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Abstract. The solution of electric fields and currents in a height–resolved ionosphere
is traditionally solved as an elliptic equation with Dirichlet or Neumann boundary con-
dition in which the magnetosphere is represented as an unresponsive (prescribed) volt-
age generator or current source. In this paper we derive an alternative boundary con-
dition based upon Alfvén waves in which only the Alfvén wave from the magnetosphere
that is incident upon the ionosphere (Exi) is prescribed. For a uniform magnetosphere
the new boundary condition reduces to

∂φ/∂z = (∂2φ/∂x2 + 2∂Exi/∂x)/(µ0VAσ‖)

and is evaluated at the magnetosphere–ionosphere interface. The resulting solution is in-
terpreted as a responsive magnetosphere and establishes a key stage in the full, self-consistent
and non-linear coupling of the magnetosphere and ionosphere.

1. Introduction

From the perspective of the magnetosphere, the iono-
sphere represents a lower boundary. In its simplest form
this can be taken as a highly conducting reflective sheet,
although a more sophisticated treatment allows for the de-
scription of a partially reflected Alfvén wave through the use
of height integrated conductivities.

The closure of magnetospheric field-aligned currents in
the ionosphere can redistribute ionospheric plasma and sig-
nificantly modify the associated conductivity and resultant
coupling. This process has been studied from a number of
different viewpoints: Doe et al. [1995] and Zettergren and
Semeter [2012] consider a resolved (not sheet) ionosphere
and assumed the voltage at the magnetosphere-ionosphere
interface as being known. A complementary study by Karls-
son and Marklund [1998] prescribed the normal current at
the interface. Whilst these models allow changing iono-
spheric conductivity, they maintained given boundary con-
ditions and so did not represent a “responsive” magneto-
sphere. The latter aspect has been addressed by Lysak
and Song [2002], Cran-McGreehin et al. [2007] and Rus-
sell et al. [2010] by representing the magnetospheric solu-
tion as as incident Alfvén wave plus a reflected wave from
the ionosphere. When the ionospheric conductivity is mod-
ified through current closure the reflected wave, and hence
magnetospheric solution, are modified in a self–consistent
fashion. This whole process is nonlinear and can lead to
steepening and the formation of discontinuities, unless elec-
tron inertial effects are retained. [Russell and Wright, 2012;
Russell et al., 2013].
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The self–consistent responsive magnetosphere models de-
scribed above permit considerable progress, but adopt the
simplification of a sheet ionosphere and work with height–
integrated conductivities. In contrast, the “unresponsive”
magnetosphere models resolve spatial structure within the
ionosphere. The purpose of the current paper is to establish
a boundary condition for a resolved ionosphere that can rep-
resent a responsive magnetosphere, and so retain the best
aspects of both modelling approaches.

2. Model

The model we adopt is two–dimensional, like the previ-
ous studies, and is shown schematically in Figure 1. The
whole system is independent of y (∂/∂y = 0), and has a
vertical static background magnetic field B0 = (0, 0,−B0).
The solution depends upon the horizontal coordinate x and
the vertical coordinate z. We choose z = 0 to coincide with
the base of the ionospheric section which has a vertical ex-
tent h. The magnetosphere–ionosphere interface is located
at z = h, and we will make a distinction between quantities
evaluated at the base of the magnetosphere (z = h+) and
at the top of the ionosphere (z = h−).

The magnetosphere is described by the single fluid ideal
MHD approximation (which assumes the transverse scales
are larger than the electron inertial length and the ion gy-
roradius) and has incident and reflected Alfvén wave fields
at z = h+ denoted by

Incident wave: Exix̂, byiŷ (1)

Reflected wave: Exrx̂, byrŷ (2)

which have the properties given by Walén [1944]

Exi = −byiVA, Exr = +byrVA. (3)
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Here VA is the Alfvén speed at z = h+. Note that the fields
and VA, although evaluated at z = h+, may be functions
of x and t in general. Typically we expect Exi (and hence
byi) to be determined by process in the magnetosphere and
assume Exi to be a suitable prescribed function. However,
Exr (and byr) are determined by reflection from a structured
ionosphere. Hence the total solution in the magnetosphere

Ex = Exi + Exr and by = byi + byr (4)

responds to the ionosphere and any changes in conductivity
in a self–consistent fashion.

The solution throughout the ionosphere is described
through the use of Pedersen and parallel conductivities (σP

and σ‖),

j = σ · E =⇒ jx = σPEx, jz = σ‖Ez. (5)

For the low frequency solutions we consider, an electrostatic
potential may be adopted in the ionosphere,

E = −∇φ. (6)

2.1. Height–Integrated Conductivities

To benchmark our model we expect to be able to recover
the height–integrated conductivity model in an appropriate
limit. The familiar analytical results are easily obtained by
integrating (5) over 0 < z < h+ and using Ampère’s Law to
give

µ0

h+Z
0

jxdz = µ0

h+Z
0

Ex(x, z)σP (x, z)dz = −by(x, z = h+) (7)

