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STATIONARY ALFV•NIC STRUCTURES 

A. N. Wright • and D. J. Southwood 

Physics Department, Imperial College, London 

Abstract. A nonlinear, analytical model is developed 
to describe equilibrium Alfv•n wave structures such as 
that associated with flow about a conducting obstacle 
in a flowing plasma. Firstly, in order to give 
physical insight into the processes involved, we discuss 
two worked examples one of which extends previous 
models of the Alfv•n wave wake produced by the 
Jovian satellite Io. We describe in detail the fields 

and, in particular, the current systems associated with 
the model, Finally, we present a general formalism 
which leads to a general solution that should be 
applicable in modeling other incompressible space 
plasma flows. 

1. Introduction 

This paper concerns the manner in' which current 
may be carried away from an object in a streaming 
plasma. The only hydromagnetic wave mode that 
carries current away from source is the intermediate, 
or Alfv•n, mode [Dungey, 1967] and our attention 
here concentrates on that mode. In particular, we 
are interested in its current- carrying properties. 
Neubauer [1980] has produced a nonlinear solution for 
a stationary Alfv6n wave standing in a background 
flow. His work was specifically applied to the 
problem of plasma flow about the Jovian moon Io, 
but nevertheless the work forms the starting point for 
our study. 

Consider an isolated source of current in a 

plasma. Charge may not accumulate and thus the 
plasma must carry a current to remove it either to a 
sink located within the plasma or to the boundary. 
As long as the magnetic field lines are perfectly 
conducting, the evident route for the current is along 
the field. In a stationary plasma, a transient source 
of charge would give rise to an associated Alfv6n 
wave that Would carry the corresponding field-aligned 
current. In a streaming plasma, a current source 
would also exicte Alfv•n waves propagating away from 
the source in each direction along the field. These 
would however propagate in the plasma rest frame 
and, thus, in the source frame, move along the 
characteristic directions V -+ = V c + VA, where V c is 
the background flow velocity and VA is the 
background Alfv•n velocity. 

In fact the net current carried by the Alfv•n 
waves in the source frame is along these characteristic 
directions rather than the field direction itself 

[Neubauer, 1980]. Indeed as the directions are 
unperturbed by the wave even in the nonlinear case 
the net current flows along directions determinable 
from the unperturbed flow and field. However, 
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although the net current flow is along the 
characteristic directions, the wave can create currents 
transverse to the characteristic directions that serve to 

redirect the flow in the vicinity of the wave. In this 
paper we examine current flow patterns set up within 
the wave and relate them to the nature of the 

characteristic current flow and the electric and 

magnetic field patterns of the wave. The 
perpendicular current system and its closure have 
received very little attention to date. Its existence 
has been pointed out by Southwood and Dunlop 
[1984] and Rasmussen et al. [1985]. However, the 
basic topology of these currents was not understood in 
previous work. 

We use the term "stationary Alfv•nic structures" 
to describe current-carrying Alfv•n waves standing in 
a flow. Two simple cases are drived in detail early 
in the paper in an effort to give some insight into 
the processes involved in maintaining an equilibrium 
structure. The first example is one in which there is 
a net current flow from the source emitting the 
waves. One potential application would be to the 
Birkeland current systems associated with geomagnetic 
substorms in the terrestrail magnetosphere. Another 
might be the twisted field structures detected in flux 
transfer events at the terrestrial magnetopause 
[Saunders et al., 1984]. The flux ropes in the Venus 
ionosphere [Elphic and Russell, 1983] carry a net 
current, and Alfv6n waves may play a part in their 
generation. The ropes themselves are detected deep 
within the ionosphere and, being highly nonuniform, 
are not as simple as the structures to which we 
restrict ourselves in this paper. 

Our second example has a bipolar current system 
at its core and is similar to several models of the 

production of Alfv6n waves by the Jovian satellite Io 
[Neubauer, 1980; Southwood et al., 1980; Goertz and 
Deift, 1973]. An early treatment of the basic 
mathematical problem is that of Drell et al. [1965] 
who considered the production of Alfv•n waves by 
currents flowing in an artificial satellite moving 
through the ionosphere and the drag associated with 
such an interaction. Recently, Rasmussen et al. 
[1985] have described various shaped conductors 
moving through a magnetoplasma. 

