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Phase mixing of Alfvén pulses and wavetrains
propagating in coronal holes
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The propagation of Alfvén pulses into an inhomogeneous model of a solar coronal
hole is investigated. The algebraic damping of single and bi-polar pulses remains for
the leading and trailing pulses as the number of pulses is increased but the decay
of the internal pulses returns to the exponential damping of an infinite wavetrain
when three pulses or more are present. Thus, wavetrains with most of their energy
residing in internal oscillations will be dominated by efficient exponential damping. In
contrast, short wavetrains with most of their energy in the leading and trailing pulses
will suffer less efficient algebraic damping. The implications of both the damping of
these disturbances to the heating of coronal holes and the nonlinear wave pressure
to the acceleration of the solar wind are discussed.
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1. Introduction

Alfvén waves in a uniform plasma are notoriously difficult to dissipate, due to the
small values of both the magnetic resistivity and the plasma viscosity. The classical
dissipation length-scales are the order of 108–1012 times the typical wavelengths.
However, it is important that the energy contained in Alfvén waves can be released
relatively easily in regions of open magnetic field such as coronal holes. By open mag-
netic field lines in the solar atmosphere, we mean that the magnetic field, observed
at the Sun’s photosphere, extends through the chromosphere, the low corona and out
into interplanetary space without returning to the Sun’s surface. The plasma within
a coronal hole is cooler than the surrounding plasma inside active regions and closed
magnetic loops but it is still at a temperature of the order of a million degrees. This
is over 100 times hotter than the plasma at the photosphere and it is important to
understand how this plasma is heated to such high temperatures. In the open mag-
netic field structures of coronal holes, the only feasible mechanism is heating due to
the dissipation of magnetic disturbances or waves. Also, waves are thought to play an
important role in providing an additional acceleration mechanism in the solar wind.
The Parker solar wind model (Parker 1958) predicts that the solar wind is driven by
the plasma pressure gradient and becomes supersonic beyond the sonic point located
at a radius of approximately five times the solar radius. However, recent observations
suggest that the sonic point is located at only two solar radii (Axford et al . 1999)
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and there must be an additional acceleration mechanism required. One possibility
is the wave pressure gradient. For magnetic waves of the form b = by(x, z, t)ey, the
wave pressure is −∇b2

y/2µ averaged in time over a wave period.
Coronal holes are highly inhomogeneous with many high-density coronal plumes

showing up in Extreme-ultraviolet Imaging Telescope (EIT) observations onboard the
SOlar and Heliospheric Observatory (SOHO) (DeForest et al . 2001). These plumes
emanate from strong unipolar magnetic sources at the photosphere inside the coro-
nal holes. Slow magnetohydrodynamic (MHD) modes have been detected in plumes
(DeForest & Gurman 1998) but there will almost certainly be higher-frequency fast
MHD and Alfvén waves present as well. These have not been clearly detected mainly
due to a lack of temporal resolution. However, Harrison et al . (2002) have presented
evidence of Alfvén waves through line broadening. There is a whole new area of
coronal seismology that is blossoming, but the interpretation of observed oscilla-
tions requires a detailed knowledge of how the various wave modes propagate in an
inhomogeneous plasma.

Since coronal holes have a low plasma β, there are only two important MHD wave
modes, namely fast magnetoacoustic and Alfvén waves. This paper considers only
the propagation of linear Alfvénic disturbances in an inhomogeneous plasma and
does not consider the coupling to fast modes.

Alfvén waves on a given field line propagate with a group speed that is determined
only by the local field strength and plasma density. This important property means
that disturbances on individual magnetic fieldlines propagate at their own speed,
dependent on either their own particular wavelength or frequency. In a uniform
plasma this property is not important. However, if the Alfvén speed is inhomoge-
neous and varies in the horizontal direction, then Alfvénic disturbances on different
field lines will propagate with different speeds. Thus, a coherent disturbance gen-
erated on the photospheric boundary will propagate into the corona and rapidly
become out of phase with the neighbouring fieldlines (Heyvaerts & Priest 1983).
Large perpendicular gradients will build up and eventually they become so large
that dissipation becomes important and the disturbances are damped.

