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Abstract. Despite the existence of flank waveguide modes which are Kelvin-
Helmbholtz unstable, the flanks of the terrestrial magnetosphere are observed to be
remarkably stable and free of nonlinear disturbances. We suggest the explanation
may be found in a more detailed stability analysis which shows that localized
disturbances are convectively unstable in the Earth’s rest frame. This means that
as a wave packet grows and broadens, it also propagates at a sufficiently high speed
so it is convected away leaving ultimately no disturbance at any fixed point in space
(as t — o0). We estimate that the magnetopause surface wave has an e-folding
length of the order of an Earth radius and soon becomes nonlinear, resulting in a
magnetopause boundary layer [e.g., Manuel and Samson, 1993]. In contrast, the
waveguide modes (which penetrate deep into the body of the magnetosphere) should
grow by no more than a factor of about e as they propagate around the flanks to the
tail. This also explains why theorists have had such success at modeling basic ULF
waveguide processes with linear theory and why nonlinear waves in, or disruptions
to, the body of the magnetospheric flanks are not observed: Wavepackets may grow
by only a small amount as they propagate into the tail. Ultimately, they leave the

flank undisturbed and with the appearance of stability, although they are actually

convectively unstable.

1. Introduction

The magnetopause Kelvin-Helmholtz (KH) instabil-
ity was first suggested by Dungey [1954]. Subsequent
treatments in a compressible plasma followed Fejer
[1964] and Dungey [1967] and the marginal stability
calculation of Southwood [1968]. Further studies of nor-
mal modes by McKenzie [1970], Yumoto and Saito
[1980], Walker [1981], and Pu and Kivelson [1983]
confirmed that the magnetopause, particularly on the
flanks, would be generally unstable. Field line ten-
sion may provide some stabilization, as may ionospheric
“line tying” [Miura, 1992a]. Nevertheless, the surface
modes considered in the above studies grow rapidly and
become nonlinear, and this is the ultimate fate of linear
surface mode perturbations. The nonlinear phase has
been investigated numerically by Muira [1987, 1992b] in
a periodic domain and was shown to saturate. Relaxing
the requirement of periodicity leads to vortex merging
[Muira, 1995] or the continual growth of a vortex to
the dimensions of the simulation domain [Wu, 1986].
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Manuel and Samson [1993] showed how the nonlin-
ear phase grew more slowly than the linear phase, and
they suggest that the broadening of the low-latitude-
bounday-layer could be accounted for by the nonlinear
disruption associated with the Kelvin-Helmholtz sur-
face wave.

The situation of the surface wave on the magne-
topause is clear: It is unstable and grows until it is
nonlinear. While doing so, it disrupts the vortex sheet
that supported the linear wave, destroys the original
equilibrium, and produces a broad turbulent shear layer
[Manuel and Samson, 1993]. There are many obser-
vations of magnetopause surface waves [see Belmont
and Chanteur, 1989, and Miura, 1999, and references
therein]. Miura [1999] has shown that these observa-
tions (occurring at distances of 5 Rg or greater from
the subsolar point) are consistent with a nonlinear de-
velopment and vortex pairing.

Kelvin-Helmholtz modes are commonly thought to be
surface waves, and indeed, this is the case for incom-
pressible hydrodynamics where such instabilities were
first considered. Surface waves are characterized by a
rapid spatial decay away from both sides of the shear
flow layer. Although the classical surface wave is strictly
a solution about a discontinuity in some equilibrium
quantity (e.g., the flow), similar solutions exist when
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the equilibrium changes over a narrow layer, and we
shall also term these surface modes. Compressible fluids
and MHD with noninfinite domains (i.e., waveguides or
channels) permit modes which have a spatial structure
that is oscillatory normal to the vortex layer. These are
‘sometimes called “body” or “waveguide” (in contrast
to “surface”) modes. Recently, it has been shown that
such modes can also be driven unstable by the free en-
ergy of the shear layer [Fujita et al., 1996; Mann et al.,
1999; Mills et al., 1999]. It is quite legitimate to refer to
these as Kelvin-Helmholtz-driven modes, although this
is a more general usage than that in the incompressible
fluid literature. To avoid any confusion, we shall use
the terms KH surface and KH waveguide/body modes
when appropriate.

