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The linear wave equation �sixth order in space and time� and the corresponding dispersion relation
is derived for Hall magnetohydrodynamic �MHD� waves including electron inertial and finite
Larmor radius effects together with several limiting cases for a homogeneous plasma. We contrast
these limits with the solution of the full dispersion relation in terms of wave normal �k� ,k��
diagrams to clearly illustrate the range of applicability of the individual approximations. We analyze
the solutions in terms of all three MHD wave modes �fast, slow, and Alfvén�, with particular
attention given to how the Alfvén branch �including the cold ideal field line resonance �FLR�
�D. J. Southwood, Planet. Space Sci. 22, 483 �1974��� is modified by the Hall term and electron
inertial and finite Larmor radius effects. The inclusion of these terms breaks the degeneracy of the
Alfvén branch in the cold plasma limit and displaces the asymptote position for the FLR to a line
defined by the electron thermal speed rather than the Alfvén speed. For a driven system, the break
in this degeneracy implies that a resonance would form at one field line for small k� and then shift
to another as k�→�. However for very large �k� /VA, Hall term effects lead to a coupling to the
whistler mode, which would then transport energy away from the resonant layer. The inclusion of
the Hall term also significantly effects the characteristics of the slow mode. This analysis reveals an
interesting “swapping” of the perpendicular root behavior between the slow and Alfvén branches.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3142479�

I. INTRODUCTION

The linear theory of magnetohydrodynamic �MHD�
waves has been well established. Recently, Ref. 1 provided a
very lucid summary and analysis of the linear dispersion
relation including thermal, Hall, and electron inertial effects
on the Alfvén, fast magnetoacoustic, and slow magnetoa-
coustic modes. Here we use the Lighthill variables to derive
the �sixth order� wave equation for the parallel current and
magnetic field perturbations. The associated dispersion rela-
tion, also considered by Cramer, is revisited from the point
of view of wave normal diagrams �k� ,k��, which provides
additional insight into the analysis of the properties of these
waves including the characterization of critical layers and
reflection points. We also examine different limits with em-
phasis on how Hall effects modify the inertial Alfvén wave,2

kinetic Alfvén wave,3 and the cold ideal MHD field line reso-
nance �FLR�.4 These asymptotic solutions are contrasted
with the full dispersion relation to clarify the range of appli-
cability of the individual approximations. Thus we build on
the interpretations established by previous authors. Although
the paper has a slight emphasis on magnetospheric phenom-
ena, the analysis is completely general and is therefore of
interest to those studying “generalized” MHD waves in solar,
astrophysical, and tokamak plasmas.

The rest of the paper is broken up into three sections.

Section II summarizes the derivation of the wave equation
including electron inertia and Hall term effects. Section III
presents the full dispersion relation and derives and contrasts
several limiting cases against this full solution. Section IV
illustrates how the nonrelativistic whistler mode follows
from the formulation using “electron MHD.” Section V pro-
vides a concluding discussion whilst the Appendix summa-
rizes the details of the derivation of the wave equations using
Lighthill variables.

II. THE WAVE EQUATIONS FOR INCLUDING
THE EFFECTS OF HALL CURRENTS
AND ELECTRON INERTIA

The basic equations are those of fluid dynamics express-
ing conservation of mass, momentum, and energy, coupled
with Maxwell’s equations for the electromagnetic field. On
linearization about a uniform background state �suffix 0�, the
equations take the form:
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�t
+ �0 � · u = 0, �1�

�u

�t
= −

1

�0
� �B0Bz

�0
+ p� +

B0

�0�0

�B

�z
, �2�

�p

�t
= c2��

�t
= − �0c2 � · u , �3�a�Now at Thayer School of Engineering, Dartmouth College, Hanover, NH

03755.

PHYSICS OF PLASMAS 16, 062901 �2009�

1070-664X/2009/16�6�/062901/10/$25.00 © 2009 American Institute of Physics16, 062901-1

http://dx.doi.org/10.1063/1.3142479
http://dx.doi.org/10.1063/1.3142479
http://dx.doi.org/10.1063/1.3142479


�B

�t
= − � � E , �4�

E = − ue � B0 −
�pe

ene
+ �0�e

2�j

�t
, �5�
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in which

c = ��p0/�0 �speed of sound� , �8�

�e
2 =

vAe

2

�e
2 =

vA
2

�e�p
�“electron skin depth”� , �9�

vA =
B0

��0�0

�Alfvén speed based on protons� , �10�

vAe
2 =

B0
2

�0men0

�square of Alfvén speed based on electrons� ,

�11�
�p,e = eB0/mp,e �cyclotron frequency� .