Figure 1. Schematic of the model. An ideal magnetosphere
characterised by an Alfvén speed VA is situated above a dis-
tributed ionosphere (0 < z < h). The system is driven by an
incident Alfvén wave with fields Exi(x)x̂ and byi(x)ŷ. The
solution is invariant in the y direction.

where by(x, z = h+) is the magnetic field at the base of the
magnetosphere when we assume by(x, z = 0) = 0. Combined
with equation (3) this may be written

−(byi + byr) = µ0Ex(x, h+)ΣP , (8)

where
ΣP (x) =

hZ
0

Ex(x, z)

Ex(x, h+)
σP (x, z)dz. (9)

Here ΣP is the height–integrated Pedersen conductivity
weighted by Ex relative to its value at z = h+. In the
limit of sufficiently high σ‖ there is negligible potential
drop along B, so magnetic field lines are equipotentials and
Ex(x, z) ≈ Ex(x, h+), i.e. is independent of z. In this case
the weighting factor is unity and we recover the much used
result

ΣP (x) ≈
hZ

0

σP (x, z)dz. (10)

Recalling that Ex(x, h+) = Exi + Exr, and using the re-
lations in (3), equation (8) becomes

Exi − Exr = µ0VAΣP (Exi + Exr). (11)

Hence the reflection properties may be characterized with

Exr

Exi
=

1− ΣP /ΣA

1 + ΣP /ΣA
(12)

or
Ex(x, h+)

Exi
=

2

1 + ΣP /ΣA
, (13)

where ΣA = 1/(µ0VA) is the Alfvén conductance.

2.2. Conductivity Values

Kelley [2009] shows how typical E region Pedersen con-
ductivities range from 5 × 10−6 (night) to 5 × 10−4 (day)
mho/m. For an E region thickness of 20 km, these sug-
gest the range of height-integrated Pedersen conductivities
is 0.1 < ΣP < 10 mho. The parallel conductivity decreases
rapidly over the E region, and Kelley [2009] gives a daytime
value (at 120 km altitude) of around 2 mho/m, which may
be scaled to give a nighttime value of 2×10−2 mho/m owing
to lower electron densities.

We shall also need the Alfvén speed at the base of the
magnetosphere, which may be taken as the bottom of the
F region for illustrative purposes. Here the electron den-
sity varies between 1011 m−3 (daytime) and 109 m−3 (night-
time) according to Rees [1989]. To estimate representative
Alfvén speeds (VA) we assume quasi–neutrality and take a
mean ion mass of around 20 amu, suggesting VA is in the
range 3×105 (day) to 3×106 (night) ms−1. The correspond-
ing Alfvén conductivities are 2.7 (day) and 0.27 (night) mho.
Hence the ratio of conductances is

0.4 < ΣP /ΣA < 4 (14)

indicating that the ionosphere can act as a highly conducting
reflecting boundary on the dayside, but more like an insu-
lating boundary on the nightside. Of course, there are more
sophisticated routes to estimating the Alfvén and Pedersen
conductivities which may extend the limits given in (14)
to 0.1 at night and 10 during the daytime. However, the
conclusion that the ionosphere has the capacity to act as
a highly insulating or highly conducting boundary remains
unchanged. This paper develops and tests the implementa-
tion of a distributed ionosphere model coupled to a magne-
tosphere that can accommodate these parameter ranges.
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3. Coupled Model and Interface Condition

The structured ionosphere may be described in terms of
conductivities σP (x, z) and σ‖(x, z), as indicated in equa-
tions (5) and (6), which allows an elliptic potential formu-
lation given quasi–neutrality (∇ · j = 0):

∂

∂x

„
σP

∂φ

∂x

«
+

∂

∂z

„
σ‖
∂φ

∂z

«
= 0. (15)

As mentioned previously, this equation is normally solved
by defining φ (or its normal derivative) on the boundary of
the ionosphere. Such a condition represents an unresponsive
magnetosphere which supplies a given voltage (or current)
regardless of how the ionosphere evolves. Here we show how
the Alfvén fields in equations (1)–(3) can represent a respon-
sive magnetosphere in which only the Alfvén wave from the
magnetosphere that is incident upon the ionosphere is pre-
scribed.

The Alfvén wave reflection coefficient r(x) is defined in
terms of the fields at z = h+

r(x) =
Exr(x, h+)

Exi(x, h+)
. (16)

Employing (3) and (16) the total Alfvén fields at z = h+

may be defined

E+
x = Exi + Exr = Exi(1 + r),

b+y = byi + byr = byi(1− r).
(17)

Eliminating r between the E+
x and b+y equations above and

eliminating byi using (3) gives

b+y =
`
E+

x − 2Exi

´
/VA. (18)

We are now in a position to evaluate j+z = jz(x, h+), by
taking the curl of b+y ŷ using (18), and also j−z = jz(x, h−)
from (5) and (6). Since jz is continuous across z = h we
conclude

j+z =
1

µ0

∂b+y
∂x

=
1

µ0

∂

∂x

„
E+

x − 2Exi

VA

«
=−σ‖

∂φ

∂z
= j−z . (19)

The tangential electric field is also continuous across z = h.
Hence

E+
x ≡ −

∂φ

∂x

˛̨̨̨
z=h−

(20)

and eliminating E+
x between (19) and (20) gives our final

interface condition

∂φ

∂z
=

1

µ0VAσ‖

„
∂2φ

∂x2
+ 2

∂Exi

∂x

«
− ∂ ln(VA)/∂x

µ0VAσ‖

„
∂φ

∂x
+ 2Exi

«
, at z = h±.