Calculations of the normal modes of the waveguide
formed by the magnetospheric flanks show that these
may be unstable when Vy > ¢s + V4, where V; is the
sheath flow speed, c; is the sheath sound speed, and V4
is the magnetospheric Alfvén speed just inside the mag-
netopause [Mann et al., 1999; Mills et al., 1999]. This
relation suggests that waveguide modes are unstable
when V; exceeds roughly 500 km s~ and is in excellent
agreement with that of Engebretson et al. [1998], who
reported enhanced Pc5 activity for solar wind speeds in
excess of 500 km s71.

Given that waveguide modes are sometimes unsta-
ble, it would seem reasonable to expect them to grow
exponentially with time until they become nonlinear.
In doing so, the waves would disrupt the body of the
magnetosphere, suggesting that it could be destroyed
on occasions or disturbed by nonlinear waves. This
has never been observed, and satellites traversing the
middle and outer magnetosphere see a robust equilib-
rium about which there may be small fluctuations. It
would appear that waveguide modes generally main-
tain a small amplitude, making them somewhat elusive
in observations. Although Kivelson et al. [1984] ob-
served a coherent compressional wave across a range of
L shells, such examples are extremely rare. The major-
ity of evidence for waveguide/cavity modes is indirect,
and normally focuses on the field line resonances (FLRs)
to which they couple [Kivelson and Southwood, 1985;
Lee and Lysak, 1989; Wright, 1994: Rickard and
Wright, 1994]. For example, Yeoman et al. [1997] ob-
served the detailed growth of an FLR and found it to be
in excellent agreement with a fast mode driver [Mann
et al., 1995]. In addition, Crowley et al. [1987] ob-
served the damping rate of an FLR to be significantly
less than that expected from ionospheric dissipation.
They concluded a waveguide/cavity mode was probably
continuing to supply energy to the FLR. A rare sighting
was reported by Mann et al. [1998], who observed an
antisunward propagating waveguide mode wave packet.
The amplitude of the wave packet was about 3 nT on
a background field of 70 nT, indicating that nonlinear
effects were not dominant. From these studies it is clear
that the waveguide modes maintain a small amplitude,
making them difficult to observe. They do not become
nonlinear and result in a turbulent disrupted magne-
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tospheric structure over the range of L shells through
which they propagate.

2. Absolute and Convective Instabilities

The above situation for KH waveguide/cavity/body
modes seems paradoxical: We have an unstable equi-
librium, but disturbances in the body of the magne-
tosphere never grow to large amplitudes. This conun-
drum is based on normal mode concepts, where linear
modes proportional to expi(kyy — wt) are sought (y is
the azimuthal coordinate). These modes must satisfy a
dispersion relation

D(w, k,) =0. (1)

For real k, the frequency w = w, + iw; may be complex
(w; < 0, decaying in time; w; = 0, oscillatory in time;
or w; > 0 unstable and growing in time.)

However, the time-dependent behavior of a disper-
sive system is not described accurately by a normal
mode. The only way to determine the true solution is
via an initial value problem where the state of a local-
ized disturbance is defined at t = 0, f(y,t = 0), and
the subsequent evolution is solved for. Two different
asymptotic behaviors of such a disturbance, or “wave
packet,” are shown in Figure 1. In Figure 1a the pulse
f(y,t = 0) grows in time and also broadens in space so
that ultimately every point is disturbed. This situation
is refered to as an “absolute” instability: At any fixed
y (e-g., ¥1), f(y1,t) = o0 as t — oo.

The pulse in Figure 1a did not propagate very quickly
in y. In Figure 1b the pulse propagates in y more
rapidly than it broadens and grows. The result is that
the wave packet, whose amplitude grows exponentially
in time, is swept away sufficiently rapidly that at fixed
Yy =191, f(y1,t) — 0 as t — oo. Thus the equilibrium is
left unperturbed in a fixed region of space, despite sup-
porting an unstable perturbation in that region! This
situation is referred to as a “convective” instability.

Whether an instability is absolute or convective is
frame-dependent. Consider how the wave packet in Fig-
ure la would appear to an observer at the origin of the
y' coordinate system, which moves with speed V; with
respect to the y frame:

Yy =y-Vst (2)
At fixed ' (e.g., ¥’ = 0) the disturbance vanishes as
t — 00, because the observer moves away from the wave
packet faster than the wave packet broadens. In the 3’
frame we have a convective instability in Figure la. In
Figure 1b an observer at 3y’ = 0 tends to keep up with
the propagating wave packet and sees f(y’' = 0,t) — oo
as t — 00, so the instability is absolute in the 3’ frame.
Transforming frame by V; obviously Doppler-shifts the
frequency, but, more importantly, is able to change the
nature of the instability completely.

