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Two hybrid magnetohydrodynamic-kinetic electron models of shear Alfvén waves with different
closure schemes involving the assumption of quasineutrality are compared. One method assumes
quasineutrality directly while the other allows for a nonzero= · jW that produces a “correcting”
electric field. The interpretation of the different closure schemes is discussed and the two methods
are shown to yield consistent results for both the cases of a constant and variable density along the
field line. In the variable density case the hybrid system with and without a shear Alfvén wave
perturbation is also contrasted. In the latter case, static parallel electric fields that increased with the
plasma temperature were generated to support the density gradients. When the system was
perturbed, a time dependent parallel electric field contribution oscillated around the static field
structure needed to support the profile. Landau damping effects were also investigated and the
energy invariant for the systems derived. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1862627g

I. INTRODUCTION

Shear Alfvén wave pulses or standing wavesscalled geo-
magnetic field line resonancesd on closed magnetic field lines
are common occurrences in the earth’s magnetosphere. To
lowest order, the structure of their currents can be seen as ion
polarization currents perpendicular to the ambient magnetic
field closed by electron currents parallel to the field line,
which together maintain quasineutrality. Traditional magne-
tohydrodynamicsMHDd modelssin the limit of me→0, Ez

→0d have had much success in the study of the formation
and evolution of such systems, but in order to make the link
to auroral arc formation, information on the parallel electric
field is needed to study the electron acceleration process.
Incorporating electron mass via the inclusion of the general-
ized Ohm’s law allows for the study of the parallel electric
field in the MHD description,1,2 but these studies neglect
potentially important effects such as the mirror force
contributions3,4 and do not elucidate anything about the
structure of the electron distribution functions.2 Therefore
models incorporating a kinetic electron description and
wave-particle interactions are required.

Models using particles or direct Vlasov solution for ei-
ther the ions or electrons while the other species is described
by fluid equations are generally known as hybrid models.
Such simulation models with particle ions and fluid electrons
have been extensively used to investigate nonlinear pro-
cesses in laboratory and space plasmas. Some of the early
hydrid simulation models were applied to the study of labo-

ratory pinch experiments5–8 and the structure of the magneto-
spheric bow shock.9 Subsequent developments have mainly
been in multidimensional simulation models10 with applica-
tion to collisionless shocks,11,12magnetic reconnection,13 and
ion beam instabilities.14 There have been relatively few in-
vestigations using fluid ion and particle/kinetic electron hy-
brid models15 but as alluded to above, this type of hybrid
approach is needed for the study of shear Alfvén waves as-
sociated with auroral arc formation. In recent years, the focus
has been primarily on Alfvén wave pulses using test-particle
simulations16–19 and more self- consistent numerical hybrid
approaches representing the electrons in a Vlasov type
formulation20 or combining MHD with a system of kinetic
electrons in a particle-in-cellsPICd type formulation.21 To a
lesser extent, standing shear Alfvén waves have also been
studied in the context of a hybrid MHD-kinetic electron
model22 swhich is a variation of the approach used in Ref. 21
as well as more analytical studies which combine MHD with
a Vlasov equation for the electrons,3,23,24some of which in-
corporate mirror force effects.3,23

In this paper we consider standing shear Alfven wave
dynamics within a hybrid MHD-kinetic frameworksfluid
ion, kinetic electrond and compare two different closure
schemes, with and without the assumption of quasineutrality.
Typical scale lengths in auroral plasmas are 1–100 km much
greater than the electron gyroradius and Debye length, and
with frequencies much below the plasma frequency. There-
fore, we use a cold ion fluid model with electron dynamics
treated in the guiding center approximation. One approach
sused in Ref. 21 for the study of electron acceleration by
shear Alfvén wave breakingd assumes quasineutrality di-
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rectly s= · jW<0d, and will be termed zeroth order. A first or-
der approach was used by Ref. 22 and does not directly
assume quasineutrality but allows for a nonzero= · jW which
produces a corresponding perpendicular electric field contri-
bution. This in-turn affects the parallel electric field via the
generalized Ohm’s law. For limits where the plasma wants to
maintain quasineutrality, it can be viewed as a correcting
electric field. The zeroth order model is one-dimensional
s1Dd field aligned while the first order model is 2D. However
in the 2D case, the radial densitysxd is assumed constant and
the shear Alfvén wave perturbation periodic, making it
straightforward to draw comparisons between the two mod-
els. In addition to this comparison, the work extends the
consideration of standing waves begun in Ref. 22 to the case
of nonuniform plasmas.