In the momentum Eq. �2� the j�B0 force has been re-
placed by the magnetic pressure and tension terms using
Ampère’s law �6�, in which we neglected the displacement
current, which is valid in our charge neutral approximation
for frequencies � much less that the electron plasma fre-
quency �p,e. The background magnetic field B0 is aligned
with the z-axis. In the dissipationless �“collisionless”� case it
is convenient to replace the energy equations with the adia-
batic condition �3�. The electric field is given by Ohm’s law
�Eq. �5��, which includes Hall current effects, through the
relation �7� between the electron velocity ue, the bulk �pro-
ton� velocity u, and the current j, and also electron inertia
through the third term on the right hand side of Eq. �5�,
which is essentially the electron equation of motion.

Standard operations �see Appendix� yield the following
two coupled wave equations for the parallel current j�:

LAj� =
vA

2

�0�p

�

�z
�2�Bz

�t
,

�12�

LA 	
�2

�t2 �1 − �e
2�2� − vA

2 �2

�z2 ,

and the parallel magnetic field Bz,

LMABz = −
�0vA

2

�p

�

�z
� �2

�t2 − c2�2� � j�

�t
,

�13�

LMA 	 � �2

�t2 − c2�2� �2

�t2 �1 − �e
2�2�

− vA
2�2� �2

�t2 − c2 �2

�z2� .

Hence the wave equation for Bz �or j�� is

LALMA�Bz, j�� = − � vA
2

�p
�2 �2

�z2�2� �2

�t2 − c2�2� �2

�t2 �Bz, j�� .

�14�

This sixth order �in time and space� wave equation dis-
plays how the standard MHD waves, as represented by the
Alfvén operator LA, modified by electron inertia, and the
magnetoacoustic operator LMA, also so modified, are coupled
through the Hall current terms on the right hand side of Eq.
�13�. The wave system is anisotropic by virtue of the pre-
ferred direction ẑ�B0� and dispersive through electron inertia
and Hall current effects that introduce the cyclotron fre-
quency. The anisotropic and dispersive properties of the
wave system are analyzed in Sec. III in terms of the disper-
sion equation given by the Fourier image of Eq. �14� in
�� ,k� space.

III. PROPAGATION PROPERTIES:
WAVE NORMAL DIAGRAMS

For plane wave disturbances varying as exp i��t−k ·r�,
the Fourier image of the wave Eq. �14� yields the dispersion
equation �see also Ref. 1�

��2�1 + �e
2k2�

− vA
2kz

2���2�1 + �e
2k2���2 − c2k2� − vA

2k2��2 − c2kz
2��

= �vA
2�

�p
�2

k2kz
2��2 − c2k2� . �15�

Its structure demonstrates how the Alfvén mode �in MHD
defined by the zero of the first square bracket on the left hand
side� and the magnetoacoustic modes �given by the zero of
the second square bracket� are modified by the coupling in-
troduced by Hall current effects represented by the right
hand side of Eq. �15�. A number of special cases illustrate
how the coupling works. For the direct numerical solution of
Eq. �15�, we use the algorithm outlined in Ref. 5 �p. 179� for
the solution of cubic equations.

A. Single fluid MHD limit, �e=0, � /Ωp=0, cÅ0

In the single fluid MHD limit, Eq. �15� reduces to

��2 − vA
2kz

2���2��2 − c2k2� − vA
2k2��2 − c2kz

2�� = 0, �16�

in which the zero of the first bracket on the left hand side
yields the Alfvén mode planes kz= 	� /vA. The zero of the
second bracket yields the fast and slow magnetoacoustic
modes. The wave normal �or k� diagrams �normalized by
� /VA� are displayed in Fig. 1 for the case c2 /vA

2 =0.5. The
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fast mode is the oblate spheroid, which cuts the normalized
k� axis at vAk� /�= 	1 /�c2 /vA

2 +1, while the slow mode
cuts the normalized k� axis at vAk� /�=vA /c, representing an
indentation from the planes kz= 	�2�1 /c2+1 /v2.

B. Cold plasma „c=0…, �e=0,
with Hall current � /ΩpÅ0

In this case Eq. �15� reduces to

��2

vA
2 − kz

2���2

vA
2 − k2� = � �

�p
�2

k2kz
2, �17�

which on noting that k2=k�
2 +kz

2 may be rearranged to give

k�
2 =

�kz
2 −

�2/VA
2

1 − �/�p
��kz

2 −
�2/VA

2

1 + �/�p
�

� �2/VA
2

�1 − ��/�p�2�
− kz

2� .