It was first noted by Twiss [1951, 1952], and subse-
quently by Landau and Lifshitz [1953] and Sturrock
[1958], that the two classes of instabilities described
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Figure 1. Schematic of the development of a localized
unstable disturbance f(y,t) in space and time,showing
(a) the f(y,t) — oo at any fixed y as ¢ — oo and (b) the
wave packet moving sufficiently quickly that f(y,t) — 0
at any fixed y as t — oco. The instability is absolute in
Figure la and convective in Figure 1b for the y frame.
The result is frame-dependent and may appear differ-
c[antly]i)n the y’ frame (adapted from Figure 3.2.1 of Bers
1983|).

above can be identified physically by the different be-
haviors. Recently, convectively unstable behavior has
been discussed for the Kelvin-Helmholtz-driven magne-
topause surface wave by Manuel and Samson [1993],
Miura [1984], and Wu [1986]. These studies were nu-
merical and did not exploit the analysis and classifica-
tion of linear absolute and convective instabilities de-
veloped by previous researchers in other areas. Indeed,
the magnetospheric community seems unaware of these
studies and does not use the terms “convective” or “ab-
solute” with the precise meaning with which Briggs
[1964] coined them or the present paper imbues them.
Nevertheless, in considering the stability of the magne-

topause, the magnetospheric community has moved to-

ward the notion of convective instabilities, and Manuel
and Samson give a classic description of one without
naming it explicitly.

The distinction between absolute and convective in-
stabilities given above draws upon a consideration of the
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physical behavior of the initial disturbance for large t.
There also exists a complementary and more mathemat-
ical distinction based on the behavior of the roots of the
dispersion relation. This alternative analysis was origi-
nally developed for a laboratory plasma application by
Briggs [1964]. It is surprising, perhaps, that magneto-
spheric plasma physicists are unaware of this work as we
show that it has important consequences for magneto-
spheric Kelvin-Helmholtz-driven surface and waveguide
modes. It seems worthwhile to summarize the main
results of Briggs, and we do so in section 3.

3. Normal Modes and Wave Packets

A link between solutions of the dispersion relation
(i.e., normal modes) and the development of a wave
packet should not come as a surprise, since the subse-
quent evolution may be thought of as an initial value
problem whose solution can be found in terms of the
normal modes. The initial wave packet is expressed as
a Fourier integral (along the real k, axis) of the normal
modes. The time dependence is found from a Laplace
transform integrated in the complex frequency plane
from —oco + io to +oco + io (the Bromwich contour),
where o is greater than the maximum growth rate of
all the normal modes with real k,. The solution of the
initial value problem for localized disturbances repre-
sented by f(y,t) is given by

10+00 0o

- | 56w

10—00 —00

"’“vv “Odk,dw,  (3)

where T'(w, ky) depends on the initial perturbation.

The behavior of f(y,t) as t — oo for the wave packet
can be different from that of a normal mode. The anal-
ysis of this problem has been developed extensively for
other applications. We do not provide a detailed discus-
sion here but refer the interested reader to, for example,
the monograph by Briggs [1964] or the review by Bers
[1983] and references therein. It turns out that double
k roots of the dispersion relation determine the large ¢
behavior of f(y,t),

0D(w, k )

D(w,ky) = 5%
Y

4)

Let one such root be located at complex w and k,, say,
W= W, = Wer+iy and k = k,. In the vicinity of (wo, ko)
the dispersion relation has the form

(W — wo)C? = (k — ko )? (5)
and C is a complex constant. If the double root occurs
for v < 0, the point (w,, k,) will not contribute to the
instability, and the asymptotic behavior is f(y,t) — 0
as t — oo. If the double root occurs for v > 0 and
letting w; — 4o splits the double into two simple roots
lying on opposite sides of the real k, axis, then these
roots are termed “pinching roots.” Such a double root
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will contribute to the instability, and the asymptotic
behavior of f is

ent
f(y,t) o< expli(koy — wart)]t—172—, (6)

corresponding to unbounded growth at every point in
space, as is observed in the y frame in Figure la. The
dominant growth of f(y,t) is associated with the suit-
able pinching double root (w,,k,) having the largest
v > 0. The large t solution is given explicitly in (6).
The situation in Figure 1b corresponds to a convective
instability in the y frame, and all pinching double roots
have v < 0. The sign of v provides a mathematical
distinction between convective and absolute instabili-
ties. In the case of a multiple k root of D(w,ky) =0
satisfying the above splitting (collision) condition, the
asymptotic behavior is like that in (6) except that in-
stead of t1/2 in the denominator, t° generally appears
(with s < 1/2) [see Brevdo, 1988].

