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Abstract. We present numerical simulations of wave coupling in a cold, ideal,
inhomogeneous plasma waveguide which approximates the flanks of the magneto-
sphere. Two types of driving conditions are investigated. The first corresponds to
a displacement of the magnetopause over a fixed azimuthal range. The pulsations
driven by this boundary condition have an azimuthal wavenumber and phase
speed determined by the equilibrium structure of the magnetosphere. The second
condition corresponds to a displacement pulse which runs antisunward along the
magnetopause and produces pulsations with a phase velocity strictly equal to that of
the boundary pulse. Our results are compared briefly with data and suggest that on
some occasions the magnetosphere is driven in a fashion that is well approximated
by a “running” pulse or wave on the magnetopause.

1. Introduction

Advances in observations of ULF toroidal pulsations
[e.g., Walker et al., 1992; Ziesolleck and MecDiarmid,
1994] have provided a new impetus to pulsation theory.
Whilst there are many details of the observations that
theorists can explain, there remain a few enigmas: for
example, why is there a dawn/dusk asymmetry for the
pulsations? Why are Samson et al.’s [1992] “magic”
frequencies so robust over long periods? Why do we
not observe any signature of the fast mode which is
thought to be responsible for driving pulsations?

In an effort to explain data, the basic resonant cou-
pling model of Southwood [1974] and Chen and Hasegawa
[1974] was refined to give the cavity model [Kivelson
and Southwood, 1985; Allan et al., 1986]. The cav-
ity model, which explains the discrete frequencies of
pulsations, has been refined recently to produce the

waveguide model of the magnetosphere [e.g., Walker et

al., 1992; Samson et al., 1992; Harrold and Samson,
1992; Wright, 1994]. The waveguide model can also
~ explain the discrete frequencies of pulsations [Wright,
1994; Rickard and Wright, 1994]. Moreover, the fact
that fast waves disperse and propagate within a waveg-
uide may account for the absence of a coherent fast
mode signature in data [Rickard and Wright, 1995].
The present paper extends numerical modeling of
nonuniform waveguides by investigating a variety of
driving conditions at the magnetopause. The correla-
tion between driving condition and the azimuthal wave-
length or azimuthal phase velocity of the pulsation is
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studied. We find that for a “stationary” driving pulse
(one where the magnetopause is disturbed at a fixed lo-
cation) the pulsations have an inherent wavelength and
phase velocity that is independent of the pulse details
but is determined by the equilibrium structure of the
magnetosphere. When a “running” driving pulse is em-
ployed (a ripple is run along the magnetopause at con-
stant speed) all pulsations have a phase velocity equal to
the speed of the pulse. These boundary conditions may
mimic the disturbance produced by a pressure pulse or
density enhancement in the magnetosheath flow that
is incident upon the magnetopause. For example, if a
density enhancement hits the nose of the magnetopause
(which is a stagnation point) it will be slow to move
around the flanks and may be approximated by a “sta-
tionary” pulse. Other disturbances may impinge upon
the magnetopause away from the stagnation point and
be convected antisunward around the flanks (a running
pulse). The latter condition may also mimic the anti-
sunward propagation of magnetopause waves, such as
Kelvin-Helmholtz disturbances [ Walker, 1981]. Our re-
sults are compared briefly with data, and we conclude
that, at least on some occasions, pulsations are likely to
be excited by disturbances running antisunward along
the magnetopause. The paper is structured as follows:
section 2 describes the model, theoretical ideas, numer-
ical boundary conditions, and phase calculations; the
results are presented in section 3, while section 4 dis-
cusses and summarizes the main points of the paper.

2. Model

The flank of the magnetosphere is idealized by a
straight waveguide as shown in Figure 1. The coor-
dinate z spans L shells, y is equivalent to the azimuthal
coordinate, and z is the field-aligned coordinate. Es-
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plasma is assumed to be cold, perfectly conducting, and
bounded by perfectly reflecting boundaries in both z
and z. The density is independent of z, and we consider
a single Fourier mode (by,by ~ cos(k;z);b.,us, uy ~
sin(k,2)). Thus the governing equations become [e.g.,
Rickard and Wright 1994, equation (12)]

8ux abz

o = 8 (’“z”f * a_) (12)
Ouy ob,
ob,
W = szU;,; (1(!)
0b
8—ty = szUy (1d)
o, du,  Ou,
o - 8 ( oz 33/) (1)

B is the equilibrium (uniform) field strength and p the
equilibrium density.