The original phase-mixing mechanism involves an infinite wavetrain that is gener-
ated by boundary motions (Heyvaerts & Priest 1983) and various situations involving
stratification, flux divergence and nonlinearities have been investigated both analyt-
ically and numerically by De Moortel et al . (1999, 2000), Ruderman et al . (1998),
Botha et al . (2000) and Steinolfson (1985). Other studies have focussed on the time-
dependent nature of phase mixing (Cally 1991; Mann et al . 1997). The equilibrium
is taken as a uniform vertical magnetic field with a structured density profile in the
horizontal (perpendicular) direction. This simple model of a coronal hole illustrates
the basic properties of wave propagation in a structured plasma and allows for direct
comparison with the results presented in Hood et al . (2002). Hence,

B0 = B0ez, ρ = ρ(x). (1.1)

Therefore, the Alfvén speed, VA(x) defined by V 2
A = B2

0/µρ, varies from field line to
field line. The basic result is that, if the boundary oscillates harmonically as sinωt,
then the magnetic field perturbation, byey, behaves as

by = sin
(

ω

(
t − z

VA(x)

))
exp

(
− ηω2V ′2

A z3

6V 5
A

)
, (1.2)
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where η is the magnetic diffusivity, V ′
A is the horizontal derivative of the Alfvén speed

and the damping has a strong exponential dependence on height, z.
Only a few authors have considered the case of a spatially localized Alfvén wave-

train. Tsiklauri et al . (2001) considered small-amplitude Alfvénic disturbances in a
low-beta plasma. They investigated the weakly nonlinear generation of fast waves
and showed that there is an optimal value of the Alfvén speed gradient for max-
imal generation. Tsiklauri & Nakariakov (2002) investigated the three-dimensional
evolution of a linear Alfvén pulse and found that compressible effects influence the
phase-mixing process.

However, Hood et al . (2002) have shown that the damping process is slower when
an individual pulse is generated, the damping rate being algebraic rather than expo-
nential. The shape of a single pulse rapidly transforms into a travelling Gaussian
profile of the form

by =
1√

1 + V ′2
A ηz3/3σ2V 5

A

exp
[

−(t − z/VA)2

2(σ2 + V ′2
A ηz3/3V 5

A)

]
, (1.3)

as discussed in Hood et al . (2002). This gives an algebraic decay with height as z−3/2

rather than the exponential decay of the form exp(−z3) for the infinite wavetrain.
Indeed, they showed that two pulses of opposite sign also decay algebraically but
with a higher power law. This bipolar pulse can be thought of as the sum of two
single pulses of opposite sign displaced in time by an amount t1, where 2t1 is the
time between the generation of the peak and trough at the photospheric boundary.
Thus, defining

f =

√
1 + V ′2

A ηz3

3σ2V 5
A

,

the bipolar pulse can be represented by

by =
1
f

(
exp

[
− (t − z/VA + t1)2

2σ2f2

]
− exp

[
− (t − z/VA − t1)2

2σ2f2

])
. (1.4)

Expanding the square in the exponential and collecting terms together gives

by =
1
f

exp
[

− ξ2/2 − t21
2σ2f2

](
exp

[
− t1ξ

σf

]
− exp

[
t1ξ

σf

])
, (1.5)

where ξ = (t − z/VA)/σf . Finally, the exponentials in the last bracket are expanded
in a Taylor series for small t1ξ/σ to give

by = − 2t1
σf2 ξ exp(−1

2ξ2),

in agreement with the Hermite polynomial solution presented in Hood et al . (2002).
The maxima and minima occur at ξ = ±1 and the amplitudes decay as z−3, rather
than z−3/2 for a single pulse.

Presumably, if a large number of pulses are generated, then the decay rate will
return to the exponential case of the infinite harmonic wavetrain. It is an aim of this
paper to investigate how the algebraic decay rate is transformed into the exponential
decay as the number of pulses is increased.
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In this paper, we investigate how the results for a single pulse are modified when
more and more pulses are considered. This will allow us to understand how these
standard results fit in with the results for the infinite wavetrain. The basic equations
are presented and the numerical results described in § 2. The decay rates depend on
the number of pulses considered and an analytic description is presented in § 3. The
results and conclusions are discussed in the last section.

2. Pulse propagation

In this paper the inhomogeneous Alfvén speed is defined as

VA(x) = 1 + 0.5 cos(πx), (2.1)

so that the largest gradient of VA is V ′
A = 1

2π and occurs at x = 0.5, where
VA(0.5) = 1. As the pulses propagate away from the lower boundary, where they
are generated, large horizontal gradients build up around the region where the gra-
dient of the Alfvén speed is largest. The horizontal gradients continue to build-up
until dissipation becomes important and the disturbances are damped. This removal
of magnetic energy from the disturbances takes the form of ohmic heating.

