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The Equilibrium of a Conducting Body Embedded in a Flowing Plasma 

ANDREW N. WRIGHT AND STEVEN J. SCHWARTZ 

Astronomy Unit, School of Mathematical Sciences, Queen Mary and Westfield College, London, England 

A conducting body embedded in a magnetized plasma flow may interact with the medium in 
a variety of ways. Within a MHD description, it is well known that the currents induced within 
the satellite can be closed in the plasma by standing Alfv•n waves attached to it. However, we 
show that such a simple model (when viewed in the massive satellite rest frame) cannot satisfy 
continuity of mass, momentum or energy fluxes. The imbalance is due to the neglect of other 
plasma disturbances, i.e., the fast and slow magnetosonic modes. In this paper we introduce a 
slow magnetosonic wake and find that a suitable solution can redress the balance demanded by 
continuity to a large extent. The full solution, including the fast magnetosonic wave, remains an 
outstanding problem. Our principal conclusion is that it is not possible for a conducting body to 
excite a purely Alfv•nic disturbance; there must be other plasma waves present too. 

1. INTRODUCTION 

The behaviour of large, electrically conducting bodies em- 
bedded in a flowing plasma has received attention for nearly 
two and a half decades. Some of the earliest work was by 
Drell et al. [1965], who tried to explain the anomalous drag 
experienced by the Echo I satellite. They introduced the im- 
portant concept of 'Alfv•n wings', which are standing Alfvdn 
waves attached to the satellite. As pointed out by Drell 
et al., the electric current induced within the conductor is 
closed in the plasma via the characteristic-aligned Alfv•nic 

[Acu•a et ai., 1981; Belcher et ai., 1981; Barnett, 1986]. 
These models have concentrated upon the current carrying 
properties of Alfv•n waves and the expected field and flow 
perturbations. Wright and Southwood [1987] also described 
the perpendicular current system required to produce the 
flow perturbation. Some of the most recent work has consid- 
ered non-Alfv•nic disturbances near Io: Wolf-Gladrow et al. 
[1987] modeled the detailed current flow around the satel- 
lite, and Linker et al. [1988] have found evidence of slow 
magnetosonic mode perturbations in the wake. 

Over the past few years interest in artificial satellites has 
current. The continuity of current is one of the most appeal- resumed- mainly due to the Space Shuttle and the pos- 
ing physical arguments for the existence of Alfv•n waves (or sibility of active experiments such as the Tethered Satel- 
a similar agent) connected to a conductor embedded in a 
plasma flow. In their paper, Drell et al. also considered 
the properties of Alfv4n waves on other physical grounds - 
namely conservation of energy. They predicted a simple bal- 
ance between the decreasing kinetic energy of the conductor, 
and the Poynting flux of the Alfv•n waves. Some caution 
is needed when discussing an energy balance because the 
description is frame-dependent- unlike current continuity. 
In addition, if there are non-Alfv4nic disturbances within 
the plasma some of the energy is not taken into account. 

lite System (TSS). Most studies calculate the wave field in 
terms of Fourier components, match the current flowing in 
the conductor to the total wave field and evaluate the ra- 

diated power for a variety of different systems, geometries 
and approximations [Belcastro et al., 1982; Rasmussen et 
al., 1985; Barnett and Olbert, 1986; Dobrowolny and Vel- 
tri, 1986; Wright, 1987; Hastings et al., 1988; Estes, 1988; 
Rasmussen and Banks, 1988]. Barnett and Olbert [1986] 
and Hastings et ai. [1988] do not restrict themselves to the 
Alfv•n mode and consider higher frequency waves. These 

The following year detailed calculations of the drag on long studies are in general, but not perfect, agreement (see Ap- 
cylindrical satellites were performed [Chu and Gross, 1966]. pendix B). 
Much' the same picture as before was described, except for For the remainder of this paper we shall concentrate upon 
a couple of points: The authors admitted the possibility of the three low frequency MHD modes: The Alfv•n (some- 
a non-Alfvdnic wake, and also expressed the change in the times called 'intermediate' or 'shear') mode, the fast (or 
satellite's kinetic energy in terms of the Lorentz force it ex- 
perienced. 

Goldreich and Lynden-Beli [1969] suggested that the Jo- 
vian satellite Io would have a good electrical conductivity, 
and anticipated a similar current system to that described 
previously. Following their work attention turned from the 
behaviour of artificial satellites to natural ones, most no- 
tably Io. Several studies of the Alfv•n waves near Io have 
been made [Goertz and Delft, 1973; Neubauer, 1980; South- 
wood et al., 1980; Wright and Southwood, 1987], and there 
is excellent agreement with observations from Voyager I 
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'compressional') magnetosonic mode, and the slow magne- 
tosonic mode. For brevity, we shall refer to these waves 
as simply Alfv•n, fast and slow modes, respectively. (See, 
for example, page 188 of Boyd and Sanderson [1969] for a 
comprehensive review of existing nomenclature.) In the cold 
plasma limit, the Alfvdn mode is sometimes termed 'slow', 
but we shall avoid this confusing terminology here. 

In this paper we restrict our analysis to the low fre- 
quency MHD disturbances excited by a satellite. We concen- 
trate primarily upon the Alfvdn and slow mode wave-trains. 
These modes are guided by the background magnetic field, 
thus preserving their amplitudes at large distances from the 
satellite. Accordingly they are easier to model, and proba- 
bly more readily identified in data than the more isotropic 
fast mode. We have succeeded in considering the slow mode 
in combination with the previously studied Alfv•n mode. 
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However a complete solution of the problem must include 
the effects of the fast mode as well as being fully nonlinear. 
Although the Alfv•n wave train solution we employ is fully 
nonlinear, our treatment of the conservation laws is only to 
second order in the Alfv•n wave amplitude. Moreover, our 
slow mode solution makes first order contributions to these 

laws, and a linear treatment of this mode suffices for the 
time being. Most of our calculations are performed in the 
satellite rest frame. We employ the 'massive' satellite ap- 
proximation, i.e. the satellite is able to supply momentum 
without acquiring an appreciable velocity of its own. This 
allows us to treat the plasma disturbances as being steady in 
time. The behaviour of the satellite kinetics and energetics 
is easy to describe in this limit, and is the subject of õ2. By 
assuming that all of the current in the satellite is closed in 
Alfv•n waves, we can predict the Alfv•n wave field. Given 
this information it is possible to see if the conductor and the 
Alfv•n waves satisfy continuity of mass, momentum and en- 
ergy flux. In õ3 we perform this calculation by constructing a 
large imaginary box around the satellite and comparing the 
net flux in or out of the box with the sources or sinks con- 

tained within it. Calculations show it is inevitable that the 

simple Alfv•n wave/conductor system will violate all three 
continuity equations. Thus we conclude that there must be 
other disturbances present in the plasma. This is borne out 
in a recent simulation by Linker et al. [1988], who found 
a standing slow mode wave attached to the satellite, in ad- 
dition to the Alfv•n wave. The slow mode helps to restore 
equilibrium downstream of the satellite. We estimate the 
contribution of the slow mode to the continuity equations 
by using a simple model. We find (in õ4) that the slow mode 
serves, to a large degree, to redress the balance required by 
continuity. The remaining discrepancy can be accounted for 
as arising from simplifications and the neglect of the fast 
mode, as is discussed in õ5. In Appendix A we consider the 
satellite behaviour in the plasma rest frame, and also when 
the 'massive' limit is not satisfied. Appendix B and C are 
devoted to the modeling of the Alfv•n and slow modes, re- 
spectively. Our main conclusion is that it is not possible 
for a conducting body to excite solely Alfv•n waves. There 
must also be other MHD disturbances, and we are able to 
estimate the amplitude of the slow mode component. 