The physical discussion of section 2 showed how the
convective and absolute nature of the instability could
change between frames of reference. This may also be
appreciated with the mathematical definition described
above. The double roots in the y’ frame will occur at
(w!,k!) which will be different from the double root
in the rest frame (w,,k,). Using the Doppler frame
mappings

ky =k, w=uw'+k, Vs, (7

the associated double root in the 3y’ frame must satisfy

8D(w' + K, V;,K,)

D(W' + K, Vy, K)) = 5

=0. (8)

If v(V§) = Imw’ > 0, an expression similar to (6) gives
the asymptotic behavior in the y’ frame. For example,
the absolute instability in the y frame in Figure la be-
comes a convective instability in the y’ frame when the
7(V¥) value of the double root shifts from the upper half
of the w’ plane to the lower half.

4. Wave Packet Evolution

Figure 2 shows a simple model of the waveguide on
the magnetospheric flanks [e.g., Fujita et al., 1996;
Walker, 1998; Mann et al., 1999; Mills et al., 1999].
The body of the magnetosphere is taken as a cold
plasma with constant density p; permeated by a uni-
form magnetic field, while the magnetosheath is a field-
free plasma of density p2 flowing with constant speed.

Note that a discontinuity in flow speed would result
in the KH surface mode having an infinite growth rate
as k, — oo (ky; = 0), which means that the stabil-
ity problem is ill posed. In particular, this makes it
impossible to place the Bromwich contour in equation
(3) above all the w roots of the dispersion relation for
real k,. We resolve this problem by assuming that the
flow changes over a narrow boundary layer (similar to
the low-latitute boundary layer) in the following discus-
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sion and computations. The calculation is performed
in normalized units, and the flow changes smoothly [see
Walker, 1981] over the boundary layer 1-6 < = < 1+6.
The change in flow speed across the boundary layer is
denoted by AV. For simplicity, other equilibrium quan-
tities change from magnetospheric to magnetosheath
values discontinuously at £ = 1—§. This should provide
a good representation of the dayside and flanks magne-
tosphere in the equatorial regions. An outgoing bound-
ary condition is imposed on magnetosheath waves, and
an inner reflecting boundary is placed in the magneto-
sphere to mimic the trapping of waveguide modes by
refraction in a nonuniform magnetosphere (see Mills et
al. [1999] for more details).

Wave packets in this model were treated by comput-
ing the roots of (8). This was done by solving these
equations numerically with the outgoing boundary con-
dition applied. Such a treatment necessarily involves
calculating the normal modes, and we found two dis-
tinct types of mode present in our model: the surface
mode and the body (or waveguide) mode. The am-
plitude of the surface mode is largest in the velocity
boundary layer and decays exponentially away from it.
On the other hand, the amplitude of the waveguide
modes is most significant throughout the body of the
magnetosphere where they are trapped.

4.1. KH Surface Mode Wave Packets

The locations of suitable double roots (w), k},) were
found by solving equation (8) as a function of V;. (The
value of k. is treated as a fixed parameter in (1), and
for simplicity we take it to be zero from here on.) The
resulting (V) for the KH surface mode is shown in
Figure 3. Values of V; for which v > 0 correspond to
frames in which the instability is absolute. The maxi-
mum of v occurs when V; is equal to the group velocity
of the normal mode having the maximum growth rate
(wimax) for real ky. In this situation the observer moves
to keep up with the wave packet (V; = V) and so sees
the maximum growth rate, v(V; = Vi) = Wimax [Bers,
1983]. If the observer moves slightly faster or slower
than this group velocity, the observed growth rate is

LLL L LIS IS SIS IS
?Z_' y reflecting boundary
Magnetosphere OB

X

Vi Py | Magnetopause
velocity boundary layer
Cy P2 _
outgoing
Magnetosheath (B=0) boundary
Flow 'V, condition

