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Abstract. In this paper we study the nature of 
Alfvfin wave propagation through the Io plasma torus. A 
one-dimensional model is used with uniform magnetic 
field and exponential density decrease to a constant value. 
The solution can be expanded near the center of the 
torus and far away from the torus to give propagating 
Alfvfin waves. The time-averaged Poynting flux is 
independent of position and, in the near and far limits, 
is equivalent to the sum of Poynting fluxes carried by 
individual wave trains. In this fashion it is possible to 
calculate the fraction of energy that is transmitted or 
reflected by the change in Alfvfin speed through the 
torus, for a given wave train near Io. The solution is 
sensitive to the distant (or asymptotic) Alfvfin speed. A 
lower limit for this speed can be found from the density 
decrease alone. Using this value we find, in accord with 
previous work, that there is negligible wave reflection. A 
more realistic asymptotic Alfv•n speed takes into account 
the increase in field strength along the Io flux tube. This 
larger Alfvfin speed value yields a significant reflection 
coefficient, and the result is in good agreement with our 
previous numerical solution. Our results imply that Io's 
Alfvfin waves may not propagate completely through the 
plasma torus, and thus WKB theory and ray tracing may 
not provide meaningful estimates of the energy transport. 

1. Introduction 

In 1964, Bigg [1964] reported that observations of 
Jovian decametric emissions (DAM) were influenced by 
the position of Io. Goldreich and Lynden-Bell [1969] 
presented the first model of the Io-Jupiter interaction, 
and introduced the important notion that Io is a good 
electrical conductor. They envisaged that the current 
flowing through Io would close in the Jovian ionosphere 
via currents at the side of the Io flux tube. In 1973, 
Goertz and Delft [1973] (and Delft and Goertz[1973]) 
suggested that the current would be carried down to the 
Jovian ionosphere via Alfv•n waves, which would then be 
reflected back to Io. With the discovery of the Io plasma 
torus [Bridge et al., 1979; Broadfoot et al., 1979], and 
the associated slower wave propagation speed, it was 
realized that the Alfv•n waves would not return to Io but 
would extend downstream of the satellite [Neubauer, 1980; 
Gurnett and Goertz, 1981]. Evidence of this wake was 
found in Pioneer 10 magnetometer data [Walker and 
Kivelson, 1981]. More recent work [Goertz, 1983] has 
modeled the evolution of field lines that encounter Io. 

There has been considerable interest in the structure 

of the waves downstream from Io because they are 
thought to produce decametric radiation. The planetary 
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radio astronomy observations from Voyager 1 and 2 
[Warwick et al., 1979a,b] show sets of nested arclike 
structures in frequency-time spectra. The bursts of DAM 
is probably related to the Alfvfin wave pattern extending 
behind Io [Gurnett and Goertz, 1981]. However, this 
work assumed that the wave would propagate through the 
magnetosphere in the WKB fashion (i.e., the wave does 
not suffer any reflection within the medium) and then 
would be reflected efficiently from the Jovian ionosphere. 
Bagenal [1983] continued this approach and computed the 
trajectory of the wave by a ray-tracing calculation that 
used realistic field and density models. 

Clearly, the nature of Alfvfin wave propagation 
through the Jovian magnetosplasma is intimately related to 
the wave structure that exists downstream from Io. The 

models of Gurnett and Goertz [1981] and Bagenal [1983] 
rely on the WKB approximation. Some calculations 
[Gurnett and Goertz, 1981; Goertz, 1980] suggest the 
WKB limit is applicable and that reflections form the 
plasma torus may be neglected. A recent study 
[Wright, 1987 ] solved the MHD wave equation 
numerically and used a realistic magnetic field and density 
distribution. The results indicate that an Alfvfin wave 