(21)

Note all quantities in (21) are evaluated at (or adjacent
to) the interface between the magnetosphere and ionosphere
at z = h (or z = h+, h−) as appropriate. Hence this is not a
differential equation but a constraint upon normal and tan-
gential derivatives at the interface. As such this provides an
alternative boundary condition to the traditional Dirichlet
and Neumann conditions.

4. Analytical Solutions

If VA does not vary appreciably across the incident Alfvén
wave, we may neglect the final term in (21) yielding

∂φ

∂z

˛̨̨̨
h−

=
1

µ0VA(h+)σ‖(x, h−)

„
∂2φ

∂x2

˛̨̨̨
h−

+ 2
∂Exi

∂x

˛̨̨̨
h+

«
, (22)

which the remainder of this paper focuses on. Analyt-
ical solutions may be found if σP and σ‖ are constant
throughout the ionosphere and φ is a separable function,
φ(x, z) = X(x)Z(z). At the base of the ionosphere we set

jz = 0 =⇒ ∂φ/∂z = 0 on z = 0 (23)

and assume the incident Alfvén wave is of the form

Exi = E0 cos(kx) (24)

k being the horizontal (latitudinal) wavenumber.
The solution to (15) with the boundary conditions (22)

and (23), subject to (24), is similar to water waves in finite
depth water giving

φ = A sin(kx) cosh
“q

σP/σ‖kz
”

(25)

where the coefficient A is

A=
−2E0

µ0
√
σPσ‖VA sinh

p̀
σP/σ‖kh

´
+k cosh

p̀
σP/σ‖kh

´ . (26)

Together (25) and (26) define φ across the ionosphere 0 <
z < h, and in certain situations has limiting behavior that
permits a simple physical understanding.

If
p
σP /σ‖kh � 1, then φ is approximately constant

along field lines. In terms of the horizontal wavelength
(λ = 2π/k) the requirement is λ � 2π

p
σP /σ‖h, and the

conductivity values quoted earlier give σP /σ‖ ≈ 2.5× 10−4,
requiring λ � h/10. Taking h to be 20 km means if
λ � 2 km the electric field in the ionosphere is essen-
tially independent of altitude and the magnetic field lines
are equipotentials.

If the opposite limit holds, then λ� 2π
p
σP /σ‖h and

φ ≈ A

2
sin(kx) exp

“q
σP/σ‖kz

”
(27)

in the upper ionosphere. Hence φ (and E) decrease expo-
nentially with a scale H, where

H =
1

k

r
σ‖
σP

=
λ

2π

r
σ‖
σP

. (28)

4.1. Reflection Coefficients

The reflection properties may be calculated by compar-
ing the ratio of Exi with the total tangential electric field
at the interface, which is also given by Ex(x, h−). In the
ionosphere

Ex = −∂φ
∂x

= −Ak cos(kx) cosh
“q

σP/σ‖kz
”

(29)

and at the interface, after employing (26), this gives

E−x =
2Exi(x)

1 + µ0
√
σPσ‖(VA/k) tanh

p̀
σP/σ‖kh

´ (30)
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(recall Exi(x) = E0 cos(kx), and E−x = Ex(x, h−) ).

4.1.1. Full Penetration: λ � 2π
√
σP /σ‖h.

In this limit the electric field penetrates the ionosphere
completely with negligible potential drop along fields lines.
Approximating

tanh(α) ≈ α+O(α3) (31)

for small α we find (30) gives

E−x
Exi

=
2

1 + µ0
√
σPσ‖(VA/k)

p
σP/σ‖kh

=
2

1 + µ0VAΣP
=

2

1 + ΣP /ΣA
,

(32)

where ΣP = σPh and µ0VA = 1/ΣA. This is consistent
with the result (13) when σP is constant and we evaluate
the integral in (9) noting that Ex(x, z) ≈ Ex(x, h+) ≡ E+

x

in this limit (and E+
x = E−x since the tangential electric field

is continuous).

4.1.2. Partial Penetration: λ � 2π
√
σP /σ‖h.

In this limit (27) indicates we have an evanescent solu-
tion with Ex ∝ exp(z/H) and the skin depth H given in
(28). Approximating the tanh function in equation (30) by
its asymptotic value of 1 gives

E−x
Exi

=
2

1 + µ0
√
σPσ‖VA

ˆ
H
p
σP/σ‖

˜
=

2

1 + µ0VAσPH
=

2

1 + σPH/ΣA
,

(33)

where the square bracketed term above is equal to 1/k and
has been re–expressed using (28). The final result in (33)
is also consistent with the result in (13) when we note that
ΣP in (9) is simply the integral of exp(−z/H) from 0 to h
with σP constant giving ΣP = σPH to leading order (when
we note λ� 2π

p
σP /σ‖ =⇒ H/h� 1).

