 d� ð24Þ

so as �� increases slightly from ��c, n/B will increase.
Similarly, inspection of equation (22b) shows that as ��
decreases slightly below ��c, n/B will also increase. Thus
��c = ��(‘c) occurs at the minimum of n/B � i.e., ‘c is
located at the peak of B/n. This result means that
ionospheric electrons are trapped earthward of the B/n peak.
[25] Note that we have not assumed a priori that the

ionospheric electrons are confined to altitudes below the B/n
peak. This is a general property of our model, although
somewhat surprising at first sight. For example, suppose we
increase the energy of the ionospheric electron distribution
to a0m (a0m > am). It would not be unreasonable to think that
the ionospheric electrons would now escape to altitudes
beyond the B/n peak. However, this is not the case: In terms
of ��, the electrons are confined to the region ��0

c � ��
< 0, where ��0

c = �a0m
2/2. The new version of equation

(22b) shows that for �� slightly less than ��0
c, n/B must

increase. Moreover, the new version of equation (24) shows
that if �� is slightly larger than ��0

c, n/B must again
increase. Thus we conclude that ��0

c is coincident with the
peak of B/n, and the ionospheric electrons are always
trapped below this peak. We note that this property could
be modified if a different ionospheric electron distribution
was chosen, e.g., a Maxwellian. However, it is still likely
that the vast majority of ionospheric electrons would be
confined to being below the B/n peak.
[26] Our aim is to solve for �� (‘), and we proceed by

inverting equations (22a) and (22b) to get �� in terms of

n/B, which is a known function of ‘. This is straightforward
in the magnetosphere, where �bm

2 /2 � �� < �am
2 /2. For

the ionospheric interval �am
2 /2 � �� � 0 we use n/B = nc/

Bc + d(n/B) (see equation (24)) with d� = �� � ��c) and
note that the final term in equation (24) may be neglected:
This term is smaller than the leading term at�� = 0 (‘ = ‘m,
d� = am

2 /2) by a factor of the order of (am/bm)
2(nc/Bc)/(nm/

Bm) � 10�6 if (am/bm)
2 � 10�3, so this is an excellent

approximation. (For the parameters given in section 2.1, nc/
nm = 1.14 � 10�3 and Bc/Bm = 0.26.) Incorporating equation
(23), the resulting �� in the ionosphere (‘c � ‘ � ‘m) is
given by

�� ‘ð Þ ¼ a2m
2

n ‘ð Þ
B ‘ð Þ �

nc

Bc

nm

Bm

� nc

Bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2m=b

2
m

q
2
664

3
775
2

�1

0
BBB@

1
CCCA ð25aÞ

while that in the magnetosphere (‘0 � ‘ < ‘c) is

�� ‘ð Þ ¼ b2m
2

nc

Bc


 B ‘ð Þ
n ‘ð Þ

� �2

1� a2m
b2m

� �
� 1

 !
ð25bÞ

A plot of�� is given in Figure 3 in terms of s = ‘m � ‘, i.e.,
the distance along the field line from the base of the F
region. Figure 3b shows the potential drop (due to the
ambipolar electric field) across the ionosphere is very small
compared to that over the magnetosphere as expected by
Rönnmark [1999] and Wright et al. [2002].

3.4. Parallel Electric Field

[27] According to equation (10), Ek = �df/d‘ = �(m/e)
d��/d‘ where all derivatives are understood to be taken
along the field line. Differentiating equation (25b) shows
that in the magnetosphere Ek / (B/n)d(B/n)/d‘, while in the
ionosphere (from equation (25a)) Ek / (n/B � nc/Bc) d(n/B)/
d‘, and so Ek = 0 at the peak of B/n, i.e., ‘c. This is the point
where the magnetospheric electrons have finished being
accelerated, but it is obviously not the location of the largest
Ek. Inspection of Figure 3 shows that the maximum of Ek
occurs in the magnetosphere and is located at ‘E, where
d2(B2/n2)/d‘2 = 0. Differentiating equations (25a) and (25b)
yields Ek explicitly. In the magnetosphere (‘0 � ‘ < ‘c)

Ek

mb2m=e
¼ � 1� a2m

b2m

� �
nc

Bc

� �2
B

n

� �

 d
d‘

B

n

� �
ð26aÞ

while in the ionosphere (‘c � ‘ � ‘m), after neglecting nc/Bc

compared to nm/Bm,

Ek

mb2m=e
¼ a2m

b2m

n

B
� nc

Bc

� �
Bm

nm

 n
B

� �2
d

d‘

B

n

� �
ð26bÞ

Figure 4 shows the variation of Ek(s) above the Earth (s =
‘m � ‘).