2. SATELLITE KINETICS AND ENERGETICS 

Consider a conducting body embedded in a steady, flow- 
ing magnetoplasma. We shall assume that the background 
plasma velocity and uniform magnetic field are mutually 
perpendicular. The background convection electric field ex- 
perienced by the conductor gives rise to an induced electric 
field that is equal to the perturbation Alfvdnic electric field. 
The amplitude of the Alfv•n wave can be determined by 
requiring that the perturbation electric field allow the same 
current flow in the satellite as that carried away by the waves 
[Neubauer, 1980; Southwood et al., 1980; Wright and South- 
wood, 1987]. The perturbed quantities, eg. the velocity field 
u associated with each wave mode, are not uniform through- 
out the perturbed region. We shall characterize the amplitue 
of the perturbation in two ways. First, for each component 
ui of u, we denote the extreme value by •i - which may be 
positive or negative. Second, the maximum magnitude of 
the vector u is denoted by •. In this fashion it is possible 
to express the strength of the Alfv•nic velocity perturbation 

in terms of a dimensionless parameter (e) times the back- 
ground flow speed (V•), i.e. a = eV•. The strength of the 
Alfv•n wave (•) is governed by background quantities, (e.g. 
equation (29) of Wright and Southwood [1987]) 

e = 2E,4 q- •2• (1) 
Z• and ZA are the conductances of the satellite, and of the 
medium to Alfv•n waves, respectively. If these conductances 
are not known with sufficient accuracy, one could regard e 
as a free parameter to be determined (along with the am- 
plitudes of the other modes) by the conservation equations 
given in õ3. The factor of two in the denominator of equa- 
tion (1) is due to the fact that there are two Alfv•n waves 
attached to the satellite. Note that e varies between 0, for 
an insulator, to I for a perfect conductor. For simplicity 
we shall idealize the shape of the conductor to a block of 
dimensions L1 x L1 x L2, where L2 is the dimension along 
the background convection electric field, i.e. perpendicular 
to B0 and Vc (the & direction in Figure l a). The effective 
volume integrated current flowing within the conductor (I•) 
can be determined using Amp•re's law I• • Ll•/lzo - we 

(a) 

(b) 

• outer boundary s o 
I 

•-- -- plasma volume __..• 
sate er boundary 
volume- I "'" 

Fig. 1. The massive conductor lies inside the large imaginary 
box. (e) The Alfv•n and slow mode waves axe both guided along 
the background magnetic field direction, and form four standing 
wave-trMns in this frame of reference. The box is chosen in such a 

way that all the wave-trains exit either through the top or bottom 
face of the box. The orientation of the coordinate system (a,/5,-y) 
is also shown, as axe the directions of the background plasma con- 
vection velocity (Vc) and magnetic field (B0). (b) The conductor 
and large box are shown schematically. The plasma within the 
box has two boundaxy surfaces. The 'outer' one (refered to as 
s0) is the surface of the box, and the 'inner' one sheaths the vol- 
ume occupied by the satellite. The plasma we are interested in 
occupies the space between these two surfaces. The direction of 
outward (positive) fluxes from the plasma volume axe shown by 
the arrows. 
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have introduced a rough factor of a half since • represents 
the peak magnetic field perturbation of the Alfv&n wave, not 
the volume-weighted mean one. Let the satellite have mass 
ms and move with velocity Vs in our reference frame. If the 
background field is B0, then the satellite momentum 
is governed by 

dPs dVs 
dt = ms •- = L2Is^Bo (2) 

while the satellite kinetic energy (•) evolves according to 

d• Ps dPs 

d-• '= m--•' dt :L2Vs.I•^B0 (3) 
Using equation (2) we can define what is meant by the 
'massive', or 'infinite mass' limit: The relevant MHD time 
scale may be taken as the time taken for plasma to conveer 
across the satelhte, (At = L•/Vc). Here Vc is the rela- 
tive plasma convection velocity. Since La, Is and B0 are 
all well behaved finite quantities, equation (2) tells us that 
as ms -• o•,dVs/dt • O. Put more precisely, we require 
that the change in V•/V• on the MHD time scale At be very 
much less than unity. This is satisfied when 

L•L2BoL 

ms >> V• (4) 
and means that the satellite can be treated as a steady 
source of waves on the time scale that MHD waves are ra- 

diated on. It is interesting to see that in this limit (and 
when viewed from the frame in which V•(t = 0) = 0) the 
satellite momentum increases linearly with time P,(t) = 
Ps(O) + Lals^Bot, while the kinetic energy remains zero for 
all time. The latter result is due to the Lorentz force on 

the satellite not doing any work on the body in this choice 
of reference frame (Vs(t) • V•(0) = 0)- see equation (3). 
We shall restrict ourselves to the massive satellite limit and 

the conductor's rest frame for the remainder of the paper, 
although alternative choices are discussed in Appendix A for 
completeness. Now let us consider the effect of the satellite 
upon mass, momentum and energy fluxes in the hmit de- 
scribed above. To do this we shall model the slow and AlfvSn 

wave-trains as shown in Figure l a. Due to the differences 
in Alfv•n and slow mode phase velocities, these wave-trains 
are inclined at different angles with respect to B0 as shown 
in the figure. The conductor is inside a large box containing 
plasma. In Figure 1 b the system is shown in a schematic 
fashion. There are two surfaces bounding the plasma; one is 
the surface of the large box, and the other is an imaginary 
envelope that sheaths the conductor. The approach adopted 
throughout this paper is to consider fluxes across these sur- 
faces. In equilibrium the total outward flux from the plasma 
(of any conserved quantity) must be zero, as there are no 
sources or sinks in the volume between the two surfaces that 

is occupied by plasma. (Note that the conductor may act 
as a source or sink, but this lies on the opposite side of the 
inner boundary to the plasma.) 

Below we calculate the fluxes across the inner boundary 
surrounding the satelhte. This is done most easily by using 
Gauss' theorem which tells us that the flux integrated over 
this inner surface is equal to the sum of sources and sinks 
inside the volume occupied by the conductor. For example, 
if the system is in equihbrium, and the satellite is a net sink 
of energy, then there must be a net energy flux out of the 
plasma volume and into the conductor's volume. In the next 

section we estimate the fluxes across the outer boundary due 
to plasma waves. Continuity requires that the sum of fluxes 
across these two boundaries be zero. We shall use the sign 
convention that fluxes out of the plasma volume are positive, 
hence if the satellite acts as a sink it is associated with a 

positive flux. (Fluxes directed into the plasma volume and 
satellite sources are negative.) Now let's calculate the fluxes 
across the inner boundary, starting with the mass flux. 