Working from the particular to the general, we 
build on the examples presented to develop a general 
solution expressed as a superposition of simple 
sources. A general formalism is developed in which 
the wave fields are derived from two stream functions. 

The stream functions are simply related (one is often 
the derivative of the other). A consequence of this 
property is that the source structure of the 
perpendicular current has a polar order twice that of 
the source pattern of magnetic field, plasma flow or 
aligned current fields. 

2. Stationary Alfv•nic Structures 

In this section we discuss the geometry and 
orientation of the perturbations to electric (E) and 
magnetic (b) fields, the plasma flow velocity (u) and 
the current density (j) associated with stationary 
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Alfv6nic structures. The different propagation speeds 
of the three MHD wave modes suggest that as the 
waves propagate they will become spatially separate 
Unless there is some local production. This results in 
the magnetosonic modes separating from the Alfv6n 
mode and, since it is the magnetosonic modes that 
produce changes in pressure, we anticipate constant 
plasma pressure and density throughout the Alfv•.nic 
stuctures that we consider in this paper. 

Let us consider the equations governing the flow. 
Both the magnetic field, B, and plasma flow velocity, 
V, are solenoidal within an isodensity (i.e., constant 
plasma pressure) flow, 

v.B = v.v = o (1) 

The magnetohydrodynamic equations that the magnetic 
and flow velocity fields must satisfy are the 
momentum equation, 

p(V.V)V = (B.V)B/# o - V(p+B2/2#o ) (2) 

where p is the plasma mass density; the frozen field 
condition is 

(V.V)B = (B.V)V (3) 

The incompressibility condition, (1) implies that the 
mass density is constant. If the total pressure is 
constant also, it follows by adding and subtracting 
equations (2) and (3) that there is a general solution 
for flow and field of the form 

B • (4) V + (POP)« '- const - V c + (POP)« 
where V A is the Alfv6n speed, in which the field and 
plasma pressure variation is controlled by the 
requirement that the total pressure be constant, 

p + B2/2#o - const (5) 

(see, for instance, Dungey [1967] and Cowling [1976]). 
We shall actually maintain the plasma and field 
pressure constant independent of one another since the 
plasma density is constant. 

The solution can be checked by simple 
substitution. A similar solution was given by 
Neubauer [1980]. Note that, if the wave is embedded 
in a uniform flow, V c, and magnetic field, B o, the 
perturbation flow, u, and field, b, satisfy the Wal•.n, 
or Alfv6n, relation [Alfv6n, 1942' Wal•.n, 1944] 

b = + u(/Xop) « (6) 

Electric Fields 

Let us now consider the electric field 
configuration implicit in a stationary Alfv•nic structure. 
Following Neubauer [1980], one can compute 

v. (œ+œc) - -v. (VA•) -- v. (VA•) - •. (rAY) (7) 

where E is the wave, or perturbation, electric field 
and E c is the convection electric field. Substituting 
from the Alfv•n relation, (6), one finds that 

V.œ = (Vc+VA). 

and thus 

(8) 

V.E = #o(Vc+VA).J (9) 

As the fields are stationary the wave electric field can 
be represented by a potential 

E = -v% (lo) 

and thus 

v2% = -#o (Vc+V^). J = -#o v-*. J (11) 

Evidently the upper and lower signs in the foregoing 
correspond to waves propagating parallel and 
antiparallel to the ambient field in the plasma frame 
of reference. In the stationary frame the vectors, V ñ 
represent the wave characteristic directions. The 
directions are fixed in space at all points where the 
wave fields are present by virtue of equation (4). 
There is no loss of generality by specializing at this 
stage and taking only the lower sign (wave 
propagating antiparallel to B0 in the plasma rest 
frame). As the wave propagates along the 
characteristic direction, in the presence of a steady 
source, the solution is independent of the coordinate 
parallel to a direction fixed by the constant vector, 
V -+. Thus all wave fields vary only in planes 
perpendicular to the characteristic. 