The agreement in the above limits of our solutions with the
standard results gives confidence in the utility of our novel
boundary condition (22) which we will now use to validate a
numerical solution for a variety of wavelengths (besides the
limits considered above) before considering more general in-
cident Alfvén wave profiles and conductivity distributions.

5. Numerical Solutions

The elliptic equation (15) was solved subject to the
boundary conditions (22) and (23) using the Successive
Over-Relaxation (SOR) method. Typically the scheme was
iterated until the potential had converged to better than
0.1%. The algorithm typically takes longer to converge than
when a Dirichlet condition is imposed at z = h−, and it is
important to optimize the relaxation parameter. Although
the scheme can accommodate general σP (x, z) and σ‖(x, z),
we begin with results that assume uniform σP , σ‖ and VA

to allow validation with the analytical solution in (25) and
to gain some insight in to the nature and role of the terms
in the interface condition (22).

5.1. Single Fourier Mode

The results in this subsection have an x domain of extent
λ/2 and imposed φ(x = 0, z) = φ(x = λ/2, z) = 0. These

boundary conditions allow us to consider a single Fourier

mode (or horizontal wavelength) by choosing Exi of the form

in (24), which will permit a detailed comparison with ana-

lytical solutions. The z domain was chosen to represent the

E region and spanned 20 km. A grid of 100x100 points was

employed.

To validate the numerical solution we adopted typical

daytime parameters (σP = 5×10−4 mho/m, σ‖ = 2 mho/m,

VA = 3×105ms−1) and chose Exi = E0 cos(2πx/λ) for a va-

riety of wavelengths λ. Equation (30) gives the ratio of total

Ex at the interface to Exi as

Ex(x, h)

Exi(x)
=

2

1+µ0VA
√
σPσ‖(λ/2π)tanh

p̀
σP/σ‖2πh/λ

´ . (34)

Figure 2. The ratio of the total electric field E+
x =

Ex(x, h+) at the base of the magnetosphere to Exi (the in-
cident electric field) as a function of horizontal wavelength.
The solid line is the analytical result (equation (34)) and
the symbols are from numerical results using the boundary
condition (22). (σP = 5 × 10−4 mho/m, σ‖ = 2 mho/m,

VA = 3× 105 ms−1, h = 20 km.)

Figure 3. The variation of φ with altitude across the iono-
sphere (normalised by the value at z = h−). Results are
shown for horizontal wavelengths of 0.2, 0.6, 2, 4, and 20
Km. The solid lines are numerical results and the sym-
bols represent the analytical solution (25) which varies as

cosh
p̀
σP/σ‖2πh/λ

´
. (Parameters are the same as Figure

2.)
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Figure 2 shows the ratio given above as a function of wave-
length as the solid line. The asterisks represent numerical
results from separate runs with λ = 0.2, 0.6, 2.0 and 4 km.
The dashed line at Ex/Exi = 0.419 is the large λ limit based
upon (32) to which the numerical results asymptote. Indeed,
a run with λ = 20 km (not plotted) had a ratio of 0.4203 and
is in excellent agreement with the value expected from the
analytical formula of 0.4204, thus confirming the accuracy
of the numerical solution and clearly tending to the limiting
value.

The form of the potential given in (25) indicates φ has
its maximum magnitude at x = λ/4 and varies with z as
cosh

p̀
σP/σ‖2πh/λ

´
, Figure 3 show this variation by plot-

ting φ(x = λ/4, z)/φ0 with z, where φ0 = φ(x = λ/4, h−).
The solid lines are numerical solutions for horizontal wave-
lengths of λ = 0.2, 0.6, 2, 4 and 20 km and the symbols
represent values based upon the analytical solution in (25).
Once again the agreement of analytical and numerical values
is to within the accuracy of convergence set on the iterative
scheme. Figure 3 clearly shows the expected large wave-
length (λ� 2 km) equipotential solution (see the λ = 20 km
case) where φ is constant along field lines. The smooth tran-
sition to the small wavelength (λ� 2 km) limit with a clear
evanescent behaviour at the top of the ionosphere is also
evident. In this regime the skin depth H = (λ/2π)

p
σ‖/σP

suggests a decay length of 2 km and 6 km for the λ = 0.2
and 0.6 km cases for the parameters chosen. Note also that
all cases in Figure 3 have ∂φ/∂z|z=0 = 0 consistent with
jz(x, z = 0) = 0.

5.1.1. Interface Condition – Dominant Terms.
The boundary condition (22) comprises three terms, and

in certain limits one of these may be neglected, resulting in
an approximate form that may permit physical insights or
interpretations.

We begin by recognising that the analytical result in (25)
can be written

φ(x, z) = φ0 sin(x/λ̄) cosh (z/H) / cosh (h/H) (35)

so φ is characterized by two length scales λ̄ and H, in the
x and z directions respectively. (Here λ̄ = λ/2π.) Thus Ex

and Ez may be determined from (6) and the requirement
∇ · j = 0 becomes (on using (5))

σP /λ̄
2 = σ‖/H

2, (36)

which determines the relation between the two scale lengths,
consistent with (28).