The solutions are plotted in Fig. 2. Thus the fast mode sphere
k2=�2 /vA

2 is distorted by Hall current effects to an oblate
spheroid, which intersects the kz axis at �� /vA� /�1+� /�p,
and the Alfvén mode plane kz=� /vA develops a bump
which intersects the parallel axis at kz= �� /vA� /�1−� /�p,
and the asymptote �k�→�� is displaced to kz

= �� /vA� /�1− �� /�p�2. These characteristics are evident in
Fig. 2 where we plotted the solution of Eq. �17� for the
� /�p=0 �panel a represents the absence of Hall effects� and
� /�p=0.9 �panel b�. The slow mode k diagram is displaced
to infinity in the cold plasma limit. In panel b, the distortion
of the Alfvén branch implies that waves in a weakly inho-
mogeneous medium, using JWKB theory, would be reflected

at the position defined by the tip of the bump �k�=0� and
would also pile up at a critical layer as k�→�. This modi-
fied Alfvén mode is also referred to as the ion cyclotron
mode.1 The critical layer also implies that, due to Hall ef-
fects, the position of the classical FLR �Ref. 4� is shifted to
this new asymptote. The radius vector k from the origin to
the curves is the wave normal �or phase� direction and a
small arrow drawn normal to the k curve would represent the
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FIG. 1. Plot of k� vs k� �from Eq. �16�� normalized by � /vA showing the
MHD modes ��e=0, � /�p=0� for c2 /vA

2 =0.5. The slow mode cuts the
normalized k� axis at vAk� /�= 	vA /c= 	�2, while the fast mode cuts the
k� axis at vAk� /�= 	1 /�c2 /vA

2 +1= 	�2 /3.
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FIG. 2. Plot of k� vs kz �from Eq. �17�� normalized by � /vA with �e=0
�me=0� for �a� � /�p=0 and �b� � /�p=0.9. In panel �b� the modified fast
mode cuts the normalized k� axis at vAkz /�=1 /�1+� /�p=0.725 while the
modified Alfvén mode does the same at vAkz /�=1 /�1−� /�p=3.16. The
dashed line denotes the asymptotic line for the modified Alfvén mode given
by vAkz /�=1 /�1− �� /�p�2=2.29.

062901-3 Properties of Hall MHD waves… Phys. Plasmas 16, 062901 �2009�



direction of the ray. Note as well how the “Alfvén-ion cyclo-
tron” mode develops a “resonance” as �→�p. Further de-
tails on the limit considered in this section can also be found
in a lucid discussion in Ref. 1.

C. Incompressible plasma „ckz /�\�…

with Hall current

In the incompressible limit �c→�� and with �e=0,
Eq. �15� becomes

�kz
2 −

�2

vA
2 �2

= � �

�p
�2

k2kz
2, �18a�

which, on reverting to polars k=k�sin 
 , cos 
�, yields

k2 =
�2/vA

2

cos 
�cos 
 � �/�p�
. �18b�

In this case the Alfvén and slow modes are modified by the
Hall terms to give the wave normal diagrams shown in Fig.
3, where we solved Eq. �18a� for several values of � /�p.
The Alfvén and slow branches are degenerate for � /�p=0,
but as this ratio increases from zero they separate with the
slow branch displaced to the right and Alfvén to the left.
Note how the minus sign in Eq. �18b� yields a resonant cone
at cos 
=� /�p �evident for the slow mode�, whereas the
plus sign gives the asymptote k�→�, k�→0 as 
→� /2
�Alfvén branch�. However this latter result is modified by the
inclusion of electron inertia terms, which become increas-
ingly important for quasiperpendicular propagation �which is
discussed in Sec. III D�. The solution of the full dispersion
relation �Eq. �15��, solved for c2 /vA

2 =1000 and � /�p=0.9, is
also plotted �dots�, showing that Eq. �18a� is an accurate

representation of the full dispersion relation for large �but
finite� values of c. The full dispersion relation was solved at
equal intervals of 
. Sufficient resolution as 
→� /2 re-
quired many points for smaller 
, which is characterized by
the progression of the dots toward a solid line as 
→0.