In particular, the invariance along the 
characteristic means that the potential satisfying {11} is 
a function only of the coordinates perpendicular to 
the characteristic and from {10) it follows that the 
electric field is at right angles to the characteristic. 
The electric field must also be perpendicular to the 
total magnetic (background plus wave) field. The 
relationship with the characteristic may be seen 
explicitly by writing the wave and background fields 
separately. Using the MHD Ohm's law, one has 

E + Ec = -van (•2) 

where the background convection electric field is E c 
= -VcAB 0. Thus the perturbation (wave) electric 
field is 

E - -UAB o - VcAb - UAb (13) 

By using (6), it is a matter of simple manipulation 
for one to show that 

E + E c = -V-A(Bo+b) = -V-AB (14) 

Thus the field is perpendicular to both total magnetic 
field and the characteristic. 

The Magnetic Polarization and 
the Current Flow 

From now on, we shall take the direction of the 
characteristic to be the z axis (see Figure 1). Fields 
and currents will thus be independent of z. Equation 
(11) shows the central importance of the current 
density along the characteristic. Without current flow 
somewhere parallel to the characteristic direction there 
will be no wave fields. In reality at some point the 
characteristic- aligned current must attach to the 
source where the wave is set up. Although the 
current parallel to the characteristic is solenoidal, it is 
not the only current system in the wave. Consider 
the following argument. The Ampere circuital relation 
shows one that a current in the z direction gives rise 
to magnetic field components in the (x,y) plane 
perpendicular to the characteristic. However, a 
unidirectional current flow cannot give rise to a 
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Fig. 1. The production of a stationary Alfv•nic 
structure' The ambient plasma flow (Vc) is supported 
by the convection electric field, E c = -VcAB0 . The 
Alfv•nic perturbations are guided along the magnetic 
field and drift past the source forming a "wing." 
The Alfv•n Mach number is equal to tan0 A = 
Vc/V A = M A. 

magnetic component parallel to itself. Any such 
component requires current flow perpendicular to the 
characteristic. From Ampere's law, the perpendicular 
currents are given by 

•b •b z 
/•oJx = • /•oJy = - • (15) 

and the imposition of constant magnetic field pressure 
implies that 

b z - [B• -(by-B0sinOA) 2 
-b•]• - B0cosO A (16a) 

b z = bytan8 A (16b) 

where O A is the angle between V- and the 
background field, B0. Equation (16b) is the 
small-amplitude limit of (16a) and, as we shall see, 
is useful when considering the form of the 
perpendicular currents. Equation (16a) is the exact 
nonlinear solution. Equation (16b) is equivalent to 
requiring that the magnetic field perturbation be 
orthogonal to the background magnetic field. Since 
the disturbances we are interested in decrease in 
amplitude as we move away from the stationary 
structure, the nonlinear solution will be 
well-approximated by the linear expressions once we 
are a few scale lengths away from the center of the 
strucure. (The maximum size of the perturbation is 
twice the background field strength.) 

We have now in principle all the information 
required to determine the distribution of the current 
in the structure. Recalling that the 
characteristic-aligned current is independent of z and 

thus reflects the current-emitting properties of the 
source which may be of limited extent, we shall find 
it useful to distinguish the regions of (x,y) where 
there is current flow parallel to the characteristics. 
Often in simple models this current is taken to flow 
in sheets, the so-called Alfven wings [Drell et al., 
1965]. Outside the wings the current flow is two 
dimensional and in the (x,y) plane. 

There are several equivalent ways of picturing the 
self-consistent field structures. For example equation 
(11) shows that distribution of j also reflects the 
charge distribution in (x,y) which in turn can be 
thought of as determining the electrostatic potential 
and the electric field. The plasma flow perturbation 
(u) follows from equation (12), and the magnetic field 
perturbation follows from equation (4). Alternatively, 
using the current in itself leads one directly to the 
form of the magnetic field via Ampere's law. 

Note how the method of characteristics used by 
Neubauer reveals the importance of 
characteristic-aligned current rather than field-aligned 
current in steady wave structures. In other treatments 
the presence of field-aligned current flow has been 
emphasized [e.g., Southwood et al., 1980]. 
Field- aligned current flow characterizes the 
intermediate MHD mode and furthermore is a 

necessary feature of perpendicular stress transfer along 
the field direction [e.g., Southwood and Hughes, 
1983]. Equation (4) shows that there must be a 
component of the characteristic current flow along the 
ambient field direction. 