Mass Flux 

The simplified model of plasma absorption that is adopted 
here assumes that a particle is captured by the satellite if 
its trajectory is coincident with the surface of the satellite. 
Let's try to get some idea of the rate of mass absorption 
that is likely to occur. For example, a highly conducting 
body will not allow much of the oncoming magnetic field 
to diffuse into it. So it seems likely only a small amount 
of the plasma will be captured by the satellite in this case. 
On the other hand, the satellite may be a poor conductor 
and hardly disturb the magnetic field (or equivalently the 
convection electric field). In this situation we may expect 
a shadow region downstream of the body, and the satellite 
would absorb a mass flux of order 

(+)•V• • (5) 

(p is the plasma density). This will be a reasonable estimate 
for a cold plasma, but probably a lower limit for a hot plasma 
as there would be significant plasma motion along the field 
lines. 

Of course the satellite could be a significant source of ma- 
teriM if there is out-gassing or sputtering, as is the case at 
Io and cometary bodies. Whilst this can easily be accom- 
modated into our model, we shall confine ourselves to the 
more common situation where the satellite acts as a sink of 

material. 

Momentum Flux 

In order to consider the momentum flux we need to define 

some directions. The cartesian coordinate system (a, fl, 7) 
will be used- see Figure 1. The • direction is aligned with 
B0, and/) points upstream (antiparallel to V•). The orthog- 
onal triad is completed by & which is aligned with the back- 
ground convection electric field, E•=-V•^B0. From equa- 
tion (2) it is clear that the conductor's • momentum will 
decrease by LelsBo per unit time. Recalling Amp•re's law 
used above, this may be written in terms of the amplitude 
of the AlfvSnic magnetic field (•), 

(-)Lx L2•Bo/lto (6) 
The negative sign means that the satellite acts as source of • 
momentum (equivalent to a sink of-/• momentum) within 
the box sketched in Figure 1. If the satellite absorbs plasma 
at the rate given in equation (5), then there will be a further 
decrease in the satellite's • momentum of order 

(-)pV• L• œ• (7) 

Energy Flux 

As we have already discussed, the change in satellite ki- 
netic energy (in this situation) is zero. However, there is 
also another energy flux that we need to consider- namely 
the dissipation of ele•:tromagnetic energy in the conductor 
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due to Joule heating. This dissipation rate represents an in- 
crease in the conductor's internal energy, and is given by the 
product of the conductor's volume, the electrical conductiv- 
ity, and the square of the internal electric field. The electical 
conductivity is equal to L2/L• times the conductance, Es. 
The total internal electric field is reduced to Ec(1 - e) as a 
result of charge re-distribution within the conductor. Hence 
the energy dissipation rate is 

(+)2e(1 - e)pV•VAL• (8) 

To obtain this result we have expressed Es in terms of e by 
using equation (1), and the fact that the Alfvdn conductance 
is related to the Alfvdn speed by EA = 1/(/•0VA). 

In addition to this sink of energy, the conductor may ab- 
sorb plasma at the rate given by (5). If this is the case, then 
kinetic energy and enthalpy are removed from the plasma 
and turned in to satellite energy at a rate 

vPU)] (+)L• L2 [•pV• a + (7 - 1 
assuming that the plasma obeys an adiabatic equation of 
state. 

This concludes our discussion of the manner in which the 

conductor will enter the continuity equations as a source 
or sink, and hence the fluxes across the inner surface. In 
the following sections we evaluate the contributions of the 
plasma disturbances to fluxes across the outer boundary. 

B 

B 

(a) 

3. PLASMA WAVES 

It has been established in previous work that the Alfv•n 
mode [Drell et al., 1965] and the slow mode [Linker et al., 
1988] are likely to form standing wave-trains extending away 
from the satellite along their respective characteristics. This 
has been sketched in Figure 1. There will no doubt be some 
fast mode disturbance also, but for the present study we 
shall focus upon the more ducted Alfvdn and slow pertur- 
bations. If it is assumed that the conducting satellite is the 
only source of MHD waves it follows that the waves will be- 
come seperated in space as they propagate away from the 
satellite. This property means that we can calculate sepa- 
rately for each wave the flux of mass, momentum and energy 
carried into the box shown in Figure I quite easily, if the box 
is made sufficiently large. For a large box we are able to per- 
form local calculations in the regions where the wave-trains 
cross the surface of the box. We shall constuct our box so 

that all wave-trains intersect either the upper or lower faces 
of the surface. 

The detailed derivation of the Alfv•n and slow wave fields 

is reserved for Appendicies B and C respectively. The essen- 
tial features will be described here, along with the continuity 
equations. Figure 2 shows the perturbed magnetic field line 
and streamline for the upper Alfvdn wave. The wave trains 
make an angle 19a with respect to the background magnetic 
field, and the structure is invariant in this direction. It is 
well known that the Poynting flux in an Alfvdn wave is a sec- 
ond order quantity (as are the mass and momentum fluxes). 
For this reason we employ the nonlinear Alfv•n wave solu- 
tion described by Neubauer [1980] and Wright and South- 
wood [1987]. In this solution there is a second order parallel 
magnetic field and velocity perturbation. This causes the 
plasma streamline to move along the magnetic field in Fig- 
ure 2. Figure 2a corresponds to field lines that pass through 

(b) 

Fig. 2. The form of the magnetic field (solid line) and plasma 
streamlines (dashed line) when disturbed by the Alfv&n wave: 
(Only the upper wing is shown.) The wing lies back at an angle 
Oa relative to the background field direction. (a) The field line 
passes through the central portion of the wing, and would have 
diffused through the conductor at some earlier time. (b) The 
field line did not come in to contact with the conductor, but was 
pushed around the side of the conductor due to field lines like that 
in Figure 2a getting hung up at the satellite. In both cases there 
is a parallel velocity perturbation and this is in such a sense that 
it will remove plasma from the box in Figure 1 on both upper and 
lower faces. Also shown are the two coordinate systems (c•,/3,•/) 
and (x, y,z) employed in the text. 

the conductor, while Figure 2b describes field lines that pass 
around the side of the conductor (see Wright and Southwood 
[1987] for a more complete discussion). The sense of the field 
aligned velocity perturbation is such that it serves to remove 
streamlines from the box on both upper and lower faces. 