D. Hall current absent � /Ωp=0 but with electron
inertia �eÅ0

Strictly speaking this limit is only valid for quasitrans-
verse propagation. With the right hand side zero, Eq. �15�
factors into the Alfvén mode �the zero of the first bracket on
the left hand side� and the magnetoacoustic modes �the zero
of the second bracket� both modified by �e. Thus the Alfvén
mode becomes

kz
2 =

�2

vA
2

�1 + �e
2k�

2 �
�1 − �2/�e�p�

, �19a�



�2

vA
2 �1 + �e

2k�
2 �, � 
 �e�p, �19b�

where we used Eq. �9� for �e
2. This is commonly referred to

as the inertial Alfvén mode �e.g., Ref. 2�, which permits en-
ergy propagation across the magnetic field lines. The wave
normal diagram defined by Eq. �19b� is shown in Fig. 4,
illustrating a resonance cone at the wave normal angle,
cot−1�� /��e�p�. The perpendicular group velocity attains a
maximum �� /�2�e�pvA at cot−1 � /�3 /�e�p�. Although
this is a rather small fraction of the Alfvén speed, it is im-
portant since it removes the resonant singularity associated
with a purely MHD resonance �e.g., see Ref. 6� by dispersing
energy away from the ideal resonant field line. In Fig. 4, we
expressed �e in terms of me /mp and � /�p for consistency
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FIG. 3. Plot of k� vs k� �first quadrant only� normalized by � /vA in the
incompressible limit �c→�� but incorporating the Hall current �Eq. �18a��
for various values of � /�p. Superimposed on the � /�p=0.9 case is
the numerical solution of the full dispersion relation �Eq. �15�� for
c2 /vA

2 =1000.
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FIG. 4. Alfvén wave branch modified by electron inertial effects �solid line�.
The resonance cone defined by cot−1�� /��e�p� is displayed using the
dashed line.
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with the rest of the plots. Values of me /mp=1 /16 and
� /�p=0.5 were chosen to make the resonance cone struc-
ture clear. This does not contradict the choice of � /�p=0 for
this section, but simply defines a value for �e. The magne-
toacoustic modes given by the zero of the second bracket of
Eq. �15� are governed by

k�
2 �vA

2c2kz
2 − �2�vA

2 + c2�� + ��2 − kz
2vA

2���2 − kz
2c2�

= − �2�e
2k2��2 − c2k2� . �20�

In the absence of electron inertia ��e�, the zero left hand
side describes the classical MHD wave normal diagram, in
which the fast mode is an oblate spheroid of revolution about
kz and the slow mode is the plane kz=���1 /c2�+ �1 /vA

2��1/2.
However if �e�0 this latter mode now exhibits a resonance
cone at cos 
=� /��e�p, which shows how the electron
mass first appears through the lower hybrid frequency
��e�p. On the other hand the fast mode is more or less
unaffected except for propagation nearly perpendicular to B0,
in which case Eq. �20� approximates to

vph�

2 = � �

k�

�2

=
vA

2 + c2�1 + �e
2k2�

1 + �e
2k2 . �21�

Thus electron inertial effects modify the phase speed
from the MHD fast speed �vA

2 +c2, for �ek
1, to the sound
speed c, for �ek��1. In effect there is a quasiresonance
�k�→�� as �→��e�p �the lower hybrid frequency� for c
small. It is interesting to note that for stationary waves
propagating with speed U��=Uk� Eq. �21� shows that
k2�0 �evanescent waves� either for U��vA

2 +c2 or U�c. In
the former case the inclusion of nonlinear terms �which can
bring about a balance between nonlinear wave steepening
and dispersion� soliton structures propagating perpendicular
to the ambient magnetic field can be realized.7–9

E. Cold plasma with Hall current „� /ΩpÅ0…
and electron inertia „�eÅ0…

In the limit of cold plasma �but incorporating electron
inertia�, Eq. �15� reduces to

��2�1 + �e
2k2� − vA

2kz
2���2�1 + �e

2k2� − vA
2k2�

= �vA
2�

�p
�2

k2kz
2. �22�

Since c=0, only the Alfvén and fast modes modified by
the Hall current are present. Figure 5�a� displays the wave
normal diagram given by Eq. �22� for various values
of � /�p�1. An artificial value of me /mp=1 /16 was used
to bring out features for relatively small values of
vAk� /� associated with the “isotropic” mode. This dia-
gram is similar to that shown in Fig. 2, the fast mode
becomes more oblate and the Alfvén mode develops a
bump as Hall effects increase. In this case, the roots for
vAk� /� are modified to 1 /�1− �me /mp��� /�p�2+� /�p and

1 /�1−me /mp�� /�p�2−� /�p for the fast and Alfvén modes,

respectively. In the Alfvén case, the root tends to infinity
very quickly as � /�p tends to �1− �me /mp��� /�p�2� �which
occurs at � /�p
0.949�. In Fig. 5�b�, Eq. �22� is contrasted
with the numerical solution of the full dispersion relation for
� /�p=0.9 and c2 /vA

2 =10−4. The solution is very sensitive to
small but finite values of �=c2 /vA

2 at large perpendicular
wave numbers. This difference becomes smaller as the value
of � decreases.