In the remainder of this paper length will be nor-
malized by z,,, velocities by the Alfvén speed at z =
0,V (z = 0), density by p(z = 0), and time by &, /V (2 =
0). The Alfvén speed (V') varies with position inside the
magnetosphere. For simplicity we assume that V' varies
only with L shell (or z) such that for 0 < z < z., the
normalized Alfvén speed is given by

V(z) = (1-2/z0) (2)

For z. < =z < 1 we fit a parabolic density function
with the boundary conditions that V' and dV/dz be
continuous at z., and dV/dx = 0 at £ = 1. Thus for
z. <z <1 we find

1 zo— 2¢. + 1
V2(z)  zo(l— zc/20)3
(1—a?
- — _ 3 (3)
zo(1 =z )(1 — z./z0)

where g is an arbitrary scaling parameter that deter-
mines how rapidly V changes with L shell, and z. is
the position at which the Alfvén speed changes from

the form given in (2) to that in (3)
Figure 2 shows the Alfvén speed variation when z, =
0.8 and zo = 0.95, 1.0, 1.2, 1.4, 1.6, and 1.8. Evidently

Figure 2. The variation of Alfvén speed (V4) in the
model waveguide. A variety of waveguides are employed
and are parameterized by the scale length zp = 0.95,
1.0, 1.2, 1.4, 1.6, and 1.8. The vertical dashed line
locates z..

the parameters zo and z. determine the equilibrium
density and Alfvén speed in our model waveguide. Later
we shall use these parameters to study which properties
of pulsations depend upon the equilibrium model and
which are determined by the driving condition.

2.1. Theory

The waveguide theory developed by Wright [1994]
and borne out by the simulations of Rickard and Wright
[1994, 1995] may be summarized as follows: If a source
of fast mode waves is introduced over a small region,
the small k, components will have a small group ve-
locity along the guide and thus remain near the source
region. The larger k, components propagate relatively
quickly along the guide and leave the source region. It
is the small k;, components that produce a quasi-steady
oscillatory fast mode driver for Alfvén resonances near
the source. Consequently, pulsations with natural fre-
quencies equal to that of the k, = 0 fast mode eigen-
frequencies will be excited in this region. Thus we can
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Figure 3. The (k, = 0) fast eigenfrequencies of the
waveguide as a function of o (n is the harmonic number
of the mode in z).
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Figure 4. The expected locations of the Alfvén reso-

nances as a furiction of zo (z, is defined by k; Va(zy)
equaling a fast eigenfrequency).

anticipate the frequencies of pulsations from knowledge
of the equilibrium, since this determines the k, = 0 fast
eigenfrequencies. Throughout this paper we set u, = 0
at 2'= 0,1 (unless the boundary is being driven) and
take k, = w. Figure 3 shows how the k, = 0 fast
eigenfrequencies vary with the equilibrium parameter
zo (n labels the number of the harmonic in the z di-
rection). The Alfvén continuum spans k,V(z = 0) to
k,V(z = 1), and when the fast eigenfrequencies of Fig-
ure 3 lie within the continuum we may predict the loca-
tion of the pulsation (z,) by w, = k,V(z,). The result
is shown in Figure 4 for a range of zg.

2.2. Numerical Scheme

The details of the numerical scheme have been given
elsewhere [Rickard and Wright, 1994, 1995]. Briefly, we
employ a second-order method; the leapfrog-trapezoidal
algorithm. Care must be taken to resolve all time
and spatial scales, particularly the phase mixing length
L,y = 2m/(tdws/dz), which can be a problem for
large run times. The “open” boundary condition along
the waveguide was achieved by adding additional sec-
tions of grid throughout each run ahead of the fast
mode. (“Outgoing” boundary conditions were inves-
tigated, but all produced some unphysical wave reflec-
tion.) A symmetry boundary condition (8b,/dy = 0))
was employed at y = 0.

2.2.1. Stationary pulse. The first type of bound-
ary condition we employed was a “stationary pulse”.
This is identical to the driving employed by Rickard and
Wright [1995]: The section of maghetopause —Ay/2 <
y < +Ay/2 is displaced in toward the Earth and re-
turned to its original position over a time 7.