The slow mode model we adopt is linear since there are 
first order contributions to all fluxes. The slow wave-trains 

make an angle 0s relative to B0. Due to the slower parallel 
propagation velocity of the slow mode relative to the Alfvdn 
mode, 0s is always greater than 0a. Figure 3 shows the per- 
turbed magnetic field lines and streamlines in the slow mode 
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B 

V 

(a) 

B 

V 

(b) 
Fig. 3. The slow mode wave-trains lie downstream of the Alfvdnic 
ones, and make an angle 0s to a0. There axe two solutions for 
the slow mode wake, and these are shown above for the upper 
wing: (a) The field pressure is enhanced, the plasma pressure 
depressed and there is a field-aligned flow directed toward the 
satellite (for both upper asxd lower wings). These properties can 
be infered from the perturbed magnetic field and streamlines. (b) 
The alternative solution is shown; the field pressure drops, the 
plasma pressure increases, and there is a paxMid flow away from 
the satellite for both upper and lower wings. 

wake (again for the upper face). It is shown in Appendix C 
that there are two possible solutions for our slow wave model 
corresponding to a rarefaction or compression in the plasma 
pressure. The former is shown in Figure 3a and is associated 
with an enhanced magnetic pressure. The depressed plasma 
pressure drives a field aligned flow perturbation into the box 
both for upper and lower wings. The alternative solution 
is sketched in Figure 3b. Here the raised plasma pressure 
drives the streamline out of the box (for both wings) and is 
consistent with a drop in magnetic field pressure. We shall 
see in the next section that the solution we require is the 
one in Figure 3a, and indeed such a rarefaction wave was 
found in the simulation performed by Linker et al. [1988]. 
The solution in Figure 3b (where mass is transported away 
from the satellite) may be of importance when considering 
a body that is a significant source of material. 

What happens to the slow mode wave-trains in the cold 

plasma limit? As the plasma becomes cooler, the tilt angle 
0s of the slow mode wake approaches 90* since the propa- 
gation speed becomes very small. In the cold plasma limit 
the slow mode would correspond to a shadow region directly 
downstream of the satellite. 

Mass Flux 

Let us consider the continuity within the plasma volume 
to begin with. The familiar equation we require is 

•+V.(pV) =0 (10) 
By working in the massive satellite's rest frame we may ne- 
glect the temporal variation of the flow. Performing a vol- 
ume integral over the plasma between the inner and outer 
boundaries, and using Gauss' theorem we can express con- 
tinuity in the form, 

• pV-dS + Sinass = 0 (11) o 

The surface integral is carried out over the outer boundary 
of the box (so), as shown in Figure lb. The term 
represents any sources or sinks of m•s contained within the 
conductor's volume- i.e. it represents the net flux across the 
inner boundary. For the case of a weak conductor sweeping- 
up background plasma, an estimate of S•,,, is given by 
equation (5). Since the wave-trains p•s through the upper 
and lower surfaces, we need only calculate the integral in 
equation (11) over the 7 surfaces for a large box. The pre- 
ceding discussion shows that the Alfv•nic contribution to 
equation (11) will be to remove m•s from the box, while 
the slow mode (in Figure 3a) will tend to return plasma. 
In fact one could imagine perturbation streamlines that are 
directed Mong the slow characteristics toward the satellite, 
and then along the Alfv•nic characteristics away from the 
satellite. Of course, if the satellite is a source or sink of 
teriM some of these streamlines must begin or terminate at 
the conductor. 

Momentum Flux 

Continuity of plasma momentum, unlike that of mass, has 
three components. We may write the ita component as 

c9(pVi){_c9( B 2 1 ) c9•- • Vij+pViVd+•-•otiiJ---BiBj = 0 (12) p0 

and is summed over the j index. We shM1 •sume that the 
pressure tensor PO is isotropic. Using a similar manipula- 
tion to before this can be written • a surface integral over 
the box, 

(Pij+pViVj+•eij-&BiBj)d&+Si •o• = 0 (13) o •0 

Si more represents any sources or sinks of the ita component 
of momentum contained within the satelfite volume. It is 

equM to the sum of equations (6) and (7) for the • cornpro 
nent. Again, only the 7 surfaces need be considered for a 
large box. To get some idea of how the waves will affect the 
momentum in the box consider the perturbed streamlines 
in Figures 2 and 3. If the field a•gned flow perturbation 
is directed out of the box and has speed ul], then roughly 
spea•ng, pl•ma momentum is removed at a rate, per unit 
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area, of pVcull. (See the second term in equation (13).) Re- 
calling that Vc is antiparallel to/•, this would correspond to 
an influx of positive/• momentum. If Ull is directed into the 
box there would be a flux of/• momentum out of the box 
(since negative/} momentum is being brought into the box). 
The isotropic pressure tensor (equal to pSij) and the mag- 
netic pressure term act in a similar manner to one another; 
for example, if there is a lower integrated pressure on one 7 
surface than on the other there will be a pressure gradient 
that will influence the • plasma momentum. The effect of 
the remaining magnetic term in equation (13) is not so easy 
to visualize, and arises from magnetic tension. We refer the 
reader to Appendicies B and C where the complete momen- 
tum flux integral is evaluated for the the Alfv6n and slow 
modes respectively. The conductor enters the continuity of 
momentum as a source of/} momentum (S o ,•o,•) due to 
the Lorentz force upon it (equation (6)) and any oncoming 
plasma that may adhere to its surface (equation (7)). 

Energy Flux 

The interchange of energy within a plasma between ki- 
netic, internal and magnetic energies is expressed in the 
conservation of energy equation; 

0--• •'pV2 + + (14) 7--1 2•o 

+V. V•.pV • + V + pV + - 0 
7- I /to 

In energy equations 7 denotes the polytropic index of the 
plasma. Equation (14) states that the rate of change of 
energy density in the plsama volume is balanced by a di- 
vergence in the energy flux density. The quantities in the 
first bracket represent the bulk kinetic energy density, the 
internal energy density, and the magnetic energy density. 
These can be identified with similar terms in the second 

bracket, the first of which is the flux of kinetic energy den- 
sity. The second term is the flux of internal energy density, 
while the third term represents the rate at which work must 
be done to move through the gas pressure. (The sum of 
these two terms is the flux of enthalpy density.) The final 
term is the Poynting flux, and is equal to the flux of mag- 
netic energy density (E^B/2/•0) plus the rate at which work 
must be done (per unit volume) to move through a 'mug- 

netic pressure' of aa]21•o (this is also (E^B/2/•0)). Thus 
the Poynting flux is interpreted correctly as the magnetic 
enthalpy flux density, rather than the magnetic energy flux 
density [Siscoe, 1982]. 

The energy equation (14) may be written in the alterna- 
tive steady-state form 

f• • 7P E^B (V•pV • V• ).•S•S••-0 (1•) 
o 7- 1 •o 

We know that the satellite may act • a sink of electromag- 
netic energy (equation (8)) and also • a sink of pl•ma 
•netic and internal energies (equation (9))if it absorbs 
pl•ma. Indeed, S•s• is simply the sum of these two 
equations. In a steady state, this sink must be fed by a net 
flux of energy across the surface of the box. It is evident 
that waves whose parallel velocity is directed out of the box 
(like the Alfv•n mode) will carry bulk •netic and internal 
energies out of the enclosed volume, where• an inwardly 
directed parMlel velocity (like the slow mode solution we 
anticipate) will increde the bulk kinetic energy and inter- 
nal energy contained within the box. The only remaining 
energy fluxes to discuss in equation (15) are the magnetic 
ones. In the Alfvdn wave this points in the same sense as 
the other Alfv•nic energy fluxes. The Poynting flux in the 
slow mode is second order, and can be neglected as there are 
first order internal and kinetic fluxes. Thus the Alfv•n wave 

acts to remove energy kom the box, while the slow mode 
(in Figure 3a) acts to bring energy into it. In equilibrium, 
the difference between these two rates will be equal to the 
sink of energy provided by the satellite. 