4. Interpretation

[28] The solution given in the previous section yields
considerable insight into the physical processes leading to
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the formation of the energetic electron beam. We begin
exploring this solution via the B/n curve which is central to
the whole problem.

4.1. Densities and Scale Lengths

[29] Figure 1 shows the peak of B/n occurs (at sc/RE =
0.56) where d(B/n)/d‘ = 0, which may be written

B0

B
¼ n0

n
ð27Þ

(0 denotes d/d‘ = �d/ds.) Evidently the scale lengths of B
and n play an important role in determining the location of
the peak. We note that in general the vertical density scale
height (h) used in equation (3) is slightly different from the
field-aligned scale height (hk) due to the inclination of the
field line. For a dipolar field

hk

h
¼ � d‘

dr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 sin2 q

p
2 sin q

ð28Þ

At altitudes corresponding to the peaks of B/n and Ek we
find hk/h � 1.025, since the field is close to radial. Also,
at the B/n peak the scale length of the magnetic field is LB =

B/B0 = 0.52 RE, so taking h = 400 km gives h/RE = 0.0625 -
i.e., the density varies on a scale that is smaller than that of
the magnetic field variation by an order of magnitude.
[30] Given the density variation in equation (3), and

approximating the field as vertical near the B/n peak, we
can express the density near ‘c as

n ‘ð Þ ¼ n0 þ dnc exp ‘� ‘cð Þ=h½ � ð29Þ

where dnc = n(‘c) � n0 is the excess ion density above the
magnetospheric value (n0) at ‘c. Thus n0(‘c) = dnc/h, and
equation (27) implies

dnc
n0

¼ 1

Bc= B0
ch

� �
� 1

� h
B0
c

Bc

ð30Þ

indicating that dnc/n0� 0.14. This means that the downgoing
electron beam is accelerated only until it encounters the very
top of the ionosphere and experiences a small enhancement
of n by 14%. This is very small compared to the final density
enhancement at ‘m of several orders of magnitude.
[31] As mentioned previously, the point where Ek = 0

coincides with the peak of B/n, and occurs at ‘c. Ek has its
peak at ‘Ewhere d

2(B2/n2)/d‘2 = 0, and we can determine the
excess density (dnE = n(‘E) � n0) there by noting that when
h/LB � 1 and dnE/n0 � 1 the leading terms of this second
derivative require, at ‘E,

B200

n2
� 2B2 n

00

n3
ð31Þ

Using a similar expansion to equation (29) about ‘E,
equation (31) gives

dnE
n0

� h2

2

 B

200
E

B2
E

ð32Þ

Figure 4. The variation of Ek with s: Ek falls to zero at the
B/n peak (s/RE = 0.56), and has its peak in the magneto-
sphere where d2(B2/n2)/ds2 = 0 (i.e., at (s/RE = 0.68). The
parallel electric field in the magnetosphere (s/RE > 0.56) is
associated with the acceleration of electrons to carry the
field-aligned current, while in the ionosphere (s/RE < 0.56)
it is predominantly an ambipolar field ensuring the electrons
maintain quasi-neutrality.

Figure 3. The variation of �� with s = ‘m � ‘ over the
range (a) 0 < s/RE < 4, and (b) 0 < s/RE < 0.8. The vertical
line (s/RE = 0.56) marks the location of the B/n peak, below
which ionospheric electrons are trapped and a small
ambipolar potential exists.
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since B2/B200 � 0.07 RE
2 at the altitude we are interested in,

we find dnE/n0 � 0.03, which is in good agreement with the
exact value of 0.023. Thus the peak value of Ek occurs when
the ionospheric ions make up only a few percent of the total
number density. This will occur at slightly higher altitudes
than ‘c. Indeed, if �‘ = ‘c � ‘E, evaluating equation (29) at
‘E gives

�‘ � h ln
dnc
dnE

� �
� h ln

2BB0

hB200

� �
ð33Þ

to leading order in h/LB. For the parameters in our
calculation, equation (33) gives �‘/h � 2, so Ek has its
peak a couple of density scale heights above the B/n peak.
This is in good agreement with the exact value of 2.3 (sE =
0.68).