The linearized Alfvén wave equation in an inhomogeneous plasma is

∂2by

∂t2
= V 2

A(x)
∂2by

∂z2 + η
∂

∂t

∂2by

∂x2 , (2.2)

where by is the perturbed magnetic field component corresponding to an Alfvénic
disturbance. A discussion of this equation, the terms neglected and the validity of
the coronal hole model is given in Hood et al . (2002). The behaviour of the phase
mixing of several pulses is illustrated for dissipation due to resistivity. However, all
the conclusions are the same if viscosity is considered. The dissipated wave energy
will produce viscous heating instead of ohmic heating but the magnitude of the
heating is the same.

As we are eventually interested in comparing with the infinite wavetrain results,
the disturbances are generated through imposed motions on the lower boundary.
This is different to Hood et al . (2002) and results in a minor modification to the
analytical method. Thus, initially

by(x, z, 0) =
∂by

∂t
(x, z, 0) = 0, (2.3)

and the lower boundary condition is

by(x, 0, t) = F (t). (2.4)

If we continue the driving process, then we set F (t) = sin(ωt) in order to repro-
duce the infinite wavetrain results. However, with the numerical simulation we are
able to track the initial transient behaviour before the final steady state is reached.
Otherwise, the driving function, F (t), will determine the number of pulses that are
generated by the boundary motions.

Numerical simulations are carried out using a particular form for the boundary
forcing function, F (t). To investigate any transient behaviour and to retrieve the
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Figure 1. The magnetic field disturbances, by(0.5, z, t), due to harmonically driven boundary
motions are shown as a function of height at different times (a) t = 1.0 s, (b) t = 4.0 s,
(c) t = 6.0 s. In all cases the parameters are η = 10−4 and ω = 20π/2. The Heyvaerts & Priest
exponential, cubic damping envelope of steady-state phase mixing is shown by the dashed curves.

steady state for an infinite wavetrain, we consider the case

F (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin2 ωt, 0 � t <
π

2ω
,

sin ωt,
π

2ω
� t <

(2n − 1)π
2ω

,

sin2 ωt,
(2n − 1)π

2ω
� t <

nπ

ω
,

0, t >
nπ

ω
.

(2.5)

The initial and final sin2 ωt terms are included to ensure that the pulses are smoothly
switched on and off. This smoothing process is necessary for the numerical code but
can be ignored for the analytical work. The initial state is given by (2.3). The distur-
bances are generated at the lower boundary and they propagate into the corona. In
the region where the Alfvén speed gradient is zero, there is no phase mixing and the
waves maintain their harmonic shape with only a minimal amount of damping. How-
ever, in the region where the Alfvén gradient is non-zero, phase mixing occurs and
the pulses begin to be damped. The behaviour at x = 0.5 is shown in figure 1. Here
the magnetic field disturbances as functions of height are shown for different times.
The local Alfvén speed is unity and the leading edge has reached the approximate
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Figure 2. Seven cycles are generated at the boundary and the resulting disturbances are shown
as a function of height at x = 0.5 for various times (a) t = 1.0 s, (b) t = 4.0 s, (c) t = 6.0 s. The
parameters are η = 10−4 and ω = 20π/2. The exponential, cubic damping of phase mixing is
shown by the dashed curves.

height z = t. This is only approximate since, due to diffusion, the leading edge is now
slightly ahead of z = t. Note that the maximum of the leading pulse does not decay
as rapidly as the remaining waves and after a time of approximately four Alfvén
times (a value dependent on the particular value of η selected and the form of the
boundary forcing function) the leading transient behaviour begins to emerge from
the wavetrain. The remaining waves are damped and follow the classical exponential
phase-mixing damping (the dashed curves in figure 1), with the damping rate pro-
portional to the cubed power of the height, as found by Heyvaerts & Priest (1983).
Only the first half cycle does not follow this exponential damping and, once it has left
the remaining waves behind, it forms the Gaussian shape and damps algebraically
in the same manner as discussed by Hood et al . (2002) for a single pulse.

Once the solitary pulse has left the system, the remaining waves follow the usual
steady-state solution for phase-mixed harmonic waves. Presumably, if the driving
function is eventually switched off, then there will be a trailing transient pulse as
well. This is investigated in the next section. Note that the steady-state solution
predicts the exponential cubic damping with height and that this form of damping
occurs for all pulses, except the leading one, regardless of the height or time.