The spatial form of the boundary displacement is

&= 0 ly|>Ay/2 (4a)
&= (1+cos(2my/Ay))/2 |yl<Ay/2 (4b)

For the stationary pulse runs presented here 7 = 3 and
Ay = 0.4, unless stated otherwise.
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2.2.2. Running pulse. The second type of driv-
ing condition we investigated was a “running pulse.” In
this case a pulse with a spatial form similar to (4) was
run along from y & 0 to y & 5 at constant speed V3. (W
was changed for each new run.) Thus the pulse was run
along the magnetopause for 0 < t < 5/V;. To introduce
the pulse and remove it we ramped its amplitude up
over 0 < t < 0.7/V; and down over 4.3/V; <t < 5/V;.
The product of the “ramping” function and the run-
ning spatial pulse function gave &;(y,t) on the magne-
topause. The time derivative of &, gives uz(z = 1,y,1)
which is used as a boundary condition to drive the gov-
erning equations. For the “running pulse” simulations
presented here Ay = 1.0, and V} took the values 0.35,
0.7, and 1.4. (See the discussion at the end of subection
3.3 on the choice of Ay and V3.)

At the magnetopause 3/0z is calculated by one-sided
derivatives, while u, is specified by the driving con-
dition or assigned to zero following the driving phase.
(See Wright and Rickard [1995] for a more detailed dis-
cussion.)

2.3. Phase Calculations

The phase structure of the pulsations was investi-
gated by using the method described by Ziesolleck and
McDiarmid [1994] who studied ground-based magne-
tometer data. (Note that we are calculating the fields
in the magnetosphere above the ionosphere. When
comparing our results with ground-based magnetome-
ter data, the transverse fields must be turned through
the Hughes rotation of 90° [Hughes, 1974].)

We positioned a set of stations (or “satellites”, as
we are measuring magnetospheric perturbations) in our
simulation space and record the time history of the
field perturbation. Care is taken to resolve the peri-
ods of interest. For a given station/satellite we pro-
ceed as follows: The fast Fourier transform (FFT) is
taken; this produces a complex Fourier transform for
each frequency bin. The phase of the signal for a given
bin is found from tan~(I,/R.), where R, and I,
are the real and imaginary part of the FFT for that
bin. The phase is then adjusted to lie in the range
—7 < ¢ < w. This process is repeated for all frequency
bins. An identical procedure is repeated for the other
satellites/stations. Since the phase has an ambiguity of
2nw, we add/subtract such a factor to ensure that (for
a given frequency bin) the phase from one satellite to
the next does not change by more than m. To calcu-
late the phase of the pulsation we normally average the
phases of a few frequency bins centered upon the pulsa-
tion frequency, and then offset all these averaged phases
by that averaged over all satellites, since only changes
of phase are meaningful. (Note that this procedure re-
quires the distance between consecutive satellites to be
less than half of the azimuthal wavelength.)

3. Results

The numerical methods of the previous section were
applied to the inhomogeneous waveguide model. We
now present the results, beginning with the “stationary
pulse” driving condition described in section 2.2.1.
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Figure 5. Contours of total energy density at ¢t = 40.
The waveguide has o = 1.0, k, = = and was driven by
a “stationary pulse” of extent Ay = 0.4 for a duration
7 = 3.0. The mark on the y axis denotes the extent of
the stationary pulse, while those on the z axis indicate
the anticipated @ coordinates of the Alfvén resonances.

3.1. Stationary Pulse

A waveguide with £y = 1.0 was driven by the “sta-
tionary pulse” boundary condition. From Figure 4 we
expect Alfvén resonances to occur at # = 0.24 and 0.56,
where the Alfvén frequencies are 2.39 and 1.37, respec-
tively. Figure 5 displays contours of total energy density
at t = 40. The energy deposition in Alfvén resonances
at the expected location is evident. Further down the
waveguide (y & 5) the energy density is associated with
fast mode waves which propagate and disperse along
the guide. More details are given by Wright [1994] and
" Rickard and Wright [1994]‘ Indeed, the latter authors
show how the total energy may be decomposed into
Alfvénic and fast contributions (E4 and Ej, respec-
tively),

Ba = +(md+¥) (53)

B = L(ud+izen?) (5b)

N = DN =

This partition is exact when k, = 0, and a good ap-
proximation when k, is small, such as near the Alfvén
resonances. (The fast mode in Figure 5 has high k,
components, and so has significant u, and b, perturba-

0-0 L 1 . 1 P 1

0 10 20 30 40
time

Figure 6. The time histories of the “Alfvénic” and

“fast” energy densities integrated over the waveguide

(same parameters as in Figure 5). The dashed line
marks the end of the driving phase at ¢t = 3.