The paper has four main sections. In the first section, the
MHD and two hybrid approaches are summarized. In the
second section; the MHD and hybrid approaches and then
the two hybrid approaches themselves are contrasted for a
constant density system. The third section considers the case
of inhomogeneity with a field aligned density gradient in
both the static limit and for the system with a shear Alfvén
wave perturbation, where Landau damping effects will be
examined. The fourth section contains a concluding sum-
mary and the energy invariant for both hybrid models is de-
rived in the Appendix.

II. DESCRIPTION OF MODELS

A. Cold plasma MHD model

In the MHD limit svMHD!vpe,L@lD ,rgi
d, the plasma

is quasineutrals= · jW=0, ni =ned on length scalesL@lD,
where L is the characteristic length scale of the system,lD is
the Debye length, andrgi

is the typical ion gyroradius. The
acceleration of electrons along the field line is proportional
to −eEz/me and some→0 andEz→0 at the same rate in the
MHD picture. The response of the electrons is instantaneous.

A 1D plasma model along a magnetic field line pointing
in the z direction is considered and assuming] /]y=0, a
simple cold plasma MHD model for a shear Alfvén wave
system is given by

]a

]t
= − moVA

2 ] jz
]z

, s1d

] jz
]t

= −
1

mo

]a

]z
, s2d

where a=]Ex/]x and VA=Bo/Îmor is the Alfvén wave
speed. The first equation can be derived from the single fluid
momentum equation and the ideal MHD approximationsor
the definition of the polarization currentd along with
quasineutralitys] jz/]z=−] jx/]xd and represents the polariza-
tion current due to ions. Of course, a finitedne is needed to
balancea. However, this is on MHD time scales and the
quasineutrality condition applies on the time scale of the
plasma frequency. Therefore it is not contradictory to use
= · jW=0 on the right-hand sidesRHSd of Eq. s1d. The deriva-
tion assumes that there is no perpendicular gradient inVA sor

rd, otherwise an extra term arises and the system is more
complicated to deal with. The second equation is derived
from Ampère’s smojz=]by/]xd and Faraday’s lawss]by/]t
=−]Ex/]zd and incorporates the massless electrons response
to maintain quasineutrality.

B. Zeroth order hybrid approach: Direct assumption
of quasineutrality

For the zeroth order hybrid model developed in Ref. 21,
the same basic assumptionssexceptme=0d used in the MHD
model hold as well. The initial equation representing ion
perpendicular polarization current is the same as in the pre-
ceding sectionsincluding built in quasineutrality conditiond.
Finite but small electron mass yields a finitevpe, however,
vMHD!vpe still holds and one can use= · jW=0.

With meÞ0 now, Eq.s2d is replaced by an actual system
of electrons and the generalized Ohm’s law is used for com-
puting the parallel electric field. Since the typical electron
gyroradius is so much smaller than typical MHD scale
lengths, the guiding center equations can be used for the
parallel electron dynamics and the model equations can be
expressed as

]

]t
S ]Ex

]x
D =

]a

]t
= − moVA

2 ] je
]z

, s3d

me
dvz

dt
= − eEz, s4d

drz

dt
= vz, s5d

Ez = −
1

1 + le
2kx

2Sle
2]a

]z
+

me

ne

]De

]z
D , s6d

where Eqs.s4d and s5d are the guiding center equations and
Eq. s6d is the generalized Ohm’s law. In this version, Fara-
day’s law and Ampère’s law have been used to replace the
term with the partial time derivative of current density and
the equation is a 1D analog of the parallel electric field equa-
tion used in Refs. 21 and 22. The quantityje
=−eoivzi

Ssrzi
,zd is the parallel current computed from the

electrons,De=oivzi

2Ssrzi
,zd susing the notation of Ref. 21d is

the second moment of the electron distribution function, and
Ssrzi

,zd is the particle shape functionssee Ref. 25d which is
also related to the interpolation of the moments to the grid
cells. The electron inertial lengthle=Îme/mone2 defines the
fundamental length scale on which electron mass effects be-
come importantsusually below about 10led and evolves as a
function of the electron number densityne=oiSsrzi

,zd to be
consistent with the assumption of quasineutralitysn=ni

=ned. The Alfvén speedVA similarly evolvessvia r=nmid.