We also note that once Ex has been determined from (6)
and (35) it is possible to calculate ΣP (x) as defined in (9)
analytically. Since σP is constant in this particular solution
we find

ΣP =σPH tanh(h/H)≡ λ̄√σPσ‖ tanh

„q
σP/σ‖h/λ̄

«
, (37)

after (36) has been used. This result is quite general and
includes the fully penetrative limit (section 4.1.1) in which
λ � 2π

p
σP /σ‖h =⇒ H � h and tanh(h/H) ≈ h/H

meaning (37) reduces to ΣP ≈ σPh. In the opposite
limit of a strongly evanescent solution (section 4.1.2) λ �
2π
p
σP /σ‖h =⇒ H � h and tanh(h/H) ≈ 1 meaning

(37) reduces to ΣP ≈ σPH. These conductance limits were
also noted in section 4.1.1 and 4.1.2. The expression for ΣP

in (37) has the advantage that it is valid quite generally for
large, small and intermediate wavelengths with their asso-
ciated varying degrees of penetration and ΣP . Indeed, us-
ing (37) we can rewrite the denominator in (30) and (34) as

1+ΣP /ΣA which recovers agreement with (13) for arbitrary
λ.

5.1.1.1. Insulating Ionosphere:
In the limit where the term on the left–hand side of (22)

may be neglected compared to the first term on the right we
have

φ0

H
tanh

„
h

H

«
� φ0

µ0VAσ‖λ̄2
≡ φ0

µ0VAσPH2
, (38)

where (35) and (36) have been employed. Using (37) to
introduce ΣP , we find

µ0VAΣP � 1. (39)

This result holds for arbitrary λ, and is associated solely
with the neglect of the term on the left–hand side of (22).
The remaining terms in (22) balance to give

1

µ0VAσ‖

„
−∂Ex

∂x
+ 2

∂Exi

∂x

«
≈ 0 on z = h (40)

after substituting −∂φ/∂x = Ex, the x component of the to-
tal electric field. The solution to (40) is simply Ex ≈ 2Exi,
and since Ex is also equal to Exi + Exr, we conclude
Exr ≈ Exi which is exactly as expected for a highly re-
flecting insulator.

5.1.1.2. Conducting Ionosphere:
If the first term on the right–hand side of (22) is negligi-

ble compared to the term on the left–hand side we have the
opposite inequality to that in (38) which we choose to write
(on employing (36)) in the form

µ0VAσPH tanh(h/H)� 1,

or equivalently, µ0VAΣP � 1.
(41)

This expression indicates reflection from a highly conduct-
ing ionosphere, and is valid for arbitrary λ since ΣP is given
by the general expression in (37).

In (22) the left–hand side term and the second term on
the right–hand side must now balance, giving the leading
approximation as

φ0

H
tanh(h/H) ≈ −2

µ0VAσ‖

E0

λ̄
. (42)

where (24) has been employed. Multiplying through by
cos(x/λ̄) and noting that Ex(x, h−) = −∂φ(x, h−)/∂x =
−(φ0/λ̄) cos(x/λ̄) leads to

Ex(x, h)

H
tanh(h/H) ≈ 2Exi

µ0VAσ‖λ̄2
, (43)

which may be reformulated using (36) as

Ex

Exi

˛̨̨̨
(x,h)

≈ 2 coth(h/H)

µ0VAσPH
. (44)

Employing (37) to introduce the general ΣP expression gives

Ex

Exi

˛̨̨̨
(x,h)

≈ 2

µ0VAΣP
� 1. (45)

which is valid for arbitrary penetration of the ionosphere by
the electric field (i.e., arbitrary h/H). Note this result is con-
sistent with (13) given the limit ΣP /ΣA � 1 applies here, as
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shown in (41), and we conclude Ex/Exi → 0 as µ0VAΣP →
∞. Hence Exr ≈ −Exi (to give Ex = Exr + Exi � Exi)
and we recover the expected phase relation for the reflected
Alfvén wave in the limit of a perfect conductor.

5.1.1.3. Undriven Ionosphere:
The above subsections have shown how the dominance of

the two terms on the right–hand side of (22) corresponds to
an insulating ionosphere, while the dominance of the term
on the left–hand side and the final term on the right–hand
side to a highly conducting ionosphere. For intermediate
cases all three terms must be retained. Finally the neglect
of the second term on the right–hand side of (22) means
there is no incident wave and the trivial solution results:
Balancing the other two terms gives

φ0 ×
ˆ
tanh(h/H)µ0VAσ‖λ̄

2/H + 1
˜

= 0,

or φ0×
»
µ0VA

√
σPσ‖λ̄ tanh

„q
σP/σ‖h/λ̄

«
+ 1

–
= 0.