Figure 2. Model flank and magnetosheath equilib-
rium. The velocity shear layer at the magnetopause has
a width of 26, across which the equilibrium flow changes
by AV.
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reduced. As the observer’s V; differs increasingly from
the wave packet group velocity, v is reduced to zero and
is then negative (the speed of the observer now corre-
sponding to that of a frame with a convective instabil-
ity). The frame speed V3 corresponds to the case where
the wave packet just runs away from the observer, and
V5 corresponds to the situation where the observer just
runs ahead of the wave packet; thus for large ¢ no dis-
turbance is seen in these frames. It is interesting that
the discussion of the convectively unstable surface mode
by Wu [1986] was based on a simulation in a frame
moving with the wave packet’s group velocity (equiva-
lent to V7). In this frame the instability, besides being
absolute, has its maximum growth rate.

The magnetospheric rest frame corresponds to Vy =
0, so the KH surface mode wave packet is definitely con-
vectively unstable (v < 0) in the magnetospheric frame.
This suggests that the equilibrium magnetopause may
be disrupted by the unstable surface mode wave packet
some distance downstream where it has grown to non-
linear amplitudes. To be sure of this, we need to calcu-
late the length scale on which the wave packet grows as
it convects in the magnetospheric rest frame [Brevdo,
1994].

Figure 3 tells us that in a frame moving with speed
V¢, the amplitude of the wave packet grows in time as
exp[v(Vy)t] at fixed y'. Transforming back to the mag-
netospheric frame, this will appear as a spatial growth
iny = Vit + 9y given by exp[y(Vy)y/Vs]. Thus the
e-folding length scale of spatial growth in the magneto-
spheric frame is

Le(Vy) = Vi /[v(Vs). 9)

The L.(Vy) that will be observed is that correspond-
ing to the fastest spatial growth, i.e., the minimum L.
Minimizing (9) by taking d/dV; and equating to 0 yields
the condition

357
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Figure 3. Asymptotic growth rate () of the Kelvin-
Helmbholtz (KH) surface mode wave packet as a function
of the observer’s frame velocity (Vy). V; = 0 corre-
sponds to the magnetospheric rest frame (6 = 0.05 and

AV = 2.0).
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Figure 4. Asymptotic growth rate (y) of the first-
harmonic KH waveguide mode wave packet as a func-
tion of the observer’s frame velocity (V¢). V; = 0 cor-
responds to the magnetospheric rest frame (6 = 0.1 and
AV =5.0).

b _
av; ~ v,
and corresponds to the point where the tangent of (V)

goes through the origin. The slope of this line indicated
in Figure 3 is the reciprocal of the minimum L.

(10)

4.2. KH Waveguide Mode Wave Packets

In our computations we found a sequencé of unsta-
ble waveguide modes. The number of these modes in-
creased with AV. Here we present the results for the
case when only one waveguide mode, i.e., the first har-
monic, is unstable. Figure 4 shows the asymptotic
growth rate (V) of a wave packet associated with the
first-harmonic KH waveguide mode. The generic form
and interpretation of this curve is the same as that of
the KH surface mode (Figure 3). The KH waveguide
mode wave packet is convectively unstable in the mag-
netospheric rest frame (v(Vy = 0) < 0), and so we need
to calculate the minimum L. for this mode to decide if
it becomes nonlinear on the magnetospheric flanks. The
reciprocal of the gradient of the straight line indicated
in Figure 4 gives the minimum L..

5. Discussion

The velocities in Figures 3 and 4 are normalised to
the sheath sound speed (typically 100 km s~). Lengths
are normalized by the penetration depth of waveguide
modes into the magnetosphere (about 10 Rg), and time
is normalized by the ratio of these quantities. The ratio
of magnetospheric to magnetosheath plasma density is
taken as 0.192 in the remainder of this paper.

5.1. KH Surface Mode Wave Packets

The KH surface mode is unstable for any change of
flow speed across the boundary layer AV in our equi-
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librium model, and so it will start to grow near the
subsolar point. We took § = 0.05 and AV = 2 in con-
structing Figure 3, which represents a boundary layer
width of 0.5 Rg and a sheath flow speed of 200 km s™1.
For these values the gradient of the line is 4.75, corre-
sponding to a minimum L. of 0.21, which in dimensional
units is 2 Rg. Thus the KH surface mode wave packet
will grow by at least 5 or 6 orders of magnitude as it
propagates around the flanks traveling a path length of
about 30 Rg. We would certainly expect this to become
turbulent and experience a nonlinear saturation in the
boundary layer before leaving the flank.