4.2. Electron Beam Speed

[32] Conservation of total energy (equation (12)) means
that as �� increases (Figure 3) so will the speed of the
electron beam. It is convenient to define the current density
as

j ‘ð Þ ¼ �n? ‘ð Þeb ‘ð Þ ð34Þ

where n?(‘ ) is the number density of electrons that
contribute to the current. In the magnetosphere (‘0 � ‘ <
‘c) n?(‘ ) = n(‘ ) since only magnetospheric electrons
moving with the beam speed (b) exist in this region.
However, in the ionosphere (‘c � ‘ � ‘m) n

?(‘ ) represents
the number density of the current carrying beam electrons
which will generally be much less than the density of
ionospheric electrons.
[33] The interpretation is that at very high altitudes (say,

s > 2RE) the beam moves slowly to carry the weak current
density (b = �j/(ne)). Above the B/n peak, (sc < s < 2RE)
where n? � n0, the increase of j on approaching the Earth is
met by an increase in beam speed, b - particularly where
�� changes significantly (i.e., Ek is large). This is precisely
the feature predicted by Rönnmark [1999] and supported by
Wright et al. [2002].
[34] The situation is quite different earthward of the B/n

peak where only a fraction n?/n of the electrons carry the
current. The maximum beam speed (bm) and current density
( jm) are not independent as found in equation (23) which
we use to write the first equality below

�jm

eBmbm
¼ nc

Bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2m=b

2
m

q
¼ n?m

Bm

ð35Þ

Note that nc/Bc is a property of the equilibrium alone, and
does not depend upon the current strength, so equation (35)
gives a relation between current density and beam speed, or
equivalently energy. Given that am

2 /bm
2 � 1, and evaluating

equation (13) at ‘c, equation (35) gives the energy of the
beam as

1

2
mb2m � mj2c

2n2ce
2

ð36Þ

where jc = j(‘c).
[35] The second equality in equation (35) follows from

evaluating equation (34) at ‘m and substituting for jm in the

first expression in equation (35). At ‘c we only have beam
electrons, so nc � nc

?, and recalling that am
2 /bm

2 � 1
(equation (35)) implies

n?c
Bc

� n?m
Bm

ð37Þ

and reveals how the increase in current density between ‘c
and ‘m is achieved: The number density of beam electrons
increases proportional to B and so will naturally carry the
current (which also increases / B) without requiring further
acceleration. Thus the beam speed does not change
significantly over the ionosphere and the potential remains
approximately constant here (see Figure 3).

4.3. Current-Voltage Relation and Ekkk
[36] Rönnmark [1999] found the voltage, or potential,

along a field line varied as j2, rather than j as in Knight’s
[1973] calculation. Subsequently, Rönnmark [2002] showed
how the current-voltage relation depended crucially upon
the boundary conditions imposed on the distribution func-
tion. Our boundary conditions produce the �� / j2

relation: Evaluating equation (25b) at ‘0 (where B0/n0 �
Bc/nc) and employing equation (36) yields the total potential
drop along the field line (recall f = (m/e)�)

fm � fo �
mj2c
2e3n2c

ð38Þ

which is in agreement with Rönnmark [1999]. Note that the
plausible physical justifications that he gave in some steps
of his calculation are supported by our more detailed
electron distribution function analysis.
[37] The small ambipolar Ek that traps the ionospheric

electrons has its maximum value at s = 0 (‘ = ‘m) where
(using equation (26b)) and noting Bm/nm � Bc/nc)

Ek s ¼ 0ð Þ � �m

e

 a

2
m

h
ð39Þ

For the parameters we have chosen (nc/Bc)/(nm/Bm) = 0.004
and Ek(s = 0) � (eRE/mbm

2) � �0.016, in good agreement
with the exact value of �0.013 in Figure 4.
[38] In the magnetosphere, equation (26a) may be used

with the first equality in equation (35) and equation (13) to
eliminate bm and provide an Ek�j relation, i.e., an Ohm’s
law in the magnetosphere of