(46)

Since λ̄ may be chosen arbitrarily, the only way (46) is gen-
erally satisfied is if φ0 = 0. It may be thought that there is
a special value of λ̄ for which the square bracket in (46) is
zero, however, a little thought shows that the bracket never
vanishes for real λ̄ as the first term in the bracket is always
positive. Moreover, setting the contents of the bracket to
zero requires ΣP /ΣA = −1 which is not a physically realis-
tic solution. This is not surprising as the neglect of the third
term in (22) means there is no incident wave to drive the
system, and we are required to adopt the trivial solution,
φ0 = 0.

5.1.2. Conductivity Jump.
One further analytical result, which has nonuniform con-

ductivities, can be derived if we assume there is a step in σ‖
and/or σP at z = zs. We assume that these conductivities
are independent of x and have constant value either side of
the step. Whilst we do not advocate this as a realistic model
of the ionosphere, it could provide a simple way of investi-
gating regions where the conductivities change over a small
vertical range, (e.g., σP from the E to the F region, or the
dramatic decrease in σ‖ over the E region.) The main pur-
pose of deriving the solution here is to validate the numerical
solution.

Integration of the governing elliptic equation (15) across
a vanishingly small height straddling the discontinuity (from
z−s to z+

s ) yields »
σ‖
∂φ

∂z

–z+
s

z−s
= 0, (47)

i.e., σ‖∂φ/∂z (= −jz) is continuous across the step. More
generally we can write the solution to (47) as ∂φ/∂z =
f(z)/σ‖(z), where f(z) is a continuous function. Further
integration of the latter equation across the step gives

[φ]
z+

s

z−s
= 0, (48)

so φ is also continuous across the step.
For the remainder of this derivation we assume a sepa-

rable single Fourier mode for the incident wave of the form
(24) requiring

φ = Z(z) sin(kx). (49)

The continuity relations (47) and (48) then become, in
terms of Z,

»
σ‖
∂Z

∂z

–z+
s

z−s
= 0 and [Z]

z+
s

z−s
= 0. (50)

Away from the step in conductivities (where the conduc-
tivities are uniform) the governing elliptic equation (15) re-
duces to

d2Z

dz2
− k2 σP

σ‖
Z = 0 (51)

which is an ordinary differential equation in z. The solution
has a local wavenumber (or inverse decay length) of

κ = k
q
σP /σ‖ (52)

which will vary with z since σP and σ‖ change at zs. The
values of κ either side of zs are defined as

κ(z) =

8><>:
κ− = k

q
σ−P /σ

−
‖ , 0 < z < zs

κ+ = k
q
σ+

P /σ
+
‖ , zs < z < h

(53)

in terms of the conductivities above (+) and below (−) zs.
The solution for Z (and hence φ) over the entire ionosphere
is found by solving (50) in the region 0 < z < zs subject
to the boundary condition at z = 0, then matching across
the discontinuity at z = zs to the solution of (50) in the
region zs < z < h. The boundary condition ∂φ/∂z = 0 (i.e.,
∂Z/∂z = 0) at z = 0 determines the lower solution as

Z = c0 cosh(κ−z), 0 < z < zs, (54)

where c0 is a constant. Hence the expressions in (50) at z−s
are

Z(z−s ) =c0 cosh(κ−zs),„
σ‖
∂Z

∂z

«
z−s

=c0k
q
σ−P σ

−
‖ sinh(κ−zs).

(55)

Over the upper region (zs < z < h) we have the general
solution (with constants c1 and c2)

Z = c1 cosh(κ+z) + c2 sinh(κ+z), zs < z < h, (56)

Figure 4. A similar format plot to Figure 3, except that
σ‖ jumps from a value of 0.02 mho/m (0 < z < 10 km) to
2 mho/m (10 < z < 20 km). The horizontal wavelength is
2 km. Other parameters are the same used in Figure 2.
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and evaluating the terms needed in (50) at z+
s gives

Z(z+
s ) =c1 cosh(κ+zs) + c2 sinh(κ+zs),„

σ‖
∂Z

∂z

«
z+

s

=c1k
q
σ+

P σ
+
‖ sinh(κ+zs)

+ c2k
q
σ+

P σ
+
‖ cosh(κ+zs).

(57)

Using the continuity properties (49) allows the expres-

sions in (55) and (57) to determine c1 and c2 in terms of the

arbitrary amplitude c0. After a little algebra we find

c1/c0 = cosh(κ−zs) cosh(κ+zs)

−
q
σ−P σ

−
‖ /σ

+
P σ

+
‖ sinh(κ−zs) sinh(κ+zs),

c2/c0 =
q
σ−P σ

−
‖ /σ

+
P σ

+
‖ sinh(κ−zs) cosh(κ+zs)

− cosh(κ−zs) sinh(κ+zs).

(58)

which completes the determination of φ in (49) using (54),

(56) and (58). Figure 4 shows an example for zs = 10 km

Figure 5. Flow chart outlining the current consistency
check Given the incident wave (Exi) there are two routes
to calculate jz at the interface: one through the magneto-
sphere (j+z ) and the other through the ionosphere (j−z ). For
an accurate self-consistent solution these will be the same
to within the accuracy of the solution.