In the following two sections we give examples of 
stationary Alfv•nic structures and attempt to give 
physical insight into the mechanics of each system. 

3. Monopolar Jz 

A undirectional characteristic-aligned current with 
cylindrical cross section in the (x,y) plane is one of 
the simplest forms of distribution of 
characteristic-aligned current to envisage. The source 
is a net current emitter assumed to be located far 

away in the positive z direction. There are several 

r o 

Fig. 2. Current flow in the (x,y) plane for a 
monopolar Jz. 
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possible instances of such sources in the solar system. 
At Venus, twisted magnetic field structures are 
detected in the interior of the ionosphere. These are 
known as flux ropes. Almost certainly there is a net 
current flux along the structure although their 
formation and origin is not understood [Elphic and 
Russell, 1983]. At the earth's magnetopause, flux 
transfer events are a common phenomenon [Rijnbeek 
et al., 1984; Berchem and Russell, 1984]. There is a 
central core current in such structures [Cowley, 1982; 
Paschmann et al., 1982; Saunders et al., 1984]. 
Similar wound- up field structures are believed to 
occur on the sun [e.g. Priest, 1982]. 

Let us now use cylindrical polar coordinates polar 
(r,•o,z) and consider the following form for Jz; 

jz = [ • z0 r < r0 (17) r>r o 

i.e., the current density is uniform inside the cylinder 
r = r 0, (r 2 = x 2 + y:). 

The electric field and potential of the disturbance 
are given from equation (11) and (10). 

Er_ { «/z o V- Jzo r r<r o 2 

•/z o V- •zo (to/r) r>r o (18) 

-¬/l o V- Jzo (r•-r•) r<r ¬/l o V- Jzo r• ln(r/r ) o o o 

(19) 

The current and the azimuthal magnetic field are 
related by the z component of Ampere's law. One 
has 

b•- { «•zø Jzo r r < r 2 

«•Zo Jzo r o/r r > r 
(20) 

I 

/ 
/ 

/ 

Fig. 3. The closure of total current' one of the 
family of dipole curves is shown to form a cascade 
along the length of the Alfv•n wing. There is a 
similar cascade on the backside of the cylinder. 

Fig. 4. Plasma flow around a monopolar Jz: The 
dashed lines are perturbation streamlines and the solid 
lines are the total flow streamlines. 

and the associated z component of the magnetic 
perturbation is given by the requirement (16). Taking 
the linear form (16b) we have 

b z = b•o cos•o t anfl A (21) 

One may now compute the current system 
perpendicular to the characteristic by using (15). 

I •^b__l (22) 

[cf. Neubauer 1980]. Evidently b z is a stream 
function for the current flow in the (r,•o) plane and 
thus flow lines are described by b z = const, i.e., 

r cos •o = x = const r < ro (23) 

rø cos •o eonst r > r o (24) 

For r < r o the current flow in the (r,•o), or (x,y), 
plane, perpendicular to the characteristic, is in the y 
direction. The expression for streamlines of current 
flow outside r = r 0 is that describing a 
two-dimensional dipole that is aligned in the negative 
y direction. The current flow in the (x,y) plane is 
shown in Figure 2. 

Outside the current- carrying cylinder aligned 
with the characteristic the current flow is just in the 
(x,y) plane. Inside r = r 0 we must superpose Jz to 
get the full three-dimensional current and thus the 
current flow inside the cylind, er is in the (y,z) planes 
and is rectilinear. 