Figure 6�a� displays examples for � /�p�1. In this case
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FIG. 5. �a� Plot of k� vs k� �first quadrant only� normalized by � /VA in the
cold plasma limit �c=0�, but incorporating Hall and inertial effects
�Eq. �22��. Several values of � /�p�1 are considered. �b� Comparisons of
Eq. �22� �dashed line� with the full dispersion relation �Eq. �15�� for
� /�p=0.9 and c2 /VA

2 =10−4. The solution of the full dispersion relation is
plotted with dots.
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only the fast mode exists and the perpendicular root is given
by vAk� /�= 	1 /�1− �me /mp��� /�p�2. For the artificial pa-
rameters considered, k�→� when � /�p→4. This effect is
manifested in Fig. 6�a�, by the change in topology from a
closed curve to the formation of a resonant cone at
� /�p=4.1. Figure 6�b� contrasts the solution of Eq. �22�
with that of the full dispersion relation �Eq. �15�� for two
values of c /VA. As c /vA decreases, the resonance cone pre-
dicted from Eq. �22� is approached.

F. Modifications introduced to the Alfvén
and slow modes by electron inertia, Hall current,
and Larmor radius effects

The modifications to the Alfvén mode introduced by the
above-mentioned effects have been discussed separately by
Ref. 2 for electron inertia and Ref. 3 for finite Larmor radius
effects, and in combined form by Refs. 10–12 and 1.
In the general dispersion Eq. �15�, we make the following
assumptions:

�a� k��kz⇒k2→k�
2 , and

�b� �
k�c.

On dividing through by −�2�vA
2k�

2 �2�, Eq. �15� approxi-
mates to

�1 + �e
2k�

2 −
vA

2kz
2

�2 ��1 +
c2

vA
2 �1 + �e

2k�
2 −

vA
2kz

2

�2 ��



vA
2kz

2

�2 �k�
2 �s

2� , �23�

in which �s is the thermal Larmor radius defined as

�s = c/�p. �24�

Equation �23� may be viewed as a quadratic for
�1+�e

2k�
2 −VA

2kz
2 /�2�. If ��	c2 /vA

2� is small, the smaller root
approximately gives

kz
2 =

�2

vA
2 �1 + �e

2k�
2

1 + �s
2k�

2 � + 0��� , �25�

whilst the larger root yields

vA
2kz

2

�2 �
1 + k�

2 �s
2

c2/vA
2 , �26�

or

kz
2 =

�2

c2 �1 + k�
2 �s

2� + 0��� .

The first root, Eq. �25�, is the Alfvén wave plane, modi-
fied by inertial and Larmor radius/Hall current effects. The
second root, Eq. �26�, is the slow mode modified by Larmor
radius effects. Note that this modified Alfvén mode displays
an asymptote �k�→�� at

kz =
�

vA

�e

�s
=

�

vte
, �27�

in which

vte = c�mp

me
= ���eTe + �iTi�k/me.

Thus the FLR, associated with k�→� now occurs at a
speed defined by an effective temperature and the electron
mass rather than the Alfvén speed. Additionally, it is worth
noting that although the resonance is at one frequency � as
k�→�, this can be very different from the low k� value of
the frequency on the same field line. It is likely that if
driven at �d, a time dependent solution would couple energy
to the Alfvén mode on one field line. This could then
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FIG. 6. �a� Same as Fig. 5 except for values of � /�p�1. �b� Comparisons
of Eq. �22� with the full dispersion relation �Eq. �15�� for � /�p=0.9 and for
values of c2 /VA

2 of 10−4 and 10−3.
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phase mix �thereby increasing k� and developing vg�
� and

drift to a field line, where vg�
=0 at which energy would

accumulate and correspond to the k�→� asymptote �reso-
nant singularity�.

1. �Ème /mp

Figure 7�a� displays the Alfvén mode solution of Eq.
�25� for �=0.5me /mp, me /mp, 1.5me /mp, and � /�p=0.1.
Since vth=c�me /mp, when vth=VA, �=me /mp. The limit
�
me /mi corresponds to the inertial Alfvén wave limit �nu-

merator of Eq. �25� dominates�, while ��me /mp is the ki-
netic Alfvén wave limit �denominator dominates�. This is
evident in Fig. 7�a� by the two branches that emerge at large
k�, where the solid line denotes the inertial branch and the
dotted line the kinetic branch. These are the asymptotes pre-
dicted by Eq. �27�. When �e=�s, the two limits balance and
the ideal single fluid Alfvén relation �=kzVA is recovered
�dashed line�.