4. DISCUSSION 

In section 3 we have discussed in a qualitative fashion 
the mass, momentum and energy fluxes associated with the 
Alfv6n and slow modes. The detailed wave fields and fluxes 

for these two modes are derived in Appendicies B and C. 
Using these results we shall now consider the fluxes quan- 
titatively. Table I summarises the results of the continuity 
equations for mass,/} momentum, and energy. (The & and 
• compoments of momentum flux are identically zero.) The 
terms in curly brackets are applicable when the satellite ab- 
sorbs plasma at the rate given in equation (5), and should be 
disregarded if there is no absorption. The amplitude of the 
Alfv6n wave velocity perturbation (•x) is again expressed 

TABLE 1. Contribution of the Satellite, the Alfv6n Waves and the Slow 
Mode to the Continuity of Mass, • Momentum and Energy Fluxes 

Origin Mass •3 Momentum Energy 

Satellite 0 (-)•poVc•L•L•/Ma 

{+ absn.} {(+)poVcL•L2} {(-)poVc•L•L2} 

As 

The Alfv6n and slow mode fluxes are integrated over the outer surface (s0) shown in Figure 1. The terms in braces represent the 
effect of plasma absorption by the satellite. The sign convention used in front of the terms given above is as follows; fluxes out of 
the plasma volume (and equivalent sinks in the satellite volume) are positive, while fluxes into the plasma volume (and equivalent 
sources in the satellite volume) are negative. When continuity is satisfied the sum of each column is zero. 
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as a fraction e of the convection velocity Vt. The slow mode 
velocity is predominantly along the field lines, and we ex- 
pess the amplitude •ll for the upper wing as an unknown 
fraction -/• of the convection speed. (The negative sign is 
included since Ull is negative on the upper wing, hence/• will 
be positive.) The Alfv•n and slow Mach numbers are given 
by Ma and Ms respectively, and the area of the upper/lower 
face of the box cut by each wave is Aa and A•. These areas 
may be taken to be equal to œ•œ•/cost•,• in the absence 
of detailed knowledge of the wake structure. The speed of 
sound waves in the plasma is denoted by c•. To evaluate the 
size of surface integrals we simply take the product of the 
magnitude of the flux with the appropriate area. The sign 
convention used in front of the terms in Table 1 is as follows; 
fluxes out of the plasma volume (and equivalent sinks in the 
satellite volume) are positive, while fluxes into the plasma 
volume (and equivalent sources in the satellite volume) are 
negative. With this convention continuity is satisfied if the 
sum each of column is zero. 

Several interesting features are already apparent. To 
begin with we shall concentrate upon the simple satel- 
lite/Alfv•n wave system that has often been used in pre- 
vious studies. Continuity of mass flux: The table shows 
how the Alfv•n wave will transport mass steadily out of the 
box. In this simple system there is no source of mass at 
the conductor to balance this outflux, nor any other flow 
perturbation to account for the necessary displacement of 
streamlines downstream. In Figure 4 we have sketched the 
perturbed streamlines due to Alfv•n waves. (We have as- 
sumed that the conductor does not act as a source or sink 

of matter.) From the streamlines it is evident that the mass 
flux out of the downstream face of the box must be less than 

that entering the upstream face, since the Alfv•n waves have 
pushed some streamlines out of the upper and lower faces. 
We have shown this result, rather simplistically, as a shadow 

perhaps fast) wave-train. This is, in fact, our fundementM 
conclusion; there must be some non-Alfv•nic disturbances in 
the plasma if Alfv•n waves are excited by the conductor. In- 
deed, if the satellite actually absorbs plasma the imbalance 
in mass continuity becomes even worse. Continuity of f• mo- 
mentum flux: The Alfv•nic perturbations serve to bring a 
flux of • momentum into the box, suggesting that there is a 
steady sink somewhere. However, the Lorentz force on the 
satellite means that the conductor is a source of f• momen- 
tum, so again the two can not balance. Once more, if there 
is plasma absorption, the imbalance becomes even worse. 
Continuity of energy flux: All of the energy fluxes in the 
Alfv•n wave remove energy from the box, and would require 
a source of energy within to feed this loss. The conductor is 
a sink of energy (due to Joule heating), and also a sink if it 
absorbs plasma- so it will not balance the Alfv•nic energy 
flux. In facet, the simple satellite/Alfv•n wave system vio- 
lates all three continuity equations. The conclusion being 
that it is not possible for such a system to exist indepen- 
dently of other plasma disturbances. The reason that we 
chose the slow mode solution in Figure 3a, rather than that 
in Figure 3b, is because the former will act to balance all 
three continuity equations. (This was also the sense of the 
solution found in the simulation reported by Linker et al. 
[•OSS].) 

To test the results presented in Table 1 we shall see how 
well the simulation presented in Figure 4 of Linker et al. 
[1988] satisfy our continuity relations. In their model a 
spherical conductor was used, so we shall set L• = œ• = œ, 
where L is the diameter of the sphere. Also, M• = 1 

• • • (see equation (C4)). and M• = •, implying V•/c• = • 
If we assume that the Alfv•n and slow wave-trains have 

a cross-section of approximately L 2 then we may take 
A• • L•/cost• and A• • L•/cost•. Unfotunately we can 
not infer both e and /• from Linker et al.'s figures. How- 

region downstream from the satellite. (This shadow is not ever, we can estimate 5 from their Figure 4. The plasma 
due to plasma being absorbed by the satellite, but is en- pressure inside the slow mode wake drops by 10- 20 per- 
firely a consequence of the Alfv•n wave disturbance.) In a cent. The amplitude of the slow mode (4 = -•+/Vc) can 
warm plasma the shadow would undoubtedly distribute it- be expessed in terms of the pressure change (1•) by using 
self along the background field in the form of a slow (and equations (Clb) and (C3b) 

(r0) outer boundary • .... •-- ....... • = _ 1• M• c• 

Fig. 4. The effect of purely Alfv•nic disturbances upon the flow. 
(No plasma is absorbed by the satellite in this figure.) The Fig- 
ure is sketched in a (•, •) plane passing through the Affv•n wings. 
The plasma streamlines are represented by the dashed lines. The 
region perturbed by the Affv•n waves lies between the character- 
istics shown, where plasma experiences a field-aligned flow per- 
turbation. Of the plasma entering the upstream face of the box, 
some is pushed out of the upper and lower faces. The result 
is a depleted plasma flow out of the downstream face (see the 
hatched region), which is a simplified manefestation of the other 
wave modes which are required to represent this region properly. 