Now using (15), we can express jy in terms of 
Jz; 

jy-- -• tan 0 A Jzo r < r o (25) 
The current inside the cylinder flows at an angle 0' 
to the direction of the background field, where 

sin 0 A 
sin 0' - (4+tan:0A):• (26) 

The angle lies between the field direction and that of 
the axis to the cylinder. The angle it makes with the 
axis is 0"' 

tan0" = •tan0 A (27) 



Wright and Southwood' Stationary Alfv•nic Structures 117• 

The total current flow in the cylinder is thus not 
confined to the cylinder. It must close outside in the 
exterior current system. The three- dimensional 
closure is sketched in Figure 3. The explicit form of 
j is 

(Jx,Jy,Jz) = Jzo(0,-«tan0A, 1) 

(Jx,Jy,Jz) = Jzo(ro/r)•tan0A ß 
xy x2-y 2 

(- •-•, 2r 2 ,0) 

r<r o (28a) 

r>ro (28b) 

The flow perturbation is proportional to the magnetic 
perturbation (6). Streamlines of the flow perturbation 
and the total velocity field are sketched in Figure 4. 
The nonlinear solutions for the field and current from 

(21) to (28) will have the same topology as the linear 
solution but will differ quantitatively. For example 
the dipolar perpendicular currents develop an 
asymmetry in the nonlinear solution. 

4. Dipolar Jz' The Io Current System 

The motion of a uniform conductor through a 
magnetized plasma will produce an Alfv6nic 
disturbance with a dipolar distribution of Jz, to first 
order. Drell et al. [1965] considered the problem in 
the context of computing the drag experienced by an 
artificial satellite in the ionosphere. More recently 
Neubauer [1980] addressed the interaction of a natural 
satellite, Io, with the Jovian magnetoplasma (see also 
Goldreich and Lynden-Bell [1969], Goertz and Deift 
[1973], and Southwood et al. [1980]). The Voyager 1 
magnetometer data has confirmed the existence of the 
dipolaf current system (Acuna et al. [1981]). 

Figure 5 illustrates the process. The plasma flow 
incident on the satellite will induce an electric field 

within Io (or in its immediate environment, e.g., any 

Vc v__•.c 

I Vc< VA 
Fig. 5. The production of Alfv•.n wings by Io. The 
magnetic field in the (x=0,y,z) plane is shown. 

Fig. 6. The plasma flow perturbation (u) in a plane 
perpendicular to B0. 

highly conducting atmosphere). The net electric field 
drives a current through the conductor that must close 
in the surrounding medium. the current is stationary 
in the Io frame of reference. It is carried off into 

the plasma as the characteristic-aligned current at the 
core of an Alfv6.nic structure. As the conductor is 
not a net emitter of current, the characteristic current 
system is bipolar. One expects current to flow 
through Io (or its atmsophere) and to be carried off, 
quite possibly in thin sheets (wings), from the flanks. 
Characteristic-aligned wings are set up both parallel, 
V +, and antiparallel, V-, to the field. Now the 
strength of the Alfv•nic disturbance that is generated 
can be measured by the strength of the 
characteristic-aligned current which in turn evidently 
depends on the nature of the currents and electric 
fields induced in Io or its environment. In the 

simplest models a simple conductance (or impedance) 
is attributed to Io, and the perturbation electric field 
is expressed as a fraction of the imposed electric 
field. The result depends on the ratio of satellite, 
•I, to Alfv•n conductance, •A, in the external plasma 
[e.g., Neubauer, 1980; Southwood and Dunlop, 1984]. 

E1 o = -Ec' •I / (2•A+•I) (29) 

where Eio is the perturbation electric field at Io. 
Treatments such as that of Neubauer [1980] have put 
all the current in sheets on the edge of a cylinder, r 
= R I, attached to the source. In such circumstances 
the electric potential is a harmonic function both 
inside and outside the cylinder. If the 
characteristic- aligned surface current is sinusoidally 
distributed around the cylinder, solutions of (11) take 
the simple form 

• = -Eio R[x/r 2 r > R I 

• = Elo x r < R I 
(30) 

Inside the cylinder of current the electric field is 
uniform and thus we may choose E = Eio. 

Contours of 4• yield perturbation flow lines. We 
illustrate these in Figure 6. From (6), one deduces 
that these are also perturbed field lines. The 



Wright and Southwood' Stationary Alfv•nic Structures 

•• Z/R •Cot 0 A 
2 0 -2 

n/2 

--n/2 

Fig. 7. The direction of current flow on the surface 
of the Alfv•n wing (for x>0). 

magnetic field perturbation is given to linear order in 
Cartesian coordinates by 

(bx, by, b z) = b 0 (R•/r 4) (2x¾cos 0 A, 
(¾2-x2)cos0A,(¾2-x2)sin0A) r>R I (31a) 

(bx,by,b z) = b0(0,cos0A,sin0A) r<R I (31b) 
where the amplitude of the magnetic field perturbation 
is given by b 0 = EIo/V A. We shall continue with 
the linear solution to investigate the character of the 
fields and currents, as in the previous section. 