Ek ‘0 < ‘ < ‘cð Þ ¼ � m

e3

 j
n
rk

j

n

� �
ð40Þ

which is identical to (35) of Wright et al. [2002]
suggesting that the electron fluid model is a reasonable
approximation in the magnetosphere and supports their
claim, and that of Rönnmark [1999], that the convective
derivative dominates the electron dynamics. Integrating
equation (40) along the magnetospheric section of field
line gives, to leading order, the potential drop found in
equation (38).
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[39] The magnitude of Ek in the magnetosphere can be
estimated by evaluating equation (26a) at ‘E (sE = 0.68 RE)

Ek ‘Eð Þ � �mb2m
e

nc

Bc


 BE

nE

� �2
B0
E

BE

ð41Þ

where we have taken am
2 /bm

2 � 1 and neglected the
derivative of n compared to that of B at ‘E since dnE/nE �
hB0/B. Noting that B0/B = 0.7 RE at ‘E and (ncBE/nEBc)

2 =
0.80, equation (41) suggests the peak of Ek in Figure 4 is
�1.1, which agrees well with the exact value of �1.2.
[40] The properties of the equilibrium we assumed in our

calculation may be summarized as follows. At ‘0, ‘ = 0.0 RE,
s0 = 12.79 RE, B = B0, n = n0; At ‘E, ‘ = 12.11 RE, sE = 0.681
RE, BE/B0 = 402.64, nE/n0 = 1.023, (nE/BE)/(n0/B0) = 0.0254,
LB = 0.7 RE; At ‘c, ‘ = 12.23, sc = 0.56 RE, Bc/B0 = 500.6,
nc/n0 = 1.14, (nc/Bc)/(n0/B0) = 0.00227 LB = 0.52 RE; At
‘m, ‘ = 12.79RE, sm = 0.0 RE, Bm/B0 = 1923.5, nm/n0 =
1000.0, (nm/Bm)/(n0/B0) = 0.5199. Also, (BE/Bc)

2 = 0.0647,
(ncBE/nEBc)

2 = 0.805, and BE
2/BE

200 = 0.071 RE
2.

4.4. Origin of Ekkk
[41] Early quasi-neutrality calculations such as Chiu and

Schultz [1978] and Stern [1981] focused upon the equili-
brium of a hot diffuse magnetospheric plasma and a cold
dense ionospheric plasma. Their calculations included both
electron inertia and magnetic mirroring. Stern [1981] found
double layers to be a common feature of his solutions,
whereas Chiu and Schultz [1978] found Ek had a profile and
location quite similar to ours. Although Chiu and Schultz
did not impose any condition on the field-aligned current,
this quantity would in general be non-zero and it would be
interesting to see if the form of their �� � j relation also
agreed with ours. The corresponding relation for Stern’s
double layers was linear, and he explains this in terms of the
dominance of the mirroring effect [see also Knight, 1973].
[42] On the basis of our �� / j2 relation being the same

as that of Rönnmark [1999], we anticipate that electron
inertia will dominate the mirroring effect in our calculation.
Indeed, we certainly have electron inertia in the equation of
motion for an electron,

m
du

dt
¼ �e Eþ u^Bð Þ ð42Þ

Here u is the velocity of an electron, rather than its guiding
center drift velocity, v, as in equation (4).
[43] The concept of mirroring is best illustrated by

neglecting gyrophase information and considering the
motion of the guiding center, having velocity v. The parallel
component of the guiding center equation of motion [e.g.,
Clemmow and Dougherty, 1969] may be rewritten as

Ek ¼ � m
e

dB

d‘
� m

e

dvk

dt
ð43Þ

For example, in the absence of Ek the terms on the r.h.s.
must cancel: the guiding center is repelled from regions of
increasing field strength and may be mirrored, or reflected.
The dominance of the mirroring term over the inertial term
produces a linear �� / j relation [Knight, 1973].