5.2. KH Waveguide Mode Wave Packets

The waveguide modes become KH unstable only if the
sheath flow speed exceeds some threshold. Observations
[Engebretson et al., 1998] and theory [Mann et al.,
1999; Mills et al., 1999] indicate that a flow speed of
500 km s~ is sufficient for instability. This will not
occur at the subsolar point but may well be satisfied on
the flanks where the boundary layer may be 1.5 or 2
Rg wide. Hence suitable parameters for studying KH
waveguide modes are AV = 5.0 and § = 0.1, which were
used to produce Figure 4. The gradient of the line in
Figure 4 is 0.48, corresponding to a minimum growth
length of about 2, or 20 Rg in dimensional units.

The length of magnetopause (in the equatorial plane
on the dawn flank) from noon through dawn and to the
beginning of the tail (say 0400 Magnetic Local Time
(MLT)) is roughly 30 Rg. Beyond this point we would
need to modify the equilibrium field and flow so that
they have an orientation appropriate to the tail, rather
than that used on the flank. (It is to be expected
that the tail configuration will be more stable than the
flank.) This suggests that the KH waveguide mode wave
packet has at most 30 Rg to grow over and possibly less,
since the waveguide modes will be stable around noon
where the sheath flow speed will be less than cs + V4.
It seems likely that wave packets of unstable waveguide
modes will have at most roughly one e-folding length
before they enter the tail, and this would seem to an-
swer our original question of why unstable waveguide
modes which propagate in the body of the magneto-
sphere do not disrupt and destroy the magnetospheric
equilibrium; they propagate into the tail before growing
to sufficient amplitude.

5.3. Other Studies

Most previous work has focused on the magnetopause
surface wave, which is quite different from the magne-
tospheric waveguide modes. Walker [1981] and Miura
and Pritchett [1982] considered the linear KH surface
modes of the magnetopause. Miura [1984] went on to
try and interpret these results in terms of spatial growth
in the magnetospheric rest frame based on the maxi-
mum temporal growth rate (w;max) for real k, and the
associated phase velocity. This gives a growth length
of Vp /wimax (compare equation (9)). As we pointed out
in section 5.1, double roots of the dispersion relation
must be used to calculate this length, in particular, the
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straight line indicated in Figure 3. Interestingly, using
Wimax and the group velocity of that mode would cor-
respond to a straight line passing through the origin
and the peak of the v versus Vy curve. (Briggs [1964]
shows that this peak happens to coincide with a dou-
ble root of the dispersion relation.) However, this does
not correspond to the fastest spatial growth. Depend-
ing on the location of the y(V}) curve, such a line may
provide a reasonable estimate of L, and this has often
been employed in the past (see Brevdo [1994] for a more
detailed discussion).

The most important equilibrium scale length for the
KH surface modes is the width of the velocity shear
layer, and it is useful to evaluate the quantity L./§ to
facilitate an easy comparison of different calculations.
Miura [1984] estimates L./6 = 12.

The simulation by Manuel and Samson [1993] fed
seed perturbations in at one end of the domain and
showed how the surface mode grew exponentially in
space as it convected away. This is a classic feature of
convective instabilities. Indeed, if the equilibrium had
been absolutely unstable, the disturbance would have
grown exponentially in time everywhere, resulting in
an unbounded solution. Manuel and Samson modeled
their linear phase as a normal mode with real frequency
and complex k, in Earth’s frame, which actually corre-
sponds to an example of the classic “signaling problem.”
It is interesting to note that when this solution is viewed
from a moving frame, not only is the frequency shifted
but so is the growth rate in equation (7). From Fig-
ure 5a of Manuel and Samson we find L./6§ = 9. These
results are in good general agreement with our double
root calculation, which gives L./§ = 4.2 for the KH
surface wave. Some spread in these results should be
expected owing to differences in the equilibrium models,
etc.