The sheet current flow on the cylinder is 
interesting. The characteristic-aligned surface current 
is 

2b o Jzs =- cos0^ tosco (32) 
#0 

and there is also an azimuthal component 

2bø sin0 A cos:•o (33) J•os - #o 
Current streamlines in the sheet obey (from (32) and 
(33)) 

- _ cot 0 A (34) dz/Rld•o- Jzs/J•os cos•o 

Note how only at •o-- 0 ø is the current flow strictly 
field aligned. One may integrate to find 

z - z 0 --R I cOtOA. ln[tan(•/l,+•o/2)] (35) 

where z0 is an integration constant. Figure 7 
illustrates a streamline on the half cylinder, -•r/2 < 
•o < •r/2 (x>0). 

The azimuthal surface current is not solenoidal 

and closes by dint of currents in the region, r > R I. 
These may be derived by differentiation from equation 
(31). In Cartesian coordinates one has 

J- (boR•sinOA/PorS) ß 
(6x2y-2ya, 6xy2-2xa, 0) r>R I (36a) 

J - 0 r<R I (36b) 

The expression for (Jx,Jy! when r > R I is that of a 
two- dimensional quadrupole. Furthermore, 
streamlines of (Jx,J¾) are along contours of b z (from 
(22)). Taking the'expression for b z given in (31), 
streamlines of current flow (r> RI) are given by 

r2/R• - Co(sin299-cos2 •) - -CoCOS(2•o) (37) 

where c o is a constant. Figure 8 shows the family of 
curves described by (37). The existence of current 
lobes at the front and back (along the y axis) has 
been mentioned by Southwood and Dunlop [1984] and 
Rasmussen et al. [1985]. They pointed out that the 
jA B force in these lobes will slow the plasma down as 
it approaches the wing, and accelerate it as it recedes 
from the wing. The existence of the second pair of 
current lobes seems to have been missed to date. 

The total current system closure is obtained by 
considering both volume and surface currents, i.e., 
superposing Figures 7 and 8. The resulting current 
system is sketched in Figure 9. It is interesting to 
note that in the central part of the surface current 
flow in Figures 7 and 9 where it is largest it is 
parallel to B 0. In constructing Figure 9 we made the 
assumption that the surface currents were not actually 
sheet currents but a highly localized volume current, a 
point to which we return. The essential points to 
note here are that the lobes upstream and downstream 
of the obstacle are connected by current flow along 
the characteristic and in the current systems on the 
flanks there is a cascade of current which does not 

connect to the lobes up stream or downstream or on 
the other flank. 

The magnetic force on the plasma (JAB) will also 
be of a quadrupole-like form, but as it lies in a 
plane perpendicular to the field, its component in the 
flow direction is distorted by a multiplicative factor, 
sec0 A. Figure 10 illustrates the direction of the force 
outside the cylinder, r = R I. The lobe structure 
means that the radial force component changes 
direction at •o = + 45 o the x component at •o = 
+__ 30 o and the component parallel to V c at •o +__ 60 o 
and 0 0. 

Forces can also be described by the magnetic 
tension force, represented by the first term on the 
right hand side of the momentum equation (2). The 
wave structure bends the field, and the tension force 
is simply visualized. Using the expressions for b in 
equation (31) we can derive the projection of a 
magnetic field line (in the region r > RI, x > 0) 
onto the (y,z) plane and the plane defined by the x 
axis and the background field. Figure 11 shows the 
result. As one moves down the field, the field line 
drapes over the cylinder, and from the direciton of 