(a) Several harmonic pulses

Consider the case when there are seven cycles of the harmonic driver on the
boundary. Thus, the driving function is F (t), given by (2.5) for t > 0 and t < 14π/ω.
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Figure 3. The decay rates, z−3/2, for the (a) leading and (b) trailing pulses, once they have
separated from the wavetrain. As the two pulses are of the same sign, the predicted final decay
rate is z−3/2 once they finally interact. This final interaction, which is not shown, occurs after
a time t = 20, when the leading pulse has reached a height of z = 20.

The behaviour of the waves is shown at x = 0.5 as a function of height in figure 2
for several different times. Note that the damping of the internal waves follows the
exponential damping of the infinite wavetrain but there are leading and trailing
pulses that take the form of individual Gaussians. When, all the internal waves have
damped, these two pulses are initially distinct. However, they eventually spread and
interact to form the bipolar pulse shape that was described in Hood et al . (2002),
although the amplitudes are small by this stage for the example shown in figure 2.

The single-pulse results of Hood et al . (2002) can be retrieved by considering a
driving of seven-and-a-half cycles.

The decay of the internal pulses follows the exact exponential damping of the
infinite wavetrain. In fact, the internal pulses are given exactly by a single sinusoidal
function and, hence, they phase mix as if they are part of an infinite harmonic
wavetrain with the rapid exponential damping. This is clearly seen in figure 2.

The leading and trailing pulses seen in figure 2 are longer lived and appear to
decay at a slower rate. From figure 3, it is clear that they decay algebraically with
a power law of the form z−3/2, as long as the leading and trailing pulses do not
interact. However, once they do interact, the decay rate switches to a power law of
z−3 if the leading and trailing pulses are of opposite sign (as in figure 2) and they
return to z−3/2 if they are of the same sign.

Whether this exponential decay for the internal pulses is a general result or whether
it depends on the number of pulses generated and their shape is not clear at present.
To answer this, several simulations were generated with a varying number of pulses.

(i) Amplitude decay rate

To determine if the decay rate of the internal pulses is always exponential, we inves-
tigated the effect of the number of pulses. The leading and trailing pulses always seem
to decay algebraically as explained above. Perhaps surprisingly, the internal pulses all

Proc. R. Soc. A (2005)



244 A. W. Hood, S. J. Brooks and A. N. Wright

0.5 1.0 1.5 2.0
z

−0.2

−0.4

−0.6

−0.8

0

by

Figure 4. The decay of by for the single internal pulse is shown as a function of height as a
solid curve. The dashed curve is the Heyvaerts & Priest exponential curve and in this case
η = 2 × 10−3.

seem to have an exponential decay region that is exactly predicted by the Heyvaerts
& Priest expression. This is clearly illustrated in figure 4, where there are only one-
and-a-half cycles generated on the boundary, giving a leading and trailing pulse and
only one internal pulse. Even for this case the internal pulse decays exponentially.
Remembering that the leading and trailing pulses have the same sign, the central
value of by will eventually become positive as these pulses combine into one Gaussian
pulse. This accounts for the appearance of the positive values at larger heights.

(ii) Variation of η

The main influence of the resistivity, η, is in the variation of the diffusion length-
scale. Remembering that the width of an individual pulse increases as η1/2z3/2, as
shown in equation (1.3), it is clear that a decrease in the value of η means that the
pulses must propagate to a greater height before the exponential damping can occur.
It takes longer for an initial general shape to transform into the internal sinusoidal
form. This is clearly illustrated in the following section.

3. Analytic theory

(a) Fourier integral solution

Using a Fourier integral approach we can obtain an analytical solution for certain
wavetrain profiles. The advantage of an analytical solution lies in the fact that we
can determine the physical processes behind the various stages of propagation of
several pulses. The dependence on the equilibrium properties is clearly illustrated in
a way that a numerical solution cannot provide. Consider the initial case of § 2 when
a disturbance of sinωt is started at t = 0. Thus, the boundary condition at z = 0
can be expressed as a Fourier integral of the form

sin ωt =
1
2π

∫ ∞

−∞
a(ω̃)eiω̃t dω̃, t > 0,
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where

a(ω̃) =
∫ ∞

0
sin ωte−iω̃t dt =

iπ
2

(δ(ω̃ + ω) − δ(ω̃ − ω)) +
1
2

(
1

ω̃ + ω
− 1

ω̃ − ω

)
.