[44] In the present calculation the distributions have m� 0,
so the electron inertial term dominates the mirror term. As
shown in the previous subsection, this produces a �� / j2

relation. We can move to a cruder description of the electrons
by considering the average guiding center drift which
corresponds to the center of mass velocity of the electron
fluid (V), and is the approximation employed by both
Rönnmark [1999] and Wright et al. [2002]. These studies
also stressed the importance of electron inertia and find
identical Ek � j relations to ours (equations (38) and (40)) in
the magnetosphere, confirming that our Ek is indeed asso-
ciated with electron inertia.
[45] It is surprising that the present steady Ek � j relation

(equation (40)) agrees exactly with the time-dependent
Alfvén wave result of Wright et al. [2002]. Recall that from
the particle viewpoint 1 keV electrons will traverse the
acceleration region on a timescale of the order of 1 s. Thus,
we argued that on the Alfvén wave period (a few 100 s) the
electrons would experience quasi-static Alfvén wave fields,
and so neglected time variations. From the electron fluid
perspective Wright et al. [2002] showed that

Ek � �m

e

@Vk

@t
þ Vkrk
� �

Vk

� �
ð44Þ

In the acceleration region they found the high electron speed
of 1 keV electrons and low Alfvén wave frequency resulted
in (Vkrk)Vk exceeding @Vk/@t by two or three orders of
magnitude. This confirms the appropriateness of adopting a
quasi-steady solution in which @/@t is neglected. Indeed,
omitting @Vk/@t from equation (45) and noting that j =
�neVk we recover our present result (equation (40)). Of
course, there are also cases where waves have a steady
driver or may be viewed in a frame for which @/@t is
identically zero [e.g., Rönnmark, 1999]. In such a situation
the omission of @/@t is not an approximation.

5. Summary

[46] We have presented a distribution function solution
for electrons that are accelerated into the ionosphere to carry
the field-aligned current necessary for coupling the magne-
tosphere and ionosphere. Our formulation has an advantage
over electron fluid models in that we can identify the
accelerated magnetospheric beam population and the cold
ionospheric population that it penetrates.
[47] The cold ionospheric electrons (kT � 1 eV) are

trapped below the B/n peak by a small ambipolar electric
field (equation (39)) of magnitude �mV/m. The peak of B/n
(i.e., d(B/n)/d‘ = 0) has Ek = 0, and at higher altitudes a
much larger Ek accelerates the magnetospheric electron
beam over a distance of �1 RE. The maximum Ek in this
region occurs not at the B/n peak, but where d2(B2/n2)/d‘2 =
0, which is a couple of density scale heights beyond the B/n
peak. The density over this acceleration region is essentially
just due to magnetospheric ions (dnE/n0 � 0.02, dnc/n0 �
0.14). For a 1 keV beam the maximum magnitude of Ek
(equation (41)) is 0.5 mV/m, and for a 10 keV beam we find
Ek � 5 mV/m. These values agree well with anticipated
values.
[48] Once the beam enters the ionosphere there is no

significant additional energization of the beam, and the
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increase in current density within the ionosphere is achieved
by the natural focusing of the beam by the magnetic field.
Indeed, these results support the modification Wright et al.
[2002] suggested on qualitative grounds to the Ek they
found from an electron fluid treatment. (Their cartoon of
Ek and parallel beam speed in their Figure 5 agrees exactly
with our findings.) However, our solution has revealed a
detail that they did not anticipate: They argued that the
natural focusing of the beam would only occur once n?/n
� 1 (i.e., the number density of the beam is much less than
n) since then a small adjustment to the abundant ionospheric
population could accommodate the additional beam number
density and preserve quasi-neutrality. However, our solution
shows that the number density of the beam in the outer
magnetosphere is n0, increases to 1.02n0 at ‘E, and then to
1.14n0 at ‘c. Thereafter ionospheric electrons are encoun-
tered, yet the geometrical focusing (equation (37)) operates
at once: It is not necessary to wait for n?/n � 1.
[49] Viewing the beam as a current element we find the

voltage drop along the field line varies as j2, as predicted by
Rönnmark [1999]. The recent study by Rönnmark [2002]
suggests that this form of Ohm’s law is a result of our
boundary conditions. An important omission from our
calculation is a full pitch angle distribution: Rönnmark
[2002] finds that the associated thermal and mirroring
effects modify our Ohm’s law by increasing f and Ek by
a factor of 4. Thus our study provides a useful benchmark
with which to compare calculations including full thermal
effects, and also those employing the electron fluid approx-
imation. The behavior of electrons for downward current
(i.e., upgoing electrons) will be very different from the
solution here, and will be addressed in a separate paper.
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Rönnmark, K., Electron acceleration in the auroral current circuit, Geophys.
Res. Lett., 26, 983, 1999.
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