Figure 6. The variation field–aligned current at the
magnetosphere–ionosphere interface with x for λ = 2 km.
The solid line is j−z and the symbols j+z . (Other parameters
are the same as in Figure 2.)

with a jump in σ‖ from 0.02 to 2.0 mho/m (σP has no jump),
and plots the normalized φ with altitude for λ = 2 km. The
numerical results (solid line) and analytical solution (54)
and (56) are clearly in good agreement. Note that the nu-
merical solution actually allowed σ‖ to change continuously
over a narrow layer centred on z = zs so that finite differ-
encing could be used reliably. Hence we cannot compare the
analytical and numerical solutions quantitatively for this ex-
ample, although the qualitative agreement is evident. Other

Figure 7. The variation of Ex and jz at the
magnetosphere–ionosphere interface (z = h) with x. The
total jz consists of a strong downward current that closes in
two adjacent smaller upward currents. Both j+z (symbols)
and j−z (solid line) are shown. Parameters are the same as
in Figure 2.

Figure 8. A surface plot of nonuniform σP (x, z) with con-
ductivity depleted below the downward current. In the un-
depleted regions the height–integrated Pedersen conductiv-
ity is similar to that employed in constructing the results
shown in Figure 7.
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examples (not shown here) confirm agreement when both σ‖
and σP have a jump at z = zs.

5.2. Numerical Checks

The use of a more general conductivity distribution soon
leads us to not having an exact analytical solution to com-
pare with. This is equally true of more general incident
Alfvén waves Exi(x) than the sinusoidal form assumed in
§5.1. However, there are other checks we can apply to the
numerical solution to confirm its accuracy and validity be-
sides iterating until φ has been determined to a chosen ac-
curacy.

5.2.1. Current Continuity.
Since we assume ∇ · j = 0, Gauss’ theorem requires there

is no net current flow across the boundaries of the 2D (x, z)
domain. A simple integration of the normal current compo-
nent over these boundaries (compared to the integral of the
modulus of the normal component) shows that∇ · j = 0 was
always met to better than 1%.

5.2.2. Current Consistency.
The route through which the numerical solution is deter-

mined allows for two expressions for jz at the interface to be
derived. If the potential is indeed the self-consistent solution
for the given incident Alfvén wave, then these expressions
should be the same. Figure 5 outlines the strategy of the
test.

Given Exi (the incident Alfvén wave electric field), it im-
mediately follows that we know byi from equation (3). Also,
given Exi we can specify the interface condition ((21) or

Figure 9. A similar format to Figure 7. The incident
Alfvén wave and parameters used to generate the results
in Figures 7 and 9 are the same except Figure 9 used the
σP distribution displayed in Figure 8, whilst Figure 7 used
a uniform σP of 5 × 10−4 mho/m. Note how the reflected
fields over the downward current region (4 < x < 6 km)
differ between Figures 7 and 9, and hence the total Ex and
jz are also modified there.

(22)), and hence solve for φ in the ionosphere. If φ is known,
then (6) gives Ex and Ez throughout the ionosphere. Eval-
uating Ez at z = h− (and using σ‖) determines jz there
too (i.e., j−z ). Alternatively, evaluating Ex = −∂φ/∂x at
z = h− allows the determination of E−x = Ex(x, z = h−),
which is equal to E+

x (at z = h+) since Ex is continuous at
z = h. Once the total electric field at the base of the magne-
tosphere (E+

x ) is known, we may deduce Exr (the reflected
Alfvén wave field) using (4) and the reflected magnetic field
(byr) using (3). Hence the total Alfvén wave magnetic field
at z = h+ is known (from (4)), and j+z then follows from
Ampère’s Law. Since jz is continuous across the interface,
we shall require j+z = j−z .

Figure 6 shows the variation of jz(x, z = h) for the
λ = 2 km case studied previously in Figures 2 and 3. The
solid line shows j−z (based upon −σ‖∂φ/∂z at z = h−) and
the diamonds represent j+z at z = h+ (based upon the mag-
netospheric Alfvén wave solution). The discrepancy between
the two currents does not exceed 0.1 %. Also shown are the
currents in the incident and reflected Alfvén waves, the sum
of which is j+z .

5.3. General Numerical Results

Having established the reliability of the numerical solu-
tion and boundary condition we now consider cases which
are relevant to magnetosphere–ionosphere coupling but do
not have an analytical solution. We begin by considering
an isolated current system as shown in Figure 7 driven by
a bipolar Alfvén wave (Exi) that is incident upon an iono-
sphere with uniform conductivities (σP = 5× 10−4 mho/m,
σ‖ = 2 mho/m, VA = 3×105 m/s, h = 20 km and a grid with
200x200 points was used). For the parameters chosen the
ionosphere is a good conductor and the reflected electric field
(Exr) has the opposite phase to Exi. The lower panel shows
the field–aligned currents, with the incident and reflected
currents having the same phase – as expected when the iono-
sphere is a good conductor. The upward–downward–upward
current structure is similar to that used by Karlsson et al.
[1998] and thought to correspond to the observations re-
ported by, e.g., Streltsov and Marklund [2006], Streltsov and
Karlsson [2008], Marklund et al. [2001], and Michell et al.
[2008].