Here δ(x) is the Dirac delta function and i =
√

−1. Taking a Fourier transform of
the Alfvén wave equation, we can obtain the Heyvaerts & Priest solution for the
transform, b̄y, as

b̄y(x, z, ω̃) = a(ω̃) exp
{

− iω̃z

VA(x)

}
exp

{
− ω̃2η(V ′

A)2z3

6V 5
A

}
.

Taking the inverse Fourier transform we obtain the final solution in terms of error
functions, erf(x) =

∫ x

0 e−u2
du, a diffusion time-scale,

td =

√
ηω2(V ′

A)2z3

6V 5
A

, (3.1)

and a propagating coordinate ξ = ω(t − z/VA), as

by = 1
4e−t2d

(
2 sin(ξ) − ieiξ erf

(
itd +

ξ

2td

)
− ie−iξ erf

(
itd − ξ

2td

))
. (3.2)

Note that the leading exponential terms correspond to the exponential damping
predicted by Heyvaerts & Priest.

The following expansions for the error functions are useful (Abramowitz & Stegun
1970). If ξ/2td � td, then

erf
(

ξ

2td
+ itd

)
≈ erf

(
ξ

2td

)
+ itd exp

{
− ξ2

2t2d

}
,

erf(+∞) = 1 and erf(−∞) = −1. On the other hand, if ξ/2td � td, then

erf
(

itd +
ξ

2td

)
≈ erf(itd) +

ξ

2td
et2d .

Finally, for a general complex number ζ, if |ζ| � 1, then

erf(ζ) = 1 − 1√
πζ

e−ζ2
.

Using these expressions we can approximate by, for small z, or equivalently small td,
as

by ≈ 1
2e−t2d sin ωt

(
1 + erf

(
ωt

td

))
.

For t < 0 the error function tends to −1 and by → 0. For t > 0 the error function
tends to +1 and by → e−t2d sin(ωt). Note that the solution will initially follow the
exponential damping predicted by Heyvaerts & Priest.

The equivalent expressions for large t2d + ξ2/4t2d and ξ > 0 give

by = e−t2d sin(ξ) +
1
2

td
ξ2/4t2d + t2d

e−ξ2/4t2d .
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In a similar manner, if ξ < 0, then

by =
1
2

td
ξ2/4t2d + t2d

e−ξ2/4t2d .

Note how the Gaussian shape automatically appears when the argument of the error
function is large. This is in agreement with the numerical results presented in § 2. For
td small, the solution behaves like sin(ωt) for t > z/VA(x) and zero for t < z/VA(x).
The sinusoidal term is damped in the exponential manner predicted by Heyvaerts
& Priest. However, this term rapidly decreases, and the remaining term is the final
Gaussian profile that decays algebraically as found by Hood et al . (2002).

(b) Finite wavetrain

The effect of a finite wavetrain is investigated now by considering the boundary
condition at z = 0 as

by(x, 0, t) =

⎧⎪⎨
⎪⎩

cos ωt, −5π

2ω
< t <

5π

2ω
,

0, elsewhere,

and there are two and a half cycles (or three positive and two negative pulses).
Following the Fourier transform approach, the solution can be written as

by(x, z, t) = 1
4e−t2d

(
eiξ

(
erf

(
itd +

ξ + 5π/2
2td

)
− erf

(
itd +

ξ − 5π/2
2td

))
+c.c.

)
, (3.3)

where c.c. stands for complex conjugate. The extra error functions, compared with
(3.2), correspond to the switching off of the waves.

The amplitude of the central pulse is given by setting ξ = 0. It is clear that this
portion of the waves decays exponentially, as predicted by Heyvaerts & Priest, while
2td < 5

2π.
It is instructive to relate the diffusion time to a diffusion length by ld(z) = VAtd(z).

Physically, this corresponds to the length over which the solution has spread out and
influenced neighbouring parts of the wave. For example, a delta function will evolve
as a Gaussian of width ld, and it is often useful to think of a solution as a sum of such
functions. In terms of the diffusion length, the above condition for the exponential
decay of the central section requires that the diffusion length is smaller than the
half-width of the wavetrain. After this height, at which all the pulses have started to
interact with each other, the imaginary part of the argument in the error function
starts to dominate. The leading behaviour of the difference in the two error functions
gives a growing exponential term that cancels with the decaying exponential term
outside the brackets in (3.3). The algebraic decay term remains and, at ξ = 0, takes
the form

by =
10

√
πtd

(5π/2)2 + 4t4d
.