launched from the magnetic equator can interact strongly 
with the medium as it propagates through the 
inhomogeneities. For the wave expected to be produced 
by Io these calculations predicted that about 75% of the 
power would be reflected from the medium alone, 
implying strong violation of the WKB approximation. One 
factor contributing to the discrepancy with earlier 
predictions involves a comparison of scale lengths of the 
wave and of the magnetoplasma. The work of Gurnett 
and Goertz [1981] took the scale of the wave to be the 
size of Io. This is reasonable for the perpendicular scale 
of the wave, but the parallel wavelength could be 1 or 2 
orders of magnitude greater than this [Wright, [1987]. 
The parallel scale of the wave is the more relevant to 
the propagation of Alfv•n waves. Moreover, the length 
scale associated with the wave changes in an 
inhomogeneous medium due to the varying Alfv•n speed. 
This more general Alfv•n wave propagation problem has 
received analytic attention in the past [Goertz, 1980], 
which we reexamine here in more detail. Our qualitative 
results agree with those of Goertz [1980] when similar 
parameter values are used in both cases. However, the 
larger asymptotic Alfvfin speed which mimics the dipolar 
variation in the magnetic field strength reproduces the 
behavior presented by Wright [1987]. Additionally, our 
mathematical results differ in detail from the earlier 
formulation. Our results indicate that Alfvfin waves 

generated by Io do not propagate in a WKB manner 
when realistic Alfvfin speed profiles are imposed. We also 
give convenient forms for the energy fluxes, along with 
transmission and reflection coefficients, based on our 
analytical results. 

The problem of Alfvfin waves propagating through an 
inhomogeneous medium has also received considerable 
interest from the solar physics community (Ferraro and 
Plumpton, [1958]; see Hollweg [1983] for a brief review). 

3749 



3750 Wright and Schwartz ß Brief Report 

We draw freely on this body of work, and in particular 
on Leroy [1983], who solved a wave equation similar to 
that employed here. 

The paper is structured in the following fashion: 
section 2 describes the model and gives the relevant 
solution' section 3 evaluates the energy fluxes and their 
interpretation' section 4 discusses the application of our 
results before the conclusions in section 5. In the 

appendix we investigate other analytical limits of our 
solution. 

2. The Model 

To investigate Alfv•n wave propagation through the 
torus density distribution we shall adopt a one-dimensional 
magnetoplasma. Quantities vary with the z coordinate, and 
are indpendent of x and y. The background magnetic 
field is uniform and parallel to the z axis. This model is 
the same as that used by Goertz [1980], where it is 
shown that the equation governing perpendicular velocity 
perturbations (v) is 

a•v - V•(z) a•v • 3'•= (1) 

We shall model the torus density profile as an 
exponential decrease from the equatorial value p 0 (at z = 
0) to the value far away (z -• oo) of Poo. 

p(z) -Poo + (Po-Poo).exp[-2Z/Zo] (2) 

The scale length for the density variation is z0/2. 
This yields the variation of Alfv•n speed along the field 
lines to be [Goertz, 1980] 

I I [ I 1 v(z) V,o 
1 1 

ß exp [ -2z/z o ] 

ß exp [ -2z/z o ] 
(3) 

VA0 is the equatorial Alfv•n speed (at z=0) and VA• is 
the asymptotic value of the Alfv•n speed as z -• •o. 
VA• is defined via equation (3). Our wave equation is 
identical in form to equation (16) of Leroy [1983]. 
Following Goertz [1980] we shall change variables from z 
to X, 

x - (O•Zo/VA•).exp[-z/z o] (4) 

(There appear to be some typographical errors in Goertz 
[1980], including an additional factor of VA• in the 
definition of x.) We shall only consider one Fourier 
frequency, and let all fields have a time dependence of 
e/cøt. Thus the velocity perturbation is given by v = 
ueicat; u has real and imaginary parts (u r + iui). The 
wave equation (1) for v has now become Bessel's 
equation for u: 

x2 d2u du • • + x a-• + (x•-")u- 0 (•) 

The parameter , is purely imaginary and is given by 

2 2 - 2 k•oz 2 .2 . -o) z0/V•oo - - o . = +ik•z o (6) 

The general solution to Bessel's equation is a linear 
combination of the Bessel functions J.(x), J_.(x) and 
requires two boundary conditions. We shall adopt the 
usual boundary condition [Goertz, 1980], namely, that the 
wave at large distances from Io (i.e., z-.•, x-•0) is 
propagating in the + t direction, so that there is no 
source of Alfv6nic energy other than at z=0. 