WRIGHT AND RICKARD: AZIMUTHAL PHASE OF TOROIDAL PULSATIONS

tions, and so would have a nonzero E4 according to (5),
thus E; is only approximately equal to the fast mode
energy density.)

The time histories of £4 and E; integrated over the
entire waveguide are shown in Figure 6. Note that the
total energy density (E4 + E}) rises over the driving
interval 0 < ¢ < 3 and thereafter is constant. At ¢ =
3 most of the energy resides in the fast mode, but as
time passes it decreases through coupling to the Alfvén
mode. (The small oscillations at larger times reflect
the fact that E4 and E; are not exact representations
of the fast and Alfvénic energy densities.) Figure 7
displays the azimuthal structure of the two pulsations
by plotting b, and E4 as a function of y for z = 0.24
and 0.564. The b, plot shows some dominant azimuthal
wavelength. At present we do not have an explanation
for the dominance of any particular wavelength, nor
for the nodes that occur in the E, profile. Perhaps
these are a result of the complicated interference pattern
that will be produced by the low &, fast nodes as they
propagate down the guide at different group velocities.
(The nonzero values of E4 over the range 4 < y < 6 are
associated with the fast mode, see Figure 5.)

Most of the fast mode energy that will drive Alfvén
waves has done so by ¢t = 25 (Figure 6). Thus we record
the field disturbances at a set of stations/satellites at
y coordinates 0.5, 0.9, 1.3, 1.7, 2.1, 2.5, 2.9, 3.3 and
z coordinates 0.24 and 0.564 over the interval 25 <
t < 40. Figure 8 displays the phase variation of the
pulsations for both b, and b, signals. Calculating the
gradient d¢/dy enables us to estimate the azimuthal
wavelength, Ay = 360 - dy/d¢. For Figure 8 we find
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Figure 7. The variation of b, and E 4 with azimuth (y)
for the first and second harmonic resonances (z = 0.564
and 0.24, respectively). The parameters are the same
as in Figure 5.
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Figure 8. The phase variation of b, (squares) and b,
(triangles), for the parameter of Figure 5, calculated
over the interval 25 < ¢t < 40. (a) The first resonance
at ¢ = 0.564 used the frequency bins 0.9 < w < 1.45,

whilst (b) the second resonance at & = 0.24 employed
22<w<2T.

(after averaging the b, and b, gradients) A, = 1.17 for
the n = 1 resonance and A, = 1.78 for n = 2. Since the
resonant frequencies are wi; = 1.37 and wy = 2.39, the
pulsations have azimuthal phase velocities of 0.255 and
0.677, respectively (V, = w/ky).

We repeated identical experiments to that described
above, but varied zg for each run. Each time we calcu-
lated the azimuthal wavelength and phase speed. The
results are summarized in Figure 9. (Note that fc
zo > 1.2 our model only has one resonance.) It apper s
that for a stationary pulse Ay and V, vary systemati-
cally with zq, that is, the equilibrium structure of the
magnetosphere. It is important to decide if =~ s other
factors could be determining Ay and V}, for example,
the width of the stationary pulse (Ay). In Figures 5
to 9, Ay = 0.4. We repeated our experiments for the
model with 2y = 1.2, but varied Ay from 0.12 to 1.2
and found that the structure of the pulsation was un-
changed, in agreement with Rickard and Wright [1994].
(For Ay =0.12,0.4 and 1.2 Ay was 1.60, 1.60, and 1.59,
while the phase speeds were 0.532, 0.531, and 0.531, re-
spectively.) These results suggest that the equilibrium
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structure of the magnetosphere determines the phase
structure of pulsations driven by a stationary pulse.

3.2. Running Pulse

The next set of results employed the “running pulse”
boundary condition described in section 2.2.2. We
present a case study for a pulse boundary speed of
V» = 0.7, and zg = 1.0. Since the “running pulse”
drives the waveguide for a larger time compared to the
stationary pulse experiments, we run these simulations
a little longer (up to ¢t = 50) to allow the fast mode time
to establish the resonances. Figure 10 displays similar
plots to those in Figure 7. Note how E4 extends over a
greater distance than previously, due to the fact that the
pulse now runs over the range 0 < y < 5. There is still a
clear, coherent phase structure in the b, signatures, and
these were analyzed (along with the b, signatures) by
recording the fields over the interval 25 < ¢ < 50. The
phase variations are displayed in Figure 11 for satellites
at £ = 0.24 and 0.564, and y = 0.9, 1.3, 1.7, 2.1, 2.5,
2.9, 3.3, 3.7, and 4.1. From Figure 11 we measure Ay
to be 3.32 and 1.96 for the n = 1 and 2 resonances,
respectively. Significantly, this implies phase velocities