/ 

/ 
/ N 

/ N 

Fig. 8. The volume currents (Jx,Jy) around Io's 
Alfv•n wings. 
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the bending one can picture the forces that act at 
various azimuths. the plasma in the region 60 o < • 
< 90 o is slowed down and pushed around the wing. 
For 30 o < •o < 60 ø, plasma is accelerated past the 
side and pushed around the wing, and for 
0 ø < •o < 30 o the plasma is accelerated past and 
toward the wing. The forces on the plasma in the 
other quadrants can easily be deduced from inspection 
of Figures 10 and 11. For purposes of deriving the 
figure, in particular the lengths marked on the field 
lines in Figure 11, we have used zeroth-order 
estimates. (The exact or first-order solutions are not 
analytic.) The quantity x 0 is the x coordinate at 
large z. The full nonlinear solution can also be 
constructed by using (16a) instead of (16b) when 
deriving (31) if desired. This merely distorts the 
solution presented here when nonlinearity is important; 
however, the solutions are qualitatively the same. 

In the above treatment we have followed previous 
workers and assumed that the current flowing out of 
Io emerges in thin sheets. In constrast, in the 
preceding section we used a distributed characteristic 
current corresponding to the emission of current over 
the body of the source. In fact this is a more 
realistic assumption in the case of Io. Even were Io 
a highly conducting uniform sphere, there would be. 
normal current flow over virtually the whole surface 
(compare the analogous electrostatic problem of the 
induced charge distribution on a uniform sphere 
immersed in an external field). In general there will 
be characteristic-aligned currents distributed over the 
cross-section of the cylinder. For example, consider 

Jz- 21(r2/Rg)cøs• ø r < R I (38) 

Such a distribution of current in the z direction is 

bipolar, the total current in each direction being I. 
The sinusoidal azimuthal dependence determines 

that the solution outside the region carrying current in 

Fig. 9. The closure of total current in the Alfven 
wing of Io. The front and back current lobes close 
with one another via the surface current. The side 

lobes (of which only the nearside ones are shown) 
form a cascade along the length of the wing. 

A 

-V c Cos 0A A 

60 ø 

45 o / \ -45 o 
30 ø 

-30 ø 
(I)=0 o 

Fig, 10, The direction of the force experienced by 
the plasma in the plane perpendicular to B 0 (x> 0). 

the z direction is exactly as described above. 
However, inside the cylinder the solution of (11) 
becomes 

-2 

(I) = • /•0 v+ I cos•o (r/R I)4 (39) 

One may compute fields and currents just as before. 
In this case in the center of the cylinder the flow 
and field lines are not rectilinear. The field and flow 

perturbations maximize in the center and, as there are 
no sheet currents, are continuous throughout the 
interior and exterior of the cylinder. 

Notwithstanding the above remarks it is important 
to note that the exterior field, current and flow 
patterns are classifiable solely by the polarity of the 
characteristic current distribution. In the next section 

we build on this fact. 

5. General Distribution of Jz 

We have considered thus far two simple examples 
whose far field solutions correspond to a monopolar 
and dipolar characteristic current flow. These are the 
lowest-order solutions for two ideal cases, the first 
where the source is a net current emitter and the 

second where current is induced externally in a 
conductor by an imposed flow. In this section a 
mathematical formalism is developed that will be 
applicable to any distribution of Jz' 

Invariance in z and the solenoidal nature of the 

magnetic field means that 

•b z •b .•Y = 0 (40) •.• _ •x• + •y 
One may thus write b x and by in terms of a stream 
function, •x,y) 

(bx,by) = V½/• (41) 
Imposing the condition of constant magnetic field 
pressure gives 

+.o,,-0A]'} 
- Bocos0 A (42a) 

or 
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Fig. 11. The projection of a field line in the region 
r > R I, x > 0 onto the (a) (•,•-) and (b) (•,B0) 
planes. The direction of the "field line tension" force 
is indicated for the different regions of space. 

in the linear limit. 0 A is the angle between B 0 and 
the characteristic as before. In a similar manner the 

independent solenoidal nature of the current flow 
parallel and perpendicular to the characteristic yields 

(Jx,Jy) = v•/• (43) 
Now the two stream functions are related to one 
another by the x, y component of Ampere's law, 
(15), and the constant field pressure requirement, 
(16), 

• = bz//• o (44a) 

or 

/Zo . •-• (44b) 
in linear limit. The gradient of any stream function 
is also a stream function whose source is twice the 

original polar order and orientated along the gradient. 
Thus if the characteristic current has a monopolar 
form then the (x,y) magnetic fields are those of a 
line current and the perpendicular currents have a 
dipolar form, just as we deduced in section 3. 
Simlilarly, the external solution in section 4 revealed a 
quadrupole perpendicular current associated with a 
dipolar z current and magnetic field pattern. As we 
have already mentioned, the nonlinear solutions will 
be qualitatively the same but will have asymmetries 
that are absent in the linear limit. 