Solution at Large z 

We consider first the small argument expansion for 
the Bessel functions [Abramowitz and Stegun, 1972] 

J.(x) • (x/2)"/r(l+.), as x-•O, z-• (7) 

We shall denote the function G(.) = lIFO+.) = G r + 
iG i in terms of its real and imaginary parts, and take the 
complex coefficient of J.(x) to be A = A r + iA i. The 
velocity, v, is given by 

v- u(x)e icot - AJ.(x)e ic•t 

• (AG)exp[ i•oo] (8) 

where 4% = cat-k•oz+poo, and •o• = k•01n[•z0/2VA•]. 
This corresponds to a forward traveling wave. A similar 
expression can be found for the J_,(x) solution, which 
has a phase •oo = cat+k•oz-poo. This describes a backward 
propagating wave, hence our boundary condition at large 
z requires the coefficient of J_, to vanish [Goertz, 1980; 
Leroy, 1983]. Thus only J+, contributes to our solution. 
We shall assume that the real part of v (i.e., Vr) 
describes the physical velocity perturbation, 

v r = (ArC r - AiCt)cos(•oo ) - (Ate r + ArCt)stn(•oo) 
(9) 

Solution at Smaller z 

Near Io (at small z) the WKB limit is expected to be 
valid [Goertz 1980; Wright, 1987]. This requires that the 
scale length of the medium be much larger than one 
wavelength, i.e., caz0/V A > > 1. The variable x may be 
written in the following forms (using equations (3), (4) 
and (6)), 

X I ø•zø (1 - VA/VAoo) '= I.l.(V•oo/V•- 1) (10) VA 

From the first expression in (10) it is evident that the 
large x limit is likely to satisfy the WKB criterion given 
above. To investigate this solution we. shall use the 
expansion given in Abramowitz and Stegun [1972], which 
is valid as x -• oo at fixed ,. The latter expression in 
(10) shows this condition is achieved as VA(z)/VAo• -• 0, 
and yields 
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Jp(x) = cos(x-•r/4-p•r/2).(2/•rx)•, as x-• (11) 

Suppose that at some z, say z', x(z') is sufficiently 
large that (11) is a good approximation. Then x(z) can 
be written as a Taylor series about z' (using equations 
(4) and (10)) as x(z) = •o0-coz/VA(z'), where •o 0 = 
co(z0+z')/VA(z' ) and terms in (z-z')2/zg and V•k(z')/V.•co 
have been neglected. By using this form for x in the 
cosine term of (11), defining cb 0 = •o0-•r/4 , k'= ofVA(z' ) 
and K = k•z0•r/2, the complex velocity field (v = 
AJve icot) can be written as 

v • A [2 VA1]«eZ/2Zo.[cos(•o_zk.)coshK (12) LITOJZ o + isin(•o-zk')sinhK]e icot 

and the real velocity ,component as 

• r2vA11 •eZ/2Zo. JArcos (cot-zk' +•o ) el( Vr • LlrcoZ 0 J 
K -K 

-Aisin(cot-zk'+c• o)e + Ar½OS(cot+zk'-4 b )e 

- Aisin(cot+zk'-• o )e -K] (13) 

The first two terms in the square brackets represent 
forward propagating waves, and the last two terms 
backward propagating waves. The propagation speed is 
the local Alfv6n speed, V A(Z' ). The exponential factor 
toward the beginning of equation (13) produces the 
well-known result of WKB theory that the amplitude of 
the velocity perturbation is inversely proportional to the 
fourth root of the plasma density. It is reasonable to 
expect this equation to describe Alfv6n wave propagation 
near Io, since a typical angular frequency for Io's waves 
is 10 TM S TM [Goertz, 1980; Wright,[1987], z 0 .,. 1 Rj (1 
Rj = 7.14 x 10 4 km) and VA(0 ) .,. 400 km s TM. This 
yields a value of coz0/V A .,. 20, and means that the 
wavelength of the waves near Io is much less than the 
scale height of the torus. The computations presented in 
Wright [1987] also show that the waves near Io propagate 
according to the WKB limit. 