(16) 

This would suggesJt that /• lies in the range 0.07 • 0.14. 
Given /• and the three continuity equations we should be 
able to predict three values for e, the amplitude of the 
AlfvSn wave. Finding a consitent amplitude to satisfy all 
three continuity equations will be the critical test of our 
results. Before evaluating the Alfv•n wave amplitude, we 
should point out that Linker et al. [1988] set the plasma ve- 
locity component normal to their conducting sphere to zero. 
In keeping with this we have neglected plasma absorption 
by the satellite, and omitted the terms in curly brackets 
in Table 1. In principle, we might expect the boundary 
conditions of Linker et al. [1988] to result in e = 1, cor- 
responding to a perfect conductor. However, if we assume 
/• to be in the range stated above, then continuity of mass 
flux requires 0.2 < e < 0.4, continuity of/} momentum flux 
that 0.05 < e < 0.15, and continuity of energy flux that 
0.1 < e < 0.15. We find the agreement of these indepentent 
estimates very encouraging, especially given the crudeness 
of our integral evaluation and slow mode model. We are un- 
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able to ascertain whether the departure from e = 1 is due to 
details of the numerical solution, to our simplified treatment 
of the Alfv•n and slow modes, or to our neglect of the fast 
mode. 

The application of our work to other situations (and also 
an estimate of the extent to which inclusion of only lowest 
order Alfv•n and slow mode contributions provide a reason- 
ably self-consistent solution) can be achieved by inserting 
appropriate quantities into Table 1 and searching for values 
(e, fi) which enable all the columns to sum to zero. However, 
when treating the case of a cold plasma care must be taken 
as the slow mode wave-train makes an increasingly large in- 
tersection (As) with the top and bottom surfaces. The per- 
turbation parallel velocity of the slow mode (fill = -fiVe), 
on the other hand, may compensate by decreasing in ampli- 
tude. It should also be noted that in the large plasma beta 
limit the slow mode is no longer guided by the background 
field, so the present analysis and Figure 1 a may become poor 
representations of the true situation. 

Finally, we shall return to the original problem that moti- 
vated Drell et al., namely the 'anomalous' drag experienced 
by the Echo 1 satellite. The satelhte was observed to be 

losing kinetic energy at a rate of about 5' W, as reported by 
Drell et al. [1965]. They tried to estimate the change in ki- 
netic energy by conservation of energy once the Alfv•n wave 
field had been assumed. As we have already pointed out, 
this can only be done reliably if all of the energy fluxes are 
taken into account. A much surer way to estimate the drag 
is from the work done by the Lorentz force on the conductor 
(equation (3)). Using this equation the drag (viewed by a 
terrestrial observer) can be estimated by taking the follow- 
ing values from Drell et al. [1965]; L2 = 15 m; V8 = 7 x 103 
m s-•; mean 18 • 0.1 A; and B0 • 4 x 10 -5 T. Substituting 
these values in equation (3) suggests a drag of 0.4 W, which 
is close to the observed value. 

5. CONCLUDING REMARKS 

We have considered the equilibrium of a conducting body 
embedded in a steady, uniform flowing magnetised plasma. 
By assuming that all of the induced current within the con- 
ductor is closed in the stationary Alfv•nic structure attached 
to the satellite, it is possible to derive the Alfv•n wave 
field. This is done in the rest frame of a massive satellite. 

Such a body may be treated as a steady source of waves 
on MHD time scales. Some interesting features of our non- 
linear Alfv•n wave solution are a transport of matter away 
from the conductor, and an energy flux that is composed of 
kinetic and internal energy fluxes in addition to the Poynt- 
ing flux. The general expression we provide for the Poynting 
flux (Appendix B) may be found to agree with those derived 
by other workers when the relative plsama velocity is first 
order. 

Working in the satelhte rest frame it is evident that the 
simple satellite/Alfv•n wave system can not satisfy any of 
the continuity equations. In an effort to restore continuity 
we introduce a slow mode wake in addition to the Alfv•n 

wake. The slow mode can go a long way toward supply- 
ing the missing fluxes. The small remaining imbalance of 
our new satelhte/Alfv•n/slow mode solution could be due 
to simphfications in our model. On the other hand, the 
discrepancy could be a real one due to our neglect of the 
fast mode. Whatever the cause, we have shown that it is 

not possible for a conductor to excite solely Alfv•n waves- 
there must be some non-Alfv•nic disturbances excited too. 

Existing models have derived the wave fields in the plasma 
by matching boundary conditions at the surface of the con- 
ductor. Most studies have concentrated upon the Alfv•n 
mode, but it would be interesting to look for the existence 
of slow or fast modes in these wave fields. It may be that 
these modes are not present if the boundary condition em- 
ployed is only current continuity, rather than conservation 
of mass, momentum and energy too. However, if this is the 
case, caution should be exercised when considering mass, 
momentum and energy conservation as there are certainly 
non-Alfv•nic plasma disturbances present. 

An interesting direction to continue this work in would be 
the modeling of the fast mode, as this is likely to play a more 
important role in some stuations than in the results of Linker 
et al. [1988]. For example, studying strongly out-gassing 
bodies such as comets would require a large transport of 
materiM away from the body. It may be difficult to satisfy 
the continuity equations in this case without the fast mode. 

APPENDIX A 

The behaviour of the satellite in the massive limit has 

been discussed, when viewed from its rest frame. In this 
Appendix we shall consider the behaviour of an arbitrary 
mass satellite under the influence of electromagnetic forces. 
We shall also describe the evolution observed in the other 

natural reference frame- the plasma rest frame. It is in- 
structive to note that, while consistent treatments can be 
achieved in either frame, the details of their interpretation 
appear different in the two frames. 

Finite Mass Satellite Viewed in the Plasma Rest Frame 

In this case (equation (4) not vahd) the satellite is mov- 
ing through the plasma and slowing down according to (2), 
while its kinetic energy decreases according to (3). As time 
passes the velocity of the conductor tends to zero, and its ki- 
netic energy is expended as the work done moving the force 
Is(t)^B0 through the displacement f vs(t)dt. 

Massive Satellite Viewed in the Plasma Rest Frame 

This is the situation considered by Drell et al. [1965]. 
For a massive satellite V8 does not change significantly on 
the time scale that MHD waves are radiated on, and we 
maintain V s(t) • -Vc(t: 0). The satellite expends ki- 
netic energy at the rate given in (3), which is a finite rate, 
but since the satellite has 'infinite' kinetic energy (actually 
• >> •L•L2LBo) it may dissipate this power indefinitely 
(compared to the MHD time scale L•/V•). 

Finite Mass Satellite Initially at Rest 

Finaly we shall consider the evolution of a finite mass 
satellite from the frame in which it is initiallty at rest, 
Vs(t = 0) = 0. In the case of a finite mass the veloc- 
ity increases at the rate given in (2) and will tend to the 
plasma velocity, viewed from this frame. The kinetic en- 
ergy increases from zero, according to (3), and tends to 
1 2 
•rnsVd (t = 0). Again, this is equivalent to the work done by 
the Lorentz force as it moves the satellite through f Vs(t)dt. 
(Note that in this frame V8 -• V•(t = 0) and I8 -• 0 as 
t --• oo.) The satelhte appears to be picked-up by the field, 
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and is similar to mass pick-up in comets and in the Io wake 
[Southwood and Dunlop, 1984]. 