Wu [1986] performed numerical simulations of KH
unstable surface mode wave packets in the frame mov-
ing with the wave packet. This frame moves tailward
with respect to the magnetospheric rest frame. Al-
though Wu employs the term “convective instability”
and mentions a finite tailward velocity of the wave
packet, he clearly does not use the term convective in
the precise sense that we do. Wu notes that his re-
sults can be transformed easily into any frame (e.g.,
the magnetospheric rest frame), but he does not do so,
and this is an essential step in determining the abso-
lute/convective nature of the instability. Physically, the
distinction between a convective instability and an ab-
solute instability can be appreciated in terms of compe-
tition between the wave packet propagation speed and
the rate of wave packet broadening in space. For ex-
ample, in Figure la the broadening dominates over the
small propagation speed in the y frame, and the insta-
bility is absolute. Whereas in Figure 1b the larger prop-
agation speed dominates the broadening in the y frame,
and the instability is convective. Hence, Wu’s tailward
wave packet velocity in the magnetospheric rest frame
does not guarantee that the instability is convective in
this frame, since the speed at which the wave packet
broadens must be allowed for. Wu’s principal concern
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was the effect of periodic boundary conditions, and for
the majority of his paper, convective could be read as
nonperiodic.

Although the studies by Miura [1984], Wu [1986],
and Manuel and Samson [1993] have been unaware of
the literature describing how to characterize absolute
and convective instabilities, they have clearly moved to-
ward a general picture of a convectively unstable KH
surface mode. Indeed, the results of Manuel and Sam-
son constitute unambiguous proof of the instability’s
convective nature (in the sense that Briggs [1964] and
we use the term).

KH waveguide normal modes have only been dis-
cussed recently in terms of single roots of the dispersion
relation [Fugita et al., 1996; Mann et al., 1999; Mills
et al., 1999] which demonstrates that these modes
(which propagate throughout the body of the magneto-
sphere) can be unstable on the flanks. To our knowl-
edge, there has been no treatment of the absolute or
convective nature of the KH waveguide wave packets
until the present paper.

5.4. Normal Modes and Amplifying Waves

Traditionally, magnetospheric surface and waveguide
modes have been studied through single roots of the
dispersion relation, i.e., normal modes. In this paper
we have shown how the double roots of the dispersion
relation are important for determining the nature of the
instability. In certain cases the normal modes may yield
much information and physical understanding. How-
ever, this is not guaranteed, and we must first consider
the location of the double roots to determine the useful-
ness of a normal mode. This is illustrated particularly
clearly in the classical “signaling” problem.

So far we have considered the free response of our
equilibrium to an initial condition. Now suppose we in-
clude a driving term at some fixed position (e.g., the
subsolar point, say, y = 0) that varies as exp —iwgt for
t > 0 and is zero for t < 0. This is an example of the
signaling problem. One type of behavior represents the
driver exciting a wave train that is swept away from the
driving location and grows exponentially in the direc-
tion of propagation. These are sometimes referred to
as amplifying waves. In this situation the asymptotic
solution is a normal mode with real frequency (w4) and
a complex k,. The alternative behavior corresponds to
every fixed point being perturbed by a disturbance that
grows exponentially with time and whose frequency is
not related to wgy. The normal mode with frequency wqy
is not relevant to the latter case.

The two types of behavior are actually manifestations
of systems that are convectively or absolutely unsta-
ble. This may be appreciated by considering the plasma
response given in (3). The inclusion of the driver de-
scribed above modifies this to

i0+00 00

swo= [ [ ww )

10—00 —00

ek =e) dk du,

(11)

where T(w, ky) depends on the initial perturbation and
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the spatial form of the driver. The integrand has an
additional pole at w = wy.

Figure 5a shows the path of the Laplace integral
(the Bromwich contour (B) which passes through the
point io) in the complex w plane. Each point on the
Bromwich contour may be mapped via the dispersion
relation (1) onto a set of points in the complex k, plane
(Flgure 5b). A frequency on the Bromwich contour and

its k, images are denoted by crosses in Figure 5. To
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Figure 5. The path of (a) the Laplace integral in the
complex w plane, and (b) the Fourier integral in the
complex k, plane. The trajectory of a point in the
w plane and its images in the k, plane are shown by
dashed lines. A steady driving source introduces an
additional pole at w = w4 which may play an important
role in determining the asymptotic behavior.
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determine the asymptotic behavior in time, we try to
lower the contour of the Laplace integral to the lower
half of the w plane. The trajectories of our selected
frequency and its k, images are shown by dashed lines
in Figure 5. (Note that every point on the Bromwich
contour must be lowered in turn.)