For intermediate values of �k� /VA, resonance cones ex-
ist and, therefore, as in the simple electron inertial limit con-
sidered in Sec. III D, energy can propagate perpendicular to
the ambient magnetic field �in different directions depending
on whether �
me /mi or ��me /mi�. As �k� /VA increases
further, the resonance cone becomes an asymptote and the
energy will be confined to the resonance layer.

Superimposed on the plot is the solution of the full dis-
persion relation �Eq. �15�� for the two limits �=0.5me /mp

�dots� and �=1.5me /mp �pluses�. Both the fast and Alfvén
branches are evident here �although the fast mode is similar
for both values of ��. Hall effects lead to a difference at the
Alfvén branch, for small k�, from the solution of Eq. �27�.
This is to be expected since the relation is valid only in the
limit k��k�. For large values of �k� /VA, there is also a
divergence from the solution given by Eq. �25� due to the
mode becoming more “whistler” in character, with the end
result that the balance between inertial and kinetic effects is
destroyed �in the limit of large �k� /VA� and instead a whis-
tler resonance cone emerges, which permits propagation of
energy across magnetic field lines.

Both the inertial and kinetic Alfvén wave limits yield
perpendicular group velocities that point in opposite direc-
tions and exactly balance one another when vth=VA. In this
case the wave has vanishingly small perpendicular group ve-
locity, which is associated with the singular accumulation of
energy through a resonance. In the Earth’s magnetosphere,
the inertial terms dominate toward the ionospheric boundary
while the kinetic terms dominate toward the equatorial re-
gion. An interesting consequence of this �as noted by Refs.
11 and 12� is that in the Earth’s dipolar magnetic field the ray
path of a wave propagating along the field line and bouncing
between ionospheric boundaries can follow a ‘figure of 8’
pattern as it passes through the inertial and kinetic regimes.
This gives rise to a “nondispersive” mode in the sense that
the perpendicular group velocity averaged over a cycle for
the wave is zero. Thus although kinetic and inertial effects do
not balance locally, they may do so from a “bounce-
averaged” point of view.

The second root Eq. �26� is the slow mode modified by
finite Larmor radius/Hall current effects, displays a reso-
nance cone at an angle tan−1��p /��, and the finite Larmor
radius effect permits the slow mode to propagate energy
across the field lines, in a fashion analogous to finite electron
inertia effects on the Alfvén mode, with a maximum speed
��2 /3��� /�p�c at an angle tan−1��3� /�p�. Figure 7�b� dis-
plays the solution of Eq. �26� for the same three values of �.
The resonance cone is evident �consistent for all three curves
since � /�p is fixed at 0.1� and as � increases the root in k�

�with k�=0� is shifted to smaller values �consistent with

FIG. 7. �a� Plot of Alfvén branch from Eq. �25� for � /�p=0.1 and
�=0.5me /mp �solid line�, �=me /mp �dashed line�, and �=1.5me /mp �dotted
line�. The solution of the full dispersion relation �Eq. �15�� is superimposed
for �=0.5me /mp �dots� and �=1.5me /mp �pluses�. This includes the fast
mode branch. �b� Plot of slow branch for the same values of � /�p and � as
used in �a�. Full dispersion relation comparison is for �=0.5me /mp alone.
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�1 /��. Superimposed on the �= 1
2me /mp case is the solution

of the full dispersion relation Eq. �15� �dots� indicating good
agreement everywhere.

Figure 8�a� displays results for � /�p=0.5 for both the
Alfvén and fast modes. The divergence between Eq. �25� and
the full dispersion relation �Eq. �15�� is more clearly evident.
The previously noted resonance cone is defined by
cos�
�= �me /mp��� /�p� / �1+me /mp� �thick solid line�. In ad-
dition the whole modified Alfvén branch is displaced to
higher values of vAk� /�. The approximate dispersion relation
�25� fails in this limit. For the slow mode �Fig. 8�b�� the
increase in � /�p leads to a decrease in the slope �consistent
with tan−1��p /���.

2. �È1

Figure 9 displays the numerical solution of the full
dispersion relation �Eq. �15�� for me /mp=1 /1836, �=0.25,
and three values of � /�p, namely, �a� � /�p=0.5, �b�
� /�p=0.7, and �c� � /�p=0.9. An interesting feature is that,
as the ratio of � /�p increases, the Alfvén branch crosses the

k� axis at 1 /��me /mp���2 /�p
2�−1+ �� /�p� and is displaced

toward the slow root crossing, which is fixed at ��=va /c
=2 �for the present parameters� at which the roots for the two
branches “swap,” with the slow mode branch now at higher
values of �kz /VA as � /�p increases.