2'5—-'1"-|"'|'ﬁ-|'|"'

0.0— 1 1 I 1 1 1
1.0 1.2 16 18

2.0
. XO
Figure 9. The variation of (a) azimuthal wavelength

(Ay) and (b) azimuthal phase speed (V,) with zo when
driven by a ‘stationary pulse’.



0.40F

n=2 -
5 0.30F _
0.20F _
0.10F ]
0.00 -~

0 2 4 6 8 10

y

Figure 10. The same as for Figure 7, but the waveg-
uide was excited by a running pulse (Ay = 1.0,V; =
0.7). The snapshots were taken at ¢ = 50.

of 0.72 and 0.745 for the resonances, which are essen-
tially the same as that of the boundary pulse (V, = 0.7).
We note that if Ay is estimated directly from Figure 10
by measuring the peak-to-peak distance, we find phase
speeds of 0.697 and 0.698, suggesting the small discrep-
ancy from the phase method is attributable to effects
such as the finite time interval of the calculation, or the
fact that the resonances may still have been growing
during this interval.

The above “running pulse” experiment was repeated
with two different speeds, V3 = 0.35 and 1.4. The az-
imuthal wavelengths and phase speeds were calculated,
and the latter was in excellent agreement with V4. The
results are summarized in Figure 12, which plots the
frequency of the Alfvén wave against the azimuthal
wavenumber (ky, = 27/),). We have also indicated lines
corresponding to phase speeds of V, = 0.35, 0.7, and 1.4.
The agreement between V; and V, of both resonances
is excellent.

3.3. Coupling Efficiency

Readers may have noticed that Figure 12 does not
have a point on it for the second resonance when V; =
0.35, the reason being that the resonance was not driven
very efficiently. To clarify this issue we display snap-
shots of by(x) at t = 50 and y = 3 for the three “run-
ning pulse” experiments (Figure 13). When V; = 0.35
the first Alfvén resonance (at ¢ = 0.564) is excited much
more strongly than the second resonance (at z = 0.24).
For V, = 0.7, the amplitude of b, is similar for both
resonances, whilst V3 = 1.4 favors the second reso-
nance. Evidently, the different values of Vj excite differ-
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ent amounts of the low k, waveguide modes, which in
turn excite Alfvén resonances of different amplitudes.

The different coupling efficiencies may be interpreted
in terms of Ay and Vj: The time it takes a point on the
magnetopause to be displaced in and out is equal to
Ay/Vy. 1dentifying this time as “half a driving period”
and given Ay = 1.0, the time periods of the magne-
topause displacements when V3 = 0.35, 0.7, and 1.4,
are 7, = 5.7, 2.9, and 1.4, respectively. Thus the var-
ious boundary speeds excite waves within the magne-
tosphere of differing frequency spectra which will ex-
cite the two Alfvén resonances with different ampli-
tudes. (The time periods of the two resonances are
4.59 and 2.63.) Clearly, V4 = 0.35 (7, = 5.7) excites
the lower-frequency resonance preferentially, whilst V}
= 1.4 (1, = 1.4) favors the higher-frequency resonance.
The choice of Ay and V;, were not made to represent
realistic magnetospheric parameters, but for numerical
convenience: A larger V3 means the pulse runs for a
shorter time and reduces the computer resources re-
quired.
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Figure 11. The phase variation of b, (squares) and
by (triangles) calculated on the interval 25 < ¢ < 50 for
the “running pulse” case study (parameters as in Figure
10). (a) The first resonance at ¢ = 0.564 employed
the frequency band 1.13 < w < 1.64. (b) The second
resonance at ¢ = 0.24 employed the band 2.1 < w < 2.7.
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Figure 12. Pulsation frequency against azimuthal
wavenumber for three ‘running pulse’ experiments. V,
= 0.35 (diamond), 0.7 (squares), and 1.4 (triangles).
(Other parameters are as in Figure 10.)