The Fourier integral in (11) is performed along the
real k, axis. As the Laplace contour is deformed and
the roots in the k, plane move, the Fourier contour (F
in Figure 5b) must be distorted so that no root crosses
it. This process can not be continued if a “pinching”
double root is encountered for some w; > 0. The asymp-
totic behavior is then given by (6) and corresponds to
an absolute instability. In this situation the amplitude
grows exponentially in time at every point. A steady
state does not exist in this case, and the driving fre-
quency wy is absent from the asymptotic behavior.

Different behavior is found if the pinching double
roots all lie in the lower half of the w plane. Now the
Bromwich contour can be moved to below the real w
axis except for being distorted around the pole at w, (L
in Figure 5a). Of the k, trajectories in Figure 5b that
cross the real axis, those which finish in the upper half
correspond to growing waves in the region y < 0, and
those in the lower half correspond to growing waves for
y > 0. Suppose we are interested in the latter region.
Of all the roots that cross to the lower half, we shall
label the one with the most negative ky; by k4 in Figure
5b. Writing kg = kg, + ikg;, this wavenumber will cor-
respond to the shortest e-folding length in y of 1/ky;,
which will dominate the solution. The asymptotic so-
lution in this case is proportional to

f(y,t) o expli(kary — wqt)] - e Fev, (12)
This is identical to the single-root normal mode with
frequency wgq, and so in this case (where the equilibrium
is convectively unstable), it is a useful way of interpret-
ing the asymptotic time-dependent solution. Note that
not all driving frequencies will produce this result. For
some values of wy it may be the case that no k, trajec-
tories cross the real axis. In this case the normal mode
does not grow in space, and a stable or dispersing wave
train will be excited by the driver. Further discussion
can be found in the work of Briggs [1964] and Bers
[1983].

6. Conclusions

The surface and waveguide modes of the magne-
topause and magnetosphere are known to be KH unsta-
ble. In this paper we have looked at the nature of the in-
stability in the magnetospheric rest frame, i.e., whether
it is absolute or convective. This was accomplished by
applying, for the first time, the sound mathematical for-
malism developed by Briggs [1964] to magnetospheric
ULF waves.

The KH surface mode is confined to the vicinity of the
shear flow boundary layer/magnetopause. We find that
this mode is convectively unstable, and our results are
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in general agreement with previous studies. The mode
grows on a length scale of 0.5 to 4 Rg for boundary
layer widths of 0.1 to 1 Rg, respectively. Thus slightly
away from noon, we expect a rapid spatial growth and
nonlinear evolution of the surface mode which should
disrupt the local velocity shear in the boundary layer.
Manuel and Samson [1993] suggest that this can ac-
count for the broadening of the low-latitude boundary
layer away from noon.

The KH waveguide mode wave packets are not con-
fined to the magnetopause but propagate deep into the
magnetosphere. If these KH unstable modes grow to
become nonlinear, we would expect them to disrupt
the equilibrium magnetosphere not just at the magne-
topause but throughout the domain over which they
propagate. Waveguide modes are only KH unstable for
high sheath flow speeds and so are most likely to grow
on the flanks. On the flanks the KH surface mode will
have become nonlinear, and the effect of nonlinear sat-
uration here may be represented phenomenologically as
a broad boundary layer. Our calculation shows that the
KH waveguide modes are convectively unstable in the
magnetospheric rest frame and grow over an e-folding
length of about 20 Rg. Thus the waveguide modes will
probably not have grown by more than a factor of e
before they leave the flank region and enter the magne-
totail, where a different equilibrium model is required.

It is now apparent why linear wave theory has been
so successful at describing the generation, propagation,
and coupling of such ULF waveguide modes to field
line resonances: The waveguide modes do not generally
grow to nonlinear amplitudes locally. This is also a par-
tial explanation of why waveguide modes are so hard to
see in spacecraft data: Their amplitudes are normally
small.

In summary, we find that KH surface modes are
convectively unstable and grow over a relatively short
length, resulting in their nonlinear evolution and satu-
ration. The apparent stability of the body of the mag-
netospheric flanks in the presence of unstable waveguide
modes may be understood in terms of a convective in-
stability also. Unstable waveguide disturbances have
a relatively large growth length and so are convected
away without experiencing significant growth, and leave
an unperturbed equilibrium state ultimately.
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