IV. THE WHISTLER MODE „“ELECTRON MHD”…

It is of some interest to see how the nonrelativistic whis-
tler mode follows from the original fluid equations and Fara-
day’s law. In this case we assume that the protons �ions� to
be “massive” in the sense that the bulk or proton velocity u,
or up, is small compared with ue so that the current is pre-
dominantly carried by the electrons. Ohm’s law, Eq. �5�, may
then be written as

E =
1

en
j � B0 + �0�e

2�j

�t
, �28�

where we omitted the electron pressure gradient term, which,
in any case, disappears on taking the curl of E. Faraday’s law
becomes

� � � B0

�0en
� � B � ẑ + �e

2 �

�t
� � B� = −

�B

�t
, �29�

which on expanding yields

�

�t
�1 − �e

2�2�B = +
VAe

2

�e

�

�z
� � B . �30�

Taking the curl of this equation yields

�

�t
�1 − �e

2�2� � � B = +
VAe

2

�e

�

�z
�2B . �31�

Eliminating the ��B between Eqs. �30� and �31� yields
the following wave equation for B:

�2

�t2 �1 − �e
2�2�2B = − �VAe

2

�e
�2 �2

�z2�2B . �32�

The associated dispersion equation for plane waves of
frequency � and wave vector k is

�2�1 + �e
2k2� = 	

VAe
2

�e
kzk , �33�

or

k2 =
1

�e
2

�

�	�e cos 
 − ��
,

where 
 is the angle between k and B0ẑ. The upper sign
gives the right handed whistler mode, the dispersion charac-
teristics of which are shown in Fig. 10 as wave normal
curves for two frequencies with � /�p�1 /2.

FIG. 8. �a� Same as Fig. 7�a�, but for � /�p=0.5. The solid black line
denotes the resonance cone of the Alfvén branch in the full dispersion rela-
tion denoted by cos 
=me /mp�� /�p��1+me /mp�. �b� Same as Fig. 7�b�, but
for � /�p=0.5.
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V. DISCUSSION

We examined several limits of the full dispersion rela-
tion �15�, which includes the specific terms in the general-
ized Ohm’s law given by

E = − u � B0 +
1

en
j � B0 −

�pe

en
+ �0�e

2�j

�t
. �34�

Except for the parallel direction �where the Hall term disap-
pears�, the order of importance of these individual terms can
be assessed as follows. If E and u�B0 are both regarded as
being of order one, then the Hall term �j�B0 /en� is of the
order of � /�p relative to this and the inertial term is of the
order of � /�e relative to the Hall. Therefore the general
progression of importance of including terms increases from
right to left on the right hand side and the electron inertia
term only comes to dominate over the Hall term for higher
frequencies of the order of or greater than the lower hybrid
frequency. This analysis does not include the pressure term,
which must be judged independently for the given set of
parameters.

We presented the results in terms of k diagrams, which
is complementary to, but different from the standard presen-
tation �as in Ref. 1�, and as such provides further insight.
Moreover we graphically illustrated how the limiting solu-
tions contrast with the numerical solution of the full disper-
sion relation. This comparison is invaluable since it is ex-
tremely difficult to interpret how the solutions might diverge
from the full dispersion relation based on the initial assump-
tions alone.
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FIG. 9. Solution of full dispersion relation �Eq. �15�� for me /mp=1 /1836
and �=0.25 for �a� � /�p=0.5, �b� � /�p=0.7, and �c� � /�p=0.9. The slow
mode cuts the k� axis at vA /c, while the fast and Alfvén modes cut the axis
at 1 /��me /mp���2 /�p

2�−1+ �� /�p� and 1 /��me /mp���2 /�p
2�−1− �� /�p�,

respectively. In panel �c� the roots for the slow and Alfvén modes swap.
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FIG. 10. Plot of k� vs k� �from Eq. �33�� normalized by � /VA for the right
handed whistler mode �upper sign in Eq. �33�� for � /�e�1 /2 �solid line�
and � /�e�1 /2 �dotted line�. Specifically, ratio values of � /�e=0.1 and
� /�e=0.7 were used, respectively. Consistent with the rest of the paper,
Eq. �33� was reformulated in terms of me /mp and � /�p and values of
me /mp=0.5, � /�p=0.2, and � /�p=1.4 were used �� /�e= �me /mp�� /�p�.
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We analyzed in detail the effect of including the various
terms on the FLR as defined by Ref. 4. The addition of the
Hall term breaks the degenerate solution of the Alfvén
branch in the cold plasma limit. For a driven system this
would most likely imply that the resonance would form at
one field line for small k� but then the resonance position
would shift toward an asymptote as k�→�. This interpreta-
tion is also true with the additional inclusion of electron
inertial and finite Larmor radius effects, but the position of
the asymptote is now shifted to a position defined by the
thermal speed �kz=� /vth� rather than the Alfvén speed. For
very large values of �k� /VA, Hall effects transform this as-
ymptote into a resonance cone. This coupling to the whistler
mode would lead to a significant propagation of energy
across field lines away from the “original” resonant layer.