This is valid for large values of td and, in this limit, the amplitude decays as
t−3
d ∝ z−3/2, as expected.
From this example it is clear that the exponential decay occurs for the central

pulse if there are at least three pulses, two positive and one negative.
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4. Discussion and conclusions

The results of Hood et al . (2002) showed how an isolated Alfvén pulse would rapidly
transform into a travelling Gaussian pulse, with an amplitude that decayed alge-
braically with height. On the other hand, Heyvaerts & Priest (1983) showed that a
harmonically driven system decayed much faster, with an amplitude decay given by
an exponential depending on the cube of the height. So there is clearly a connec-
tion between these results as the number of pulses increases from a single one to an
infinite wavetrain.

In this paper, we showed how the leading transient of a sinusoidal wavetrain
rapidly transformed into the predicted Gaussian pulse, while the remaining waves
were damped according to the Heyvaerts & Priest result. A finite wavetrain gener-
ated a leading and trailing pulse and, while the internal pulses damped exponentially,
these remaining pulses behaved as individual Gaussians until they spread out and
began to interact. The final behaviour depended on whether the leading and trailing
pulses were of the same sign or opposite sign. If they were of the same sign, they
combined into a single Gaussian and, if they were of the opposite sign, they behaved
like the bipolar pulse discussed in Hood et al . (2002).

Interestingly, the internal pulses always decayed with the exponential form of Hey-
vaerts & Priest. Part of the reason for this is due to the fact that the disturbances
were dominated by the particular frequency of the sinusoidal form chosen. What will
happen to more general disturbances? If a general pulse is repeated n times, then the
power of the Fourier transform of the signal will be dominated by two main peaks.
One peak will be around the period of the individual pulse, τp (and its higher harmon-
ics) and the other will be around the lifetime of the n pulses, nτp. Each individual
pulse will transform, in a typical time td, into the particular sinusoidal wavetrain
given by the dominant frequency in the Fourier transform. This time-scale, td, is
determined by the diffusion time-scale (3.1), which is approximately the time taken
for diffusion to influence one pulse in our wavetrain. After td, all the internal pulses
will decay at a rate following the Heyvaerts & Priest exponential form, while the
leading and trailing pulses will transform into individual travelling Gaussian pulses.
Finally, the remaining two Gaussian pulses will interact after each has diffused a
distance comparable with the width of the original wavetrain, approximately ntd.

The implications for coronal holes are now briefly discussed. Hood et al . (1997)
showed that the location of the maximum ohmic and viscous dissipation for an
infinite wavetrain is at a height, zmax = (2V 5

A/ηω2(V ′
A)2)1/3. De Moortel et al . (1999,

2000) showed that this height depended on gravitational stratification and the area
divergence of the magnetic field. However, it is possible for the maximum heating
to occur at a height of 1.4 solar radii. The finite number of pulses behaves in a
very similar manner. The main energy deposition of the internal pulses is deposited
around the same height, for the dominant Fourier component. The higher-frequency
components are damped lower down and the lower-frequency components higher up.
However, the energy contained in the leading and trailing pulses is relatively small
and is unlikely to contribute significantly to the heating. A key point, discussed in
De Moortel et al . (1999), is that all the energy injected into the corona through the
Poynting flux at the photospheric base (integrated over the lifetime of all the pulses)
is dissipated by phase mixing.
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The infinite wavetrain contributes to a non-zero, time averaged wave pressure,
b2
y/2µ, which provides an additional acceleration to the solar wind. Using the

Heyvearts & Priest solution, this is proportional to exp(−ηω2(V ′
A)2z3/3V 5

A). The
maximum of the vertical pressure gradient is located at the same height as the max-
imum of the ohmic heating. For the parameters chosen by De Moortel et al . (2000),
the maximum of the wave pressure gradient is at a realistic height. For a finite number
of pulses, there is a non-zero wave pressure at a fixed height, but it only exists for a
finite time during the passage of the pulses. The variation of this wave-pressure force
with height will again depend on the power contained within each of the individual
Fourier components. A more complete theory requires the solution of the nonlinear
MHD equations and is beyond the scope of this paper.

Appendix A. Rectangular wavetrains

An analytical solution, using a train of n rectangular pulses, illustrates how the
evolution of a wavetrain of a more arbitrarily shaped pulse will evolve on three
distinct time-scales. Firstly, the arbitrary pulses will become smoother without any
apparent amplitude decay. This occurs on a time-scale that is related to the width of
the individual pulses. Secondly, the rapid exponential decay for the internal pulses
will occur on the time-scale predicted by Heyvaerts & Priest. The leading and trailing
pulses do not exhibit this rapid decay. Finally, the leading and trailing pulses decay
on a time-scale related to the width of the original wavetrain.