3. Energy Fluxes and Interpretation 

The steady state one-dimensional dissipation-free 
problem solved in the preceding section possesses an 
invariant quantity which is identified as the energy flux 
(see Leroy [1985] for a more complete discussion of this 
topic). For linear Alfv6nic fluctuations the z component 
of the energy flux is simply the Poynting flux. In order 
to calculate this we must evaluate the magnetic field 
perturbation (b(z)e icot) in terms of the velocity field 
(u(z)eicot), which can be done using Faraday's law, 

8u(z) 
/cob(z) -- B o •z 

-z/zø ' (x) b- i(BoA/VA1).e .J, 
(14) 

(The prime denotes differentiation with respect to x.) The 
z component of the time-averaged Poynting flux is 

<Sz(z)> - _ <Re[ueicot].Re[be/cot]>.Bo/#o 
--3 Re[u.b*].Bo//Xo (15) 

Re[ ] means the real part of the argument, and the 
asterisk denotes the complex conjugate. The latter 
expression in (15) may be written as 

<Sz(z)>-- • (u.b* + u*.b).Bo//X o (16) 

On substituting u = AJv and b from equation (14), 
this becomes 

2 -Z/Z 0 -iB 0 IAI 2e <Sz(z)> - 4#oVA, ß (J_•,J•,-J•,J'_•,) (17) 

The bracketed terms are the Wronskian of J_v and Jr. 
The Wronskian may also be written as W[J_•,,Jv] = 
(2i/•rx).sinh(kc•z 0•r) using result 9.1.15 from Abramowitz 
and Stegun [1972]. Thus the time-averaged Poynting flux 
is 

<Sz(z)> - sinh(l%ozo•r) .Bg IAI 2/(2•rcoZo#o) (18) 

which is indeed the desired invariant, since it is 
independent of z. Note that this expression is exact, i.e., 
it uses the full, unapproximated solution. 

At large z the velocity perturbation is given by the 
expression in (9) and the Poynting flux (18) is carried 
solely by a forward propagating wave. At smaller z (if 
the waves obey the WKB limit) there will be a 
superposition of forward and backward propagating waves. 
In this region the energy flux (18) is the difference 
between that carried by the forward propagating wave and 
the energy flux carried by the backward propagating 
wave. In this fashion we may think of the forward 
propagating wave at z = z' to be the Alfv•n wave 
launched from Io, the backward propagating wave at 
z -- z' to be the part of Io's Alfv•n wave reflected from 
the inhomogeneity, and the wave at z -• co to be the part 
of Io's Alfv•n wave that is transmitted through the torus. 

To verify this interpretation, recall that the Poynting 
flux carried by an individual linear Alfv•n wave 
propagating in a WKB medium is 

S z - Re[ueicot ] .Re[be/cat ] -Bo/#o - pv•.V A (19) 

Thus the time-averaged Poynting fluxes carried by the 
transmitted wave at large z, and the forward and 
backward propagating waves at z = z' are, respectively, 

<Sz(zOoo)> t = pcoVAco<V•.> t 

<Sz(z')> r = p(z')• (z')<V• >f 

<Sz(z')> b = p(z')• (z')<v• >b 

(20a) 

(2Oh) 

(20½) 

It is easy to show from (9) and (13) that 

<V•> t - •lAI2lCl2 

<V•>f - e 2K. IAI 2/(4•rx' ) 

<V•> b - e -2K. IAI2/(4•rx') 

(21a) 

(2lb) 

(21½) 
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where x' == x(z'). Substitution of (21a) into (20a) can be 
shown to give the same Poynting flux as required by (18) 
(N.B. IGI 2 = sinh(k•oz0•r)/(k•oz0•r ) [Abramowitz and 
Stegun, 1972]). The difference of <S>f and <S> b can 
also be shown to be equivalent to (18) (except for the 
higher order terms neglected in the expansions of J p and 
x to obtain (13)). This confirms the notion that the 
Poynting fluxes in (20) can be thought of in terms of 
incident, reflected and transmitted waves upon the torus 
satisfying 

<S>f - <S> b = <S>t (22) 

By viewing the solution in this fashion it is possible to 
calculate the energy transmission and reflection coefficients 

C T = <Sz>t/<Sz> f = 1-exp[-2•rcoz0/VAoo] 

C R = <Sz>b/<Sz> f = exp[-2•rcozo/VAoo] 
(23) 

As one would expect, the transmission coefficient 
increases toward unity with increasing wave frequency. 

4. Discussion 

The expression for the transmission coefficient in (23) 
facilitates a brief quantitative discussion. For example, 
using the same parameter values found by Goertz [1980] 
(co = 0.1 rad s TM , z 0 = 2 Rj and VAoo = 10 4 krn s TM ) 
yields a reflection coefficient of 1.3 x 10 TM. This suggests 
that the wave power is almost entirely transmitted through 
the torus, as one would expect if the WKB limit were 
valid everywhere. We shall see below, however, that 
inclusion of the additional variation in Alfv•n speed 
expected in a dipolar field gives rise to a qualitative and 
quantitative difference. 