APPENDIX B 

The nonlinear Alfv•n wave fields and their associated 

fluxes are derived in this Appendix. The solution is char- 
acterized by a wave-train forming an angle 8a tO the back- 
ground magnetic field. The Alfv•n Mach number is given 
by Ma = tan 8• = Vc/VA (VA is the Alfv•n speed). The 
two wave-trains propagate with velocities V + = Vc-4-V•, 
where upper and lower signs correspond to the upper and 
lower faces in Figure 1. The velocity and magnetic field per- 
turbations in an Alfv•n wave satisfy the Alfv•n, or Walen, 
relation 

b + 
u+ = :F• (B1) 

The nonlinear Alfv•n wave has a parallel field and flow per- 
turbation. These can be found by expanding the solutions 
of Neubauer [1980] and Wright and Southwood [1987] up to 
second order, 

bl• = 2B0 ul• = +-- (B2) ' 2V• 

The •parallel' subscript means the component parallel to the 
background magnetic field. This is simply the • component, 
i.e. Ull -- (0, 0, u•). Similarly the 'perpendicular' vector is 
uñ - (ua, ufi, 0). Another natural coordinate system for 
the Alfv•n wave fields is a characteristic-aligned one. We 
shall introduce the new cartesian coordinate system (x, y, z), 
in which • lies along the characteristic such that 9.. B0 is 
positive and •: is parallel to & (see Figure 2a). A useful 
relation between the two coordinate systems that we shall 
use is, 

= si. 
Additionally, a second order expansion of equation (16a) of 
Wright and Southwood yields 

= - '5 2B0cos8• 

Now we are able to estimate the contribution of the Alfv•n 

05). 
will be found by taking the product of the appropriate per- 
turbation amplitude, e.g. •ll, with a representative area 
of intersection of the wing with the outer surface s0, e.g., 
A• • O(L•L2/cosS•). Only terms up to and including sec- 
ond order will be ret•ned in these c•culations. 

Mass Flux 

The mass flux integral is only sensitive to the parallel 
velocity (B2) if the Alfv•n waves exit via the upper and 
lower faces in Figure 1. There velocities are directed out of 
the box for both wings, and will make a contribution to the 
mass flux integral (equation (11)) over the outer surface (so) 
of order 

2,ofillA• = (+),0A• •' (B4) 
where Aa is the area of the upper face associated with the 
Alfv•n wave. (To obtain the entry in Table 1 we have used 
the definition of the Alfv•n Mach number and e • fiñ/V•.) 

Momentum Flux 

The properties of Alfv•n waves outlined above can be used 

to show that the & and • momentum in. tegrals (13) are zero 
when summed over both wings. The ]• component is non- 
zero, and takes the form 

- / (pV•u., + bl•Bo )•. dS (B5) /•0 

The first term is clearly second order, since u• = ull and is 
found from equation (B2). The second term may be written 
(using B3) 

b•Bo = B__0[b•(cosa•+tana•sina•)+ b•tana•.] (B6) •o •o 2B0 

The linear part (in b•) integrates to zero on each surface 
identically for a wave of finite cross-section due to V. b = 0. 
This can be seen qualitatively from Figure 2; note how the 
main by perturbation for field lines that have passed through 
the conductor (2a), and for those that are pushed around 
the side of the conductor have opposite senses. As a result, 
integrating by with respect to a across the wave cross section 
(at any f?) yields zero. (See Figure 2 of Wright [1987] for a 
more complete picture of by.) This property can be proven 
rigorously by considering the perturbation field lines (bx, by). 
For a wave of finite cross-section these perturbation field 
lines must be self-dosing, since the structure is invariant in 
z. Thus we may write these field components in terms of 
a 'flux function', •b, (e.g., equation (6) of Wright [1987]), in 
which case by = -0•b/0a. (We have used the fact that z = 
a.) Now, integrating by with respect to a becomes -f d•b. 
Since •b is constant on a field line (bx, by), the integral, when 
performed across closed loops of flux, will be zero at all f? 
values. Summing the remaining second order terms from 
(BS) •,a (B•) o• •otn •,•• • n•v• -(,Z•W•a•/W• + 
Aatan 8•/•0) which may be manipulated into the simpler 
form 

(-)2p•M•A• (B7) 

Energy Flux 

The only energy flux we need to consider for the integral 
(15) is the component parallel to B0. We shall begin with 
the Poynting flux, and make use of the nonlinear expression 
derived by Wri9ht [1987] (his equation 14). The scalar prod- 
uct of this equation with $ yields the parallel Poynting flux 

•oSl•: = -(V +. bñ)B0 - (V +. B)bl• (B8) 
This expession has not been approximated. To proceed fur- 
ther we recall that in our model Vt. B0 = 0, and (B8) 
reduces to the simpler form 

/•oSl•: = qzV•Bo(blt + b•/cosS•) (B9) 
Employing the second order approximations for b and b• II 
we arrive at the fin• equation for the Poynting flux, 

= Vb(l+ (B10) 
The linear term in b• again integrates to zero exactly on 
each surface leaving a net second order Poynting flux. The 
other energy fluxes stem from internal and kinetic energies. 
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Taking the • component of these is trivial, and we find that 
the total field-aligned energy flux is 

a ..2 + 7P q- Sl• (Bll) •pv•ull + Ult7-1 
It is interesting to compare this result with those of other 
workers. This is done most clearly by allowing the rela- 
tive flow speed Vc to be first order and considering the cold 
plasma limit (cf. Barnett and Olbert [1986]). In this case the 
kinetic energy term is fourth order and the internal energy 
is neglected. The integrated Poynting flux (B10) is then 
composed of a fourth order element and a second order one 

which is equal to Sl• = +VAbS/#o. When this is multiplied 
by a representative area (e.g. the cross section of the wing) 
we find general agreement with all previous studies except 
for Dobrowolny and Veltri [1986], whose expression is less by 
a factor of M•. (See Estes [1988] for further discussion.) 

When the total energy flux (Bll) is integrated over the 
intersection of both wings with the outer surface (so - see 
Figure 1 a) we find, to lowest order 

a c• + (B12) (+)pVc•.Aa 15 + Vc • 7- 1 • 
APPENDIX C 

In this Appendix we derive the fields and fluxes associated 
with a standing slow mode wave. Unlike the Alfv6n mode, 
there are first order contributions to all continuity equa- 
tions, so we need only consider a linear model. We adopt 
a steady-state one-dimensional model, so we are really cal- 
culating the fluxes per unit length of a section of the wing. 
The one dimensional model is sketched in Figure 5 and is 
invariant along the characteristics and in the & direction. 
This property relies upon the guided nature of slow mode 
wave propagation, and is satisfied best in the low plasma/• 
limit. Only the upper wing is shown in Figure 5, and the 
relationship to the lower wing is discussed later. The wave 
vector k lies in the (/•, 7) plane and is perpendicular to lines 
of constant phase. Thus k is perpendicular to the group ve- 
locity. The wing is inclined at an angle 0• to the background 

k 7 

B 

V½ 

Fig. 5. A sketch of the geometry of the one-dimensional slow mode 
modeled in Appendix C. The characteristics coincide with sur- 
faces of constant phase, to which the wave vector k is perpendic- 
ular. Only the upper wing is shown. 

field. The slow Mach number is given by M• = Itan 0•l, and 
T = tan0• is positive on the upper wing and negative on 
the lower. 