4. Discussion and Conclusion

We have investigated the azimuthal phase structure
of pulsations for two types of driving condition. The
first (the “stationary pulse”) reveals that each reso-
nance has its own inherent azimuthal wavelength and
phase velocity which appears to be determined by the
equilibrium structure. If this type of pulsation is ob-
served, it may be possible to infer some properties of
the magnetosphere from the dependence of wavelength
on equilibrium structure. Most importantly we note
that if more than one resonance is driven by a “sta-
tionary pulse,” their azimuthal phase velocities will be
different. Thus simultaneous observations of several res-
onances with different phase speeds may indicate a driv-
ing source similar to our “stationary pulse.”

When the “running pulse” boundary condition is
used we find that the phase speed of all resonances is
equal to the speed at which the pulse (or wave) moves
along the boundary. Hence simultaneous observations
of several resonances with equal phase speeds suggests
a common source on the magnetopause. (Indeed such
observations have been reported by Ziesolleck and Mec-
Diarmid [1994, 1995] — see Figure 16 of the former.)
Our results also indicate that different magnetopause
motions may excite some resonances preferentially and
is potentially a useful diagnostic.

Although the results for the “stationary” and “run-
ning” pulses appear quite different, they can be under-
stood in terms of one another; it is merely a question
of what features dominate. Consider the “stationary
pulse” results in Figure 7; the by signature of both res-
onances is dominated by a single hump near y = 1 and
subsidiary ripples at larger y. The phase calculation
over the range 0.5 < y < 3.3 is essentially a calculation
of the subsidiary ripples.

The running pulse boundary conditions can be syn-
thesized from a sum of several stationary pulses: sup-
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pose at t = 0 we initiate a stationary pulse at y = 0,
then at ¢ = 1 we initiate a new stationary pulseat y = 1,
and so on at y = 2 and ¢ = 2, etc. The overall effect is
that a disturbance moves along the magnetopause with
a speed of V3 = 1. By filling in intermediate pulses
at intermediate times and summing, the net effect is a
smooth running pulse similar to that described in sec-
tion 3.2. In the linear approximation employed here
we are able to sum the boundary conditions and their
associated solutions to produce more complicated solu-
tions. Thus the “running pulse” results may be antic-
ipated by summing a solution of the form in Figure 7
that is translated in y since the source is translated in
y at later times. In this case the subsidiary ripples are
not very important as we will be superposing the larger
peaks from different “stationary pulse” sources. Let us
concentrate upon the dominant peak. If the resonance
(with period 7 = 27/w) has a peak at y ~ 1 from a
source at y &~ 0, then a new source at a time 7/2 at
Vo7 /2 will produce a similar peak at y = V37/2. How-
ever, by this time the original peak at y = 1 will have
oscillated to the opposite phase. Thus a phase change of
m occurs over a distance V;7/2, implying a wavelength
of Ay = V37 and a phase speed of V, = w(A,/27) = V}.
Our results suggest that, at least on some occasions,
ULF pulsations have a common source associated with
antisunward propagating disturbances on the magne-
topause. We do not address the origin of these dis-
turbances, although pressure pulses or magnetopause
waves may be likely candidates. Coordinated satellite
and ground-based observations provide a unique oppor-
tunity for progress on this matter. Section 3.3 and Fig-
ure 13 demonstrate a relation between the speed, ex-
tent, and duration of the magnetopause displacement,

(6)

For a toroidal pulsation of frequency f to be excited ef-
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Figure 13. Snapshots of by(z,y = 3) at t = 50 for the
three “running pulse” experiments of Figure 12. The
dashed vertical lines indicate the locations of the Alfvén
resonances.
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ficiently by magnetopause motions suggests that these
motions occur on a timescale of 7, ~ 1/f. If satellite
data. can supply estimates of the azimuthal extent of
the magnetopause disturbances [e.g., Chen et al., 1993],
then the speed of the disturbances can be calculated by
(6). Comparison of the infered value of V; with magne-
tosheath flow speeds and phase speeds of magnetopause
surface waves and instabilities may provide a clue as to
which mechanisms are important for establishing ULF
toroidal pulsations. For example, Walker [1981] shows
that the Kelvin-Helmholtz instability in a finite thick-
ness magnetopause will have 2Ay = 20,000 km, and for
a typical magnetosheath flow speed of 400 km/s (V; =
200 km/s) we find 7,,, ~ 100 s (Pc4 range). Thus the
Kelvin-Helmholtz instability governed by a finite thick-
ness magnetopause is probably not driver of the lower
harmonic toroidal pulsations in the Pcb range.
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