Since the perturbations have been generated by boundary motions that have a
substantial symmetry (and hence a substantial contribution from a single Fourier
frequency), this symmetry remains during the subsequent evolution. Consider a pos-
itive half cycle in the internal structure of our wavetrain and the neighbouring neg-
ative half cycle. If these pulses are antisymmetric about the zero point, then the
diffusion of the positive pulse into the negative pulse exactly balances the diffusion
of the negative part into the positive part. Hence, the zero point will remain at the
same place. This will also happen with all the internal pulses. Hence, the internal
zeros remains the same distance apart and the structure rapidly evolves towards the
sinusoidal function that matches these zeros. All the internal pulses behave as if they
are part of an infinite sinusoidal wavetrain and they are damped exponentially in
the usual phase-mixing manner.

To illustrate this with a non-sinusoidal driver, take

by(x, 0, t) = −
n∑

j=−n

(−1)j

(
U

(
t + (2j + 1)

ω

)
− U

(
t + (2j − 1)

ω

))
,

where the Heaviside function U(t) is defined by

U(t) =

{
1, t > 0,

0, t < 0.

Using the Fourier transform method above, the solution is

by(x, z, t) = 1
2

n∑
j=−n

(−1)j

(
erf

(
ξ + (2j + 1)/ω

2td

)
− erf

(
ξ + (2j − 1)/ω

2td

))
. (A 1)
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Figure 5. The evolution of the rectangular wavetrain is shown as a function of time, t, at x = 0.5
for the heights (a) z = 0, (b) z = 3, (c) z = 6, (d) z = 9. The sharp edges of the pulse smooth
quickly before the amplitude rapidly decays.

Diffusion converts the square edges into a rounded sinusoidal shape in a time related
to the diffusion time across an individual pulse. Recalling that td = ηω2(V ′

A)2z3/6V 5
A,

setting 2td = 1 and rearranging for the height z, our estimate of the height at which
the pulses assume a sinusoidal shape is

z =
(

3V 5
A

ηω2(V ′
A)2

)1/3

= 3.7.

Of course, this is equivalent to requiring that ld be equal to internal pulse width. Here,
for illustration, we have used ω = π/2, η = 10−2, V ′

A = π/2 and VA = 1, in keeping
with the results shown in figure 5. In addition, the time when the exponential decay
finishes will be approximately when the diffusion time is of the order of the duration
of the complete signal, i.e. the diffusion length is of the order of the width of the
wavetrain. Hence, 2td = 2n. Using the above values, we have

z = 7.9.

As an example, consider the case with n = 5. by as a function of time, at x = 0.5
is shown for various heights in figure 5.

The square shape of the pulses disappeared by the time the pulses reached a
height of z = 2.4 and the central pulses completely disappeared once the pulses
reached z = 8.7. These are comparable with the simple estimates obtained in terms
of the diffusion lengths and times.

To understand how this evolution occurs, consider the Fourier transform of the
solution. A power spectrum as a function of z and frequency is shown in figure 6.
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Figure 6. The power spectrum of the magnetic field perturbations for
the imposed temporal boundary condition as a function of z and frequency, ω̃.
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Figure 7. Three slices through the surface shown in figure 6 at (a) z = 0, (b) z = 2.5 and
(c) z = 5.0. (d) Variation with z at selected frequencies (see text for details).

At z = 0 there are clear peaks in power around ω̃ = π/2, 3π/2 and 5π/2 (see
figure 7). Since the period of the internal pulses is four in this case, the dominant
frequency is 2π/4 = π/2. The higher harmonics are associated with the higher-
frequency components present in the Fourier transform of the square wavetrain.
Indeed, the signal can be thought of in terms of a superposition of sinusoidal signals,
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and the Heyvaerts & Priest solution describes how the amplitude of each component
should decay with z in figure 6 (see equation (1.2)).

To demonstrate the varying decay rates more clearly, figure 7 displays several
slices through the surface in figure 6 at increasing height. The final panel shows
the variation of amplitude with z at the frequencies π/2 (dotted line), 3π/2 (short-
dashed line), 5π/2 (dot-dashed line) which are associated with the shape of the
square wave, and 0 (solid line), π/7 (triple-dot-dashed line) and 3π/7 (long-dashed
line) which are related to the leading and trailing pulses. These smaller values of
ω̃ can also be thought of as related to the total time that the boundary is driven,
namely 2π/14 = π/7.