The stream function ½ is proportional to the 
electrostatic potential. Recalling (6), (10) and (13) 
one may show that 

½ == •/V -+ (45) 

Hence, given a Jz distribution a procedure for solving 
is to first calculate the electrostatic potential. 

•(r) p0v* I •(r') d2r ' = 4,r -r'l (46) 

where r = (r,•). The stream functions in equations 
(44) and (45), ½ and 9, are easily calculable from •, 
and hence j and b are determined. 

Just as in the dipole case in the previous 
section, if Jz is zero outside a finite region (say r > 
r0), then outside r 0 the electrostatic potential (8) will 
satisfy a two- dimensional Laplace equation. The 
solutions to this equation in two dimensions are 
standard [e.g., Neubauer, 1980]. 

+ I •An•n+Bn•'n ) (47a) • = Ao• o + A•n=2,4, 
• - -Aorcos•o+A•ln(ro/r)+ • (AnCOS + n=2,4,6 

The polar order of any given term is n. 
The terms listed in (47) are orthogonal on the 

range corresponding to the volume outside the 
cylinder, so the coefficient of any term (•n,•'n) will 
be 

a n - l•n•rdrde/J•n•rdrde 
r>r 0 r>r 0 

(48) 

B n - J•;'rdrd,/J•n'rdrd, 
r>r • r>r 0 

In this fashion it is possible to derive a series of 
coefficients that will also be the coefficients in a 
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similar expansion for the magnetic field. In turn the 
perpendicular current may be computed as being 
proportional to the same coefficients but with the 
polar order of each term appropriately raised when 
the linear approximation is applicable. In the 
nonlinear regime the current streamlines will be 
distortions of the linear solution, but topologically the 
same. 

6. Discussion and Conclusions 

We have examined general nonlinear solutions for 
a class of steady MHD flows that we have termed 
stationary Alfv6nic structures. The magnetic and 
velocity fields and current distribution have been 
described and their relationships to one another 
discussed. The structures that we describe are 

important because they are a means of conducting a 
current through a plasma. Such currents can naturally 
arise when the plasma is in contact with a conductor, 
e.g., ionosphere- magnetosphere coupling or a 
conducting satellite (Io). Current is carried away 
from the sources by a characteristic-aligned current 
which is often loosely called the field-aligned current. 
(The magnetic field and characteristic directions 
coincide when there is no background flow.) The 
characteristic current, and the corresponding magnetic 
field perturbation, also give rise to a subsidiary 
current flow that is perpendicular to the characteristic 
direction and self-closing. These currents serve to 
redirect the plasma flow exterior to the characteristic 
current- carrying region in such a way that the 
plasma velocity perturbation and the magnetic field 
perturbation satisfy a propagating Alfv6n wave. It is 
possible to derive the complete wave structure form 
the characteristic current and free steam 
magnetoplasma quantities. This is illustrated by two 
worked examples. The first is a monopolar source 
and is of potential use when considering closure from 
net current emitters (e.g., Birkeland currents in 
magnetosphere-ionosphere Coupling and the core of 
twisted flux transfer events). The second example has 
a dipolar characteristic current pattern, and no net 
current is emitted from the source in this case. The 
dipolar example is potentially relevant to the bulk 
motion of flux tubes (e.g., flux transfer events, 
substorms) and the waves produced by natural and 
artificial satellites. The monopole and dipole solutions 
are particularly worthy of attention since one or the 
other will be the far-fiel d solution to most space 
plasma stationary Alfv6nic structures. We have also 
given the solution for a general distribution of 
characteristic current. 
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