It is known that strong downward currents can signifi-
cantly deplete the ionosphere of electrons and change the
conductivity as in the nonresponsive magnetosphere driv-
ing addressed by Blixt and Brekke [1996], Doe et al. [1995],
Karlsson and Marklund [1998], and Zettergren and Semeter
[2012], as well as for the responsive magnetospheric driving
of a sheet ionosphere considered by Lysak and Song [2002],
Cran-McGreehin et al. [2007] and Russell et al. [2010]. A
future paper will study the nonlinear self–consistent evolu-
tion of a resolved ionosphere with responsive magnetospheric
driving in which the ionospheric conductivity is modified by
current closure. The focus of the present paper, however,
is to establish the validity and practical solution of the po-
tential problem with the responsive boundary condition in
(22). For the moment we shall simply define a depleted
ionosphere that is typical of that associated with down-
ward currents, calculate the associated conductivity, and
then test our method of solution using these conductivity
profiles. Figure 8 shows σP (x, z) and has been chosen such
that in the undepleted regions (x < 3 km and x > 7 km)
the height–integrated σP is approximately the same as used
for generating the results shown in Figure 7.
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Figure 9 displays the electric fields and field–aligned cur-
rents in the same format used in Figure 7. All parameters,
including the incident wave profile (Exi), are unchanged
from those used in generating Figure 7 except σP has the
distribution displayed in Figure 8. Note how in the unde-
pleted region (x < 3 km and x > 7 km), the electric field
and current profiles are similar to in Figure 7 and exhibit
reflection from a good conductor. Over the central region
(4 < x < 6 km) σP has been reduced by a factor of about 10,
and the solution there is now more representative of reflec-
tion from an insulator: Exi and Exr are in phase, whilst jzi

and jzr are out of phase. The diamond symbols in Figures
7 and 9 again depict j+z being in good agreement with j−z
shown by the solid line.

6. Responsive Magnetospheric Driver

The response of the magnetosphere to changing iono-
spheric structure via the boundary condition (22) may be
appreciated by comparing with the situation that results
from non–responsive boundary conditions. The latter case
has been implemented elsewhere previously by applying
Dirichlet or Neumann boundary conditions which impose ei-
ther the total potential or the total field–aligned current on
the interface, respectively [Doe et al., 1995; Karlsson and
Marklund, 1998; Zettergren and Semeter, 2012]. In these
models the ionosphere may become depleted and the con-
ductivities modified, but the total potential (or field aligned
current) on the interface which represents the magneto-
spheric driving remains unchanged, and so the magneto-
spheric potential (or current) solution is fixed and unrespon-
sive.

Figures 7 and 9 show how the boundary condition (22)
can be interpreted as providing a self–consistent responsive
magnetospheric solution. Both sets of results in these figures
have the same incident Alfvén wave described by Exi and
jzi which could be set up by processes in the distant mag-
netosphere. The solution in the magnetosphere is a sum
of incident and reflected Alfvén waves. Since the reflected
wave is modified by the ionospheric conductivity, the result-
ing total magnetospheric solution is modified also. This is
readily seen by comparing the total Ex and jz (solid lines)
in Figures 7 and 9. In the undepleted case (Figure 7) the
bipolar total Ex has a normalised amplitude of about 0.45,
whereas in the depleted case (Figure 9) it is about 1.1. Sim-
ilarly the shape of the total current changes between these
two cases, as does the size of the downward current from 1.6
(depleted) to 0.8 (depleted). The adjustment of both the
total magnetospheric electric field (E+

x ) and current (j+z )
to the changing conductivity means the boundary condition
(22) represents a responsive magnetosphere.

7. Discussion and Conclusion

We have derived and tested a novel boundary condition
that can be imposed at the top of a distributed ionosphere
to represent a responsive magnetosphere. Careful testing
against analytical solutions and conserved quantities has es-
tablished its validity. Future studies could explore alter-
native numerical methods for solving the elliptical potential
problem as they may be more efficient than Successive Over-
Relaxation.

An important future development will be the introduc-
tion of a responsive ionosphere where the current flow in
the ionosphere redistributes electrons and ions according to

continuity equations. When used in conjunction with the re-
sponsive magnetosphere boundary condition developed here,
the fully self-consistent coupled system may exhibit nonlin-
ear behaviour such as steepening and the formation of small
scales. This has been shown to be the case for when the sim-
plification of a sheet ionosphere is adopted with a responsive
magnetosphere boundary condition [Cran-McGreehin et al.,
2007]. (If Dirichlet or Neumann boundary conditions are
adopted, steepening is not seen to occur.)

Future work will investigate whether the steepening pro-
cess still operates efficiently in a distributed ionosphere
model. If small spatial scales can be produced by this pro-
cess it may lead to electron inertial terms becoming impor-
tant [Russell et al., 2013], which are often invoked to inter-
pret observations [Semeter and Blixt, 2006], even when the
initial equilibrium and incident Alfvén wave do not contain
any small scales.
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