Of the three MHD waves branches �fast, slow, Alfvén�
the fast magnetoacoustic mode is least effected by the inclu-
sion of the Hall term, but like the Alfvén branch, the slow
mode also undergoes substantial modification in this limit.
An interesting feature of this analysis is what appears to be a
“swapping” of the root behavior along VAk� /�=0 between
the Alfvén and slow mode branches �Fig. 9�.

APPENDIX: DERIVATION OF WAVE EQUATIONS

The wave Eqs. �12� and �13� of the text are most conve-
niently derived using the Lighthill variables13 for the fluid,
namely,

� 	 � · u, � = �uz/�z, w = �� � u�� . �A1�

Take � /�t of the divergence of Eq. �2� and use Eq. �3� to
give

�2�

�t2 − c2�2 � = −
B0

�0�0
�2� �Bz

�t
� . �A2�

Similarly � /�t of � /�z of the parallel component of Eq.
�2� yields

�2�

�t2 = c2�2�

�z2 . �A3�

The parallel component of the curl of Eq. �2� becomes

�w

�t
=

B0

�0

� j�

�z
, j� = �� � B��/�0. �A4�

Eliminate the electric field in Faraday’s law �4� using
Ohm’s law �5� to yield

�

�t
�1 − �e

2�2�B = B0
�

�z
�u −

j

en
� − B0 � · uẑ , �A5�

the parallel component of which is

�

�t
�1 − �e

2�2�Bz = B0�� − �� −
B0

en

� j�

�z
. �A6�

The parallel component of the curl of Eq. �A5� gives

�

�t
�1 − �e

2�2��0j� = B0
�w

�z
+

B0

en�0

�

�z
�2Bz. �A7�

Eliminate the parallel vorticity w in Eq. �A7� using Eq.
�A4� to obtain Eq. �12� of the text. Similarly eliminate � and
� from Eq. �A6� using Eqs. �A2� and �A3� to obtain Eq. �13�
of the text. The coupled Eqs. �12� and �13� for j� �Alfvén
mode� and Bz �magnetoacoustic modes� yield the wave Eq.
�14�, which describes the modifications to these modes intro-
duced by the combined effects of Hall currents and electron
inertia.

1N. F. Cramer, Physics of Alfvén Waves �Wiley, Berlin, 2001�.
2C. K. Goertz and R. W. Boswell, J. Geophys. Res. 84, 7239, DOI:
10.1029/JA084iA12p07239 �1979�.

3A. Hasegawa, J. Geophys. Res. 81, 5083, DOI: 10.1029/
JA081i028p05083 �1976�.

4D. J. Southwood, Planet. Space Sci. 22, 483 �1974�.
5W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, in Fortran, 2nd
ed. �Cambridge University Press, Cambridge, 1992�.

6C. Q. Wei, J. C. Samson, R. Rankin, and P. Prycz, J. Geophys. Res. 99,
11265, DOI: 10.1029/94JA00582 �1994�.

7J. Adlam and J. Allen, Philos. Mag. 3, 448 �1958�.
8V. I. Karpman, Nonlinear Waves in Dispersive Media �Pergamon, Oxford,
1975�.

9J. F. McKenzie, E. Dubinin, and K. Saur, J. Plasma Phys. 65, 213 �2001�.
10R. Lysak and W. Lotko, J. Geophys. Res. 101, 5085, DOI: 10.1029/

95JA03712 �1996�.
11A. Streltsov and W. Lotko, J. Geophys. Res. 100, 19457, DOI: 10.1029/

95JA01553 �1995�.
12A. Streltsov and W. Lotko, J. Geophys. Res. 101, 5343, DOI: 10.1029/

95JA03762 �1996�.
13M. Lighthill, Philos. Trans. R. Soc. London, Ser. A 252, 397 �1960�.

062901-10 Damiano, Wright, and McKenzie Phys. Plasmas 16, 062901 �2009�

http://dx.doi.org/10.1029/JA084iA12p07239
http://dx.doi.org/10.1029/JA081i028p05083
http://dx.doi.org/10.1016/0032-0633(74)90078-6
http://dx.doi.org/10.1029/94JA00582
http://dx.doi.org/10.1029/95JA03712
http://dx.doi.org/10.1029/95JA01553
http://dx.doi.org/10.1029/95JA03762
http://dx.doi.org/10.1098/rsta.1960.0010