The study done by Wright [1987] was numerical and 
consisted of launching a variety of pulses through a 
realistic field geometry and density profile. The density 
distribution used in this work was based upon the 
Voyager 1 plasma intrument [Bagenal et al., 1985; F. 
Bagenal, private communication, 1986]. Wright [1987] 
produced a plot showing how the fraction of incident 
Poynting flux that was transmitted through the torus 
varied with wave period. We can construct a similar 
graph using equation (23) and compare it with that 
derived by Wright [1987]. However, we should not 
expect the two transmission coefficients to be identical, 
since the model in Wright [1987] used a dipole field 
geometry, had a Gaussian density distribution and 
considered an isolated Alfv•n wave packet. The present 
study has a uniform magnetic field, exponential density 
profile, and a harmonic time dependence. Nevertheless, 
the two studies should show a similar behavior. 

In order to compare the transmission coefficient given 
in (23) with the results of Wright [1987], it is necessary 
to choose suitable numerical values for the basic 

parameters at some Zmi n and Zma x. For Zmi n we take 
B 0 • 1900 nT and a plasma density of p = 5x10 4 
amu/cm a (e.g., Tokar et al., [1982], assuming a mean 
ionic mass of 25 amu). At Zma x • 5 Rj (i.e., at a 
latitude of 45 o on the same field line) the dipolar field 
strength is B • 3.6x10 4 nT, while p • 50 amu/cm a. 
These values give corresponding Alfv•n speeds of 
VA(Zmin) • 200 km s TM, VA(Zmax) • l0 s km s TM. 

Therefore the effecive scale length for the variation in 
the Alfv•n speed is found crudely from 

VA(Zmax)/VA(Zmi n) •- exp[ (Zmax-Zmin)/Z0] (24) 

yielding z 0 • 0.8 Rj. Using only the density profile of 
(2) and ignoring the field variation would give a value of 
z 0 • 2.5. Although this higher value of z 0 is the one 
most closely related to the theoretical, uniform magnetic 
field analysis of this paper, it is probably the variation in 
wave speed which is more relevant to the reflection 
process. Accordingly, we shall adopt a value of z 0 = 1 
Rj for the purposes of numerical examples. This value 
also corresponds to the minimum density scale length in 
the model of Wright [1987], therby facilitating a 
comparison between those results and the present work. 
Inspection of (23) reveals that an increase by a factor of 
2, say, in z 0 would square the reflection coefficient. 

Figure 1 is a plot of the transmission coefficient 
against T for the two models. The solid line represents 
the results of Wright [1987], and the T axis corresponds 
to the duration of the Alfv•.n wave packet launched form 
the equator. The dashed line shows the variation of the 
transmission coefficient given by equation (23), and in this 
case the T axis is interpreted as the time period of the 
wave. The typical value of T corresponding to Io's 

Alfv•.n waves is 0.34 in units of Rj/VAe.q (= 179 s) 
giving a wave period of 60 s, i.e., co • 0.I rad s TM as 
in previous work [Goertz, 1980]. 

The two curves in Figure 1 show qualitatively the 
same behavior and suggest that at least one half of the 
power in the wave launched from Io will be reflected by 
the plasma torus and field inhomogeneities. The difference 
between the two curves is probably due to the fact that 
Wright's [1987] model used a dipolar field geometry. 
The latter effect was neglected in the calculation 
presented in this paper. (It should be noted that we have 

0-6 

•'- 02. 

O0 
0.01 0"1 1 '0 

PULSE OURAT ]ON, T/(R]./VAe q) 
lOO 

Fig. 1. The variation of the energy transmission 
coefficient (CT) with T. The solid line is the result of 
Wright [1987], and the dashed line is calculated using 
equation (23). T represents the duration of the pulse for 
the former study, and the time period of oscillation for 
the latter. The results show the same qualitative 
behavior. The difference in the two models can probably 
be attributed to the absence of a realistic field geometry 
in the present study. (See the text for more detailed 
discussion.) The period of waves that are likely to be 
produced by Io is around 0.34 Rj/VAe q, suggesting that 
not more than half of the power launcfied from Io will 
propagate, unimpeded, beyond a latitude of 45 ø. 
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chosen z 0 and V A• o in order to compare our solution 
with results given by Wright [1987]. The latter study 
examined the propagation of waves through the torus to a 
latitude of 45 0, and not propagation all the way to the 
Jovian ionosphere.) 