From the Heyvaerts & Priest solution (1.2), the exponential damping with height
depends on the square of the frequency so that the power at the higher frequencies
rapidly disappears with height. Consider the evolution of the central pulse, corre-
sponding to ξ = 0. Now the variations of by(0.5, z, t), where z = VAt as ξ = 0, can
be considered by using the Heyvaerts & Priest result applied to each Fourier com-
ponent. The higher frequencies, large values of ω̃, will decay faster with z than the
dominant mode at π/2. This means that the individual pulse will rapidly transform,
on a time-scale related to the diffusion time, td, into the sinusoidal form that is
related to the zeros of the initial pulse. The solution will now decay exponentially
until the amplitude of the Fourier component at π/2 becomes comparable in size to
the Fourier components with smaller values of ω̃. Once the low frequencies begin to
dominate, the subsequent decay will be slower and the Fourier transform approaches
4(sin ω̃/ω̃) exp(iω̃(t − z/VA)) for large z. Inverting this transform gives the travelling
Gaussian profile of Hood et al . (2002), which decays relatively slowly (algebraically,
not exponentially) with z.

The numerical simulations were carried out on the UKMHD JREI/SHEFC funded parallel
computer at St Andrews University. The authors thank the Particle Physics and Astronomy
Research Council for financial support. Thanks to Tony Arber for suggesting that the Fourier
transform might give a simple analytical solution.

References

Abramowitz, M. & Stegun, I. 1970 Handbook of mathematical functions. New York: Dover.
Axford, W. I., McKenzie, J. F., Sukhorukova, G. V., Banaszkiewicz, M., Czechowski, A. &

Ratkiewicz, R. 1999 Acceleration of the high speed solar wind in coronal holes. Space Sci.
Rev. 87, 25–41.

Botha, G. J. J., Arber, T. D., Nakariakov, V. M. & Kennan, F. P. 2000 A developed stage of
Alfvén wave phase mixing. Astron. Astrophys. 363, 1186–1194.

Cally, P. S. 1991 Phase-mixing and surface-waves: a new interpretation. J. Plasma Phys. 45,
453–479.

DeForest, C. E. & Gurman, J. B. 1998 Observation of quasi-periodic compressive waves in solar
polar plumes. Astrophys. J. 501, L217–L220.

DeForest, C. E., Plunkett, S. P. & Andrews, M. D. 2001 Observation of polar plumes at high
solar altitudes. Astrophys. J. 546, 569–575.

De Moortel, I., Hood, A. W., Ireland, J. & Arber, T. D. 1999 Phase mixing of Alfvén waves in
a stratified and open atmosphere. Astron. Astrophys. 346, 641–651.

De Moortel, I., Hood, A. W. & Arber, T. D. 2000 Phase mixing of Alfvén waves in a stratified
and radially diverging, open atmosphere. Astron. Astrophys. 354, 334–348.

Proc. R. Soc. A (2005)



252 A. W. Hood, S. J. Brooks and A. N. Wright

Harrison, R. A., Hood, A. W. & Pike, C. D. 2002 Off-Limb EUV line profiles and the search for
wave activity in the low corona. Astron. Astrophys. 392, 319–327.

Heyvaerts, J. & Priest, E. R. 1983 Coronal heating by phase-mixed shear Alfvén waves. Astron.
Astrophys. 117, 220–234.

Hood, A. W., Ireland, J. & Priest, E. R. 1997 Heating of coronal holes by phase mixing. Astron.
Astrophys. 318, 957–962.

Hood, A. W., Brooks, S. J. & Wright, A. N. 2002 Coronal heating by the phase mixing of
individual pulses propagating in coronal holes. Proc. R. Soc. Lond. A458, 2307–2325.

Mann, I. R., Wright, A. N. & Hood, A. W. 1997 Multiple-timescales analysis of ideal poloidal
Alfvén waves. J. Geophys. Res. 102, A2, 2381–2390.

Parker, E. N. 1958 Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128,
664–676.

Ruderman, M., Nakariakov, V. & Roberts, B. 1998 Alfvén wave phase mixing in two-dimensional
open magnetic configurations. Astron. Astrophys. 338, 1118–1124.

Steinolfson, R. S. 1985 Resistive wave dissipation on magnetic inhomogeneities: normal-modes
and phase mixing. Astrophys. J. 295, 213–219.

Tsiklauri, D. & Nakariakov, V. M. 2002 A three dimensional Alfvénic pulse in a transversely
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