Setting the background field and flow to be (0, 0, B0) and 
(0,-V•, 0) respectively and assuming M1 perturbed quanti- 
ties (pa,pa,u, b) vary as e ik'r, we may write the linearized 
steady-state MHD equations as 

-k/sVcp• q- po(k/su/s q- k.•u.•) = 0 (Cla) 

P• = P• 7P0 (Clb) 
po 

k^b 
-pok•V•u = --^B0 - kpa (Clc) 

#0 

k•Bou + k•V•b- (k•u• + k•u•)B0 = 0 (Cid) 

k•sb• + k-tb-t = 0 (Cle) 

The equations are continuity of matter, isentropic equation, 
momentum equation, induction equation (incorporating the 
idealized Ohm's law), and solenoidM magnetic field condi- 
tion. Subscripts 0 and I denote background and perturbed 
quantities respectively. To begin with consider the equa- 
tions governing b• and u•. (See the & components of (Clc) 
and (Cld).) These quantities become decoupled from the 
others and obey the wave equation 

This equation is satisfied when T • = V•/V• or when 
(b•, u•)=O. The former condition requires that the wing 
be t•ted back in keeping •th the Alfv•n Mach number. 
This would correspond the Alfv•n solution, which we are 
not interested in here. Hence we conclude that in a slow 

mode wake like that in Figure 4, the & components of field 
and flow must be zero. 

Equation (Cle) states that there is no magnetic field per- 
turbation normal to the surfaces of constant ph•e, i.e., 
(b• = -Tb•). The geometry of the system Mso relates the 
components of the wave vector to each other, k• = Tk•. Us- 
ing these relations we can' rewrite the equations and elimi- 
nate the be and k• dependence. When this is done the • and 
• components of the induction equation become degenerate, 
and we are left with five independent equations for the five 
quantities (p•,p•, u•, u•, b•). To proceed further we shM1 
expess aH of these quantities in terms of only one parame- 
ter, say u•. The • component of the momentum equation 
yields 

poVc (C3a) Pl • •uw 

The isentropic relation and the above result give 

m = p0v (c3b) 7P0 T uw 
Continuity of m•s and (C3b) relate u• and uw 

] u•= -T uw 
7pot 

Finally, the parallel field perturbation is found in terms of uw 
from the ) component of the induction equation and (C3c) 
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b?=-•-•-• 7pot 
The only equation we have not used is the/} component of 
the momentum equation. If we substitute the above exprs- 
sions in to this equation, we find a necessary condition for 
non-trivial solutions (analagous to the dispersion relation in 
the plasma rest frame); 

CA 

This relation implies that either u? = 0 (in which case there 
is a trivial solution with no perturbation) or the large square 
bracket must be zero. The latter condition defines specific 
values of T in terms of the three propagation speeds Vc, 
VA and c,. This result is, not surprisingly, equivalent to 
making use of the dispersion relation (in the plasma rest 
Irame) and requiring that the phase speed be of magnitude 
k. Vt. Again, this will define special propagation angles. 
When this condition is satisfied the (Doppler-shifted) waves 
will appear stationary in the rest frame of the satellite. 

Now let us calculate the transport across the outer surface 
(so) of mass, momentum and energy for a single wing. 

Mass Flux 

The slow mode contribution to the mass flux integral (11) 
for a single wing can be written to first order as 

(+) / (C5) 
This is the mass flux per unit length in t• at the outer surface 
(so). The upper and lower signs correspond to the upper and 
lower wings, respectively. 

Momentum Flux 

The & component of the momentum flux integral (13) is 
zero because both (b•, u•) are zero in our solution. The • 
component is nonzero, and has a value per unit length of 

&s0 .0 
The • component per unit c• length is also nonzero, and is 
equal to 

Energy Flux 

f (p, _ b?Bo (c?) 

The first order integrated energy flux (per unit c• length) 
is found to be 

(•)f(• V•,? + ?po 5Po 7- I u?)dfl (CS) 
Note that the parallel Poynting flux is a second order quan- 
tity, and has been neglected. 

In order to relate the four integrals given above, describing 
our one-dimensional model, to the two dimensional wave- 
trains shown in Figure I some approximations are neces- 
sary. It is interesting to construct a smooth, well-behaved 
variation in fl for the perturbation velocity u• as a Fourier 
series in k. Since the relations (C3) have no k dependence, 

the relative sizes of coefficients in such a series will be the 

same for all perturbed quantities. Hence the variation in 
f/ of all perturbations will be identical. For simplicity we 
shall approximate the two dimensional cross-section as hav- 
ing dimensions c•0 and f/0, where A• • c•0f/0. We need to 
multiply our fluxes per unit c• length by c•0 to estimate the 
contribution from a two dimensional wave-train. Hence the 

two dimensional integral of, say, u• would be approximated 
• c•0f/0a• = • ~ . (We have introduced a by o•o f u?dfl • •. •.A•u? 

factor of a half since fi• represents the maximum u• pertur- 
bation in the slow mode wave, not the mean.) 

This enables us to cMculate the net fluxes for each •ng. 
The only rem•ning question is the relationship between the 
upper and lower wing. Probably the most natural choice 
would be for both wings to experience the same pressure 
change. Inspection of (C3), and noting that T- = -T +, 
reveals the following symmetries (p•, p•, u•, u•, b•, b•) = 
(p•, p•, .;, -.•, -b;, b•), so only .? and be change phase. 
With this symmetry both •ngs transport pl•ma either t• 
ward or away kom the satellite, and the • momentum fluxes 
kom upper and lower wings cancel •th one another. In this 
case we are left with the following mass, • momentum and 
energy fluxes summed over both wings, 

(+)polkAs (C9a) 

) (co) Pøga+ + .0 

+ ?po a?+) (co) (+)A• •. 7- i 

This solution would correspond to a symmetric absorp- 
tion or out-gassing (depending upon the sign of u•+), and 
is the one we adopt in Table 1. (In order to obtain 
the entries in Table I we have introduced a dimension- 

less slow mode amplitude, 5 - -a•+/Vc, and • is pro- 
portional to a•+ via (C3d).) The alternative solution is 

a + , = -.;..5. in 
which case the pressure drops in one wing and rises in the 
other. The parallel flow is the same in both wings and would 
correspond to plasma entering the box through one face and 
leaving it through the other. It is difficult to imagine such 
a disturbance occuring naturally, but such a system could 
probably be produced by an artificial satellite that pumps 
plasma from above it to below, along the magnetic field 
direction. If this were done, and the two wings were of the 
same magnitude, summing the integrals (C5)-(C8) over both 
wings produces no net flux of mass, • momentum or energy 
into the box. Not surprisingly there is a net • momentum 

flux, and this is equal to A•(• + - B0•/#0). 
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