Previous work [Goertz, 1980] has also studied the 
power carried by waves at z = 0 and z-, % using a 
similar calculation to the one presented here, and 
interpreted the difference between Poynting fluxes at 
various positions in terms of the transmission and 
reflection properties of the medium. We have been 
unable to completely reconcile the detailed mathematical 
results given there with the present work, although some 
of the discrepancies are probably typographical. More 
importantly, although that work derives an expression for 
the Poynting flux (their equations 31,32) based on the 
total velocity perturbation (equivalent to our equations 
(15)-(17)). Equation (37) of that paper seems to imply 
that this flux is not independent of z. Perhaps we have 
misinterpreted the no•ation used by Goertz [1980]. 

5. Conclusions 

applicable to that situation. However, there are many 
other examples where the solution may be useful, e.g., 
isothermal atmospheres under gravity, and we give it here 
for completeness.) 

As Iv I=COzo/VAoo becomes large we find that 

Vr(Z, t) • C. [p•o/p(z) ] ¬. [Arcos(cat-•Owk b) 
- Aisin(cat-•Owkb) ] (A1) 

where C=•.eK.[2VA•o/(•rc0z0)]« and V•,kb=C0J'•dz*/VA(z*). 
This result can be found after some algebra and using 
the identity arcsinh(c0 = J'0C•lt/(l+t2)•. The expression 
(A1) also agrees with the other forms derived for v r 
(9),(13) when the approximations used in each calculation 
are borne in mind. 
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In this paper we have studied how Alfv6n waves 
propagate through a density distribution that is similar to 
that of the Io plasma torus. We are able to interpret 
our solution in terms of a wave that is incident upon the 
torus, a reflected wave, and a wave that is transmitted 
through the torus. The solution conforms to the steady 
state requirement that the net energy flux is independent 
of position. The results can be compared with those of 
Goertz [1980] and Wright [1987]. In the former model 
the Alfv6n speed changes soley due to the density 
distribution. This yields a lower limit for the asymptotic 
Alfv6n speed, since the magnetic field strength increases 
by over 2 orders of magnitude along the Io flux tube. 
Using this lower limit we find that the density change of 
the torus reflects a very small amount of wave power, in 
qualitative agreement with Goertz [1980], despite some 
mathematical discrepancies between the two solutions. The 
numerical results presented by Wright [1987] employed a 
realistic density variation and a dipolar background 
magnetic field. In order to compare our results with this 
study, we used an asymptotic Alfv6n speed a factor of 7 
times larger than the lower limit considered by Goertz 
[1980]. We find that a significant fraction of the Alfv6n 
wave power launched from Io will not be transmitted 
through the torus and field variations, and that internal 

References 

Abramowitz, M., and I .A. Stegun, Handbook of 
Mathematical Functions, Dover, Publications Inc., 
New York, 1972. 

Bagenal, F., Alfv6n wave propagation in the Io F:.asma 
torus, J. Geoph¾s. Res., 88, 3013, 1983. 

Bagenal, F., R. L. McNutt,Jr., J. W. Belcher, H. S. 
Bridge, and J. D. Sullivan, Revised ion temperatures 
for Voyager plasma instruments in the Io plasma 
torus, J. Geoph¾s. Res., 90, 1755, 1985. 

Bigg, E. K., Influence of the satellite Io on Jupiters 
decametric emission, Nature, 203, 1008, 1964. 

Bridge, H. S., J. W. Belcher, A. J. Lazarus, J. D. 
Sullivan, R. L. McNut, F. Bagenal, J. D. Scudder, 
E. C. Sittier, G. L. Siscoe, V. M. Vasyliunas, C. K. 
Goertz, and C. M. Yeats, Plasma observations near 
Jupiter: Initial results from Voyager 1, Science, 
204, 987, 1979. 

Broadfoot, A. L., M. J. S. Belton, P. Z. Takacs, B. R. 
Sandal, D. E. Shemansky, J. B. Bertaux, J. E. 
Blamon, D. F. Stobel, J. C. McConnell, A. 
Dalgarno, R. Goody, and M. B. McElroy, Extreme 
ultraviolet observations from Voyager 1 encounter 

reflections from the Jovian magnetoplasma cannot be with Jupiter, Science, 20•4, 979, 1979. 
neglected. At least half of the power launched from Io Deift, P. A., and C. K. Goertz, The propagation of 
will be reflected by inhomogeneities up to 45 o latitude, Alfv6n waves along Io's flux tube, Planet. Space 
and possibly even more will be reflected from the Sci., 21, 1417, 1973. 
medium between 45 o latitude and the Jovian ionosphere. Ferraro, V. C. A. and C. Plumpton, Astrophys. J., 129, 

In reality the fate of the reflected component will 459, 1958. 
probably be to traverse the torus many times before Goertz, C. K. Io's interaction with the plasma torus, J. 
escaping to be dissipated in the ionosphere, or else it Geoph¾s. Res., 85, 2949, 1980. 
may be coupled to other wave modes via the medium's Goertz, C. K., The Io-control of Jupiter's decametric 
inhomogeneities (particularly those of the magnetic field). radiation- The Alfv6n wave model, Adv. Space Res., 

Appendix 

In this appendix we show how it is possible to recover 
the WKB solution for the entire medium from our exact 

solution v=AJv(x)eiCøt. This is achieved by considering the 
large index, Iv •, expansion described in õ8.6 of Watson 
[1922]. (For the example of Io's Alfv6n wave propagation 
l vl<l, and so the solution given in this appendix is not 

3, 59, 1983. 
Goertz, C. K., and P. A. Deift, Io's interaction with the 

magnetosphere, Planet. Space Sci., 21, 1399, 1973. 
Goldreich, P., and D. Lynden-Bell, Io, a Jovian unipolar 

inductor, Astroph¾s. J., 156, 59, 1969. 
Gurnett, D. A., and C. K. Goertz, Multiple Alfv6n wave 

reflections excited by Io: Origin of the Jovian 
decametric arcs, J. Geophys. Res., 86, 717, 1981. 

Hollweg, J. V., Coronal heating by waves, Proceedings of 
Solar Wind 5, edited by M. Neugebauer, NASA 
Conf. Publ., 2280, 1983. 



3754 Wright and Schwartz: Brief Report 

Leroy, B., Propagation of Alfv6n waves in an isothermal 
atmosphere when the displacement current is not 
neglected, Astron. Asrophys., 125, 371, 1983. 

Neubauer, F. M., Nonlinear standing Alfv6n wave current 
system at Io: Theory, J. Geoph¾s. Res., 85, 1171, 
1980. 

Tokar, R. L., D. A. Gurnett, F. Bagenal, and R. R. 
Shaw, Light ion concentrations in the Jupiter's inner 
magnetosphere, J..Ge0phys.. Res., 87, 2241, 1982. 

Walker, R., and M. G. Kivelson, Multiply reflected 
standing Alfv6n waves in the Io torus: Pioneer 10 
observations, Geoph¾s. Res.. Lett., 8_, 1281, 1981. 

Warwick, J. W., J. B. Pearce, A. C. Riddle, J. K. 
Alexander, M. D. Desch, M. L. Kaiser, J. R. 
Thiemann, T. D. Car, S. Gulkis, A. Boischot, C. C. 
Harvey, and B. M. Pederson, Voyager 1 planetary 
radio astronomy observations near Jupiter, Science, 
204, 995, 1979a. 

Warwick, J. W., J. B. Pearce, A. C. Riddle, J. K. 
Alexander, M. D. Desch, M. L. Kaiser, J. T. 
Thieman, T. D. Carr, S. Gulkis, A. Boischot, Y. 

Leblanc, B. M. Pederson, and D. H. Staelin, 
Planetary radio astronomy observations from Voyager 
2 near Jupiter, Science, 206, 991, 1979b. 

Watson, G. N., A treatise on the Theory_ of Bessel 
Functions, Cambridge University Press, New York, 
1922. 

Wright, A. N., The interaction of Io's Alfv6n waves with 
the Jovian magnetosphere, J. Geophys. Res., 92, 
9963, 1987. 

S. J. Schwartz and A. N. Wright, Astronomy Unit, 
School of Mathematical Sciences, Queen Mary College, 
University of London, Mile End Road, London E1 4NS, 
England. 

(Received May 24,1988; 
revised November 7, 1988; 

accepted November 7, 1988.) 