C. First order hybrid approach

In the first order approach we do not fix the value of
= · jW, but allow for a first order correction via the perpendicu-
lar electric field contribution. If the plasma wants to be
quasineutral, but the parallel electron current differs from the
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divergence free MHD solution, a correcting field is produced
to compensate. Therefore quasineutrality is a result rather
than an initial assumption we impose on the model. It can be
viewed as a numerical analog to a physical plasma oscilla-
tion produced in a bid to maintain quasineutrality. In Ref. 22,
this correcting electric field was introduced as a separate
step, but will be reformulated here in a more self-consistent
way as an extension of the zeroth order assumption of
quasineutrality as defined previously.

First of all, as in Ref. 22 the model consists of the cold
plasma MHD equations given bysfor ] /]y=0d

]ux

]t
=

Bo

moro
S ]bx

]z
−

]bz

]x
D , s7d

]uy

]t
=

Bo

moro

]by

]z
,

]bx

]t
=

]Ey

]z
,

]by

]t
=

]Ez

]x
−

]Ex

]z
,

]bz

]t
= −

]Ey

]x
,

coupled to a system of kinetic electrons which evolve ac-
cording to the guiding center equationsfEqs.s4d ands5dg and
the perpendicular electric field comes from the ideal MHD

approximationEW '=uW 3BW . In Eq. s7d all variables are a func-
tion of x andz and a variable dependence of sinskyyd for ux

has been assumed and factored through. The system is closed
via the expression for the parallel electric fieldswhere the
difference from Ref. 22 emergesd.

Starting with the 2D analog of generalized Ohm’s law,
given in Eq. s6d, and with the additional assumption ofkx

2

!le
−2, the equation for the parallel electric field reduces to

Ez = − Sle
2]a

]z
+

me

ne

]De

]z
D . s8d

Now considering the full Ampère’s law,

= 3 BW = mojW + moeo
]EW

]t
, s9d

and taking the divergence of both sides we are left with

eo
]s= ·EW d

]t
= − = · jW, s10d

which is the same expression as derived in Ref. 22 using
Poisson’s equation and the continuity equations for the elec-
trons and ions. SinceEz!E' and ky=0, Eq. s10d can be
rewritten as

eo
]a

]t
= − = · jW = − S ] jx

]x
+

] jz
]z
D . s11d

Now, due to the low frequency nature of MHD it is custom-
ary to neglect the displacement current yielding= · jWMHD

<0 which is one form of the statement of quasineutrality.
However, imagine that at a given timet the electrons are in a
position so that the electron current is not in exact agreement
with the MHD current. Therefore, we can letjW= jWMHD+d jW

and= ·JW . = ·JWMHD which, via Eq.s11d, yields an additional
contribution toEx. Therefore, the total value ofa is

a = aMHD + da = aMHD + ac, s12d

whereaMHD=−] /]xsuW 3Bod=−s]uy/]xdBo and ac has been
introduced for consistency of notation with Ref. 22. With
this, Eq.s11d becomes

eo
]

]t
saMHD + acd = − s= · jWMHD + = · d jWd, s13d

and since]aMHD /]t= = · jWMHD<0 this can be reduced to

eo
]ac

]t
= − = · d jW = − = · jW. s14d

Using Eq. s12d, the expression for the parallel electric
field becomes

Ez = − Sle
2]aMHD

]z
+

me

ne

]De

]z
+ le

2]ac

]z
D s15d

or using Eq.s11d it can also be expressed as

Ez = − Sle
2]aMHD

]z
+

me

ne

]De

]z
−

le
2

eo

]

]z
E

0

t

dt = · jWD , s16d

where the parallel current density used in the calculation of
= · jW is computed directly from the electrons which are again
advanced using the guiding center equations. The evaluation
of the integral over time is done using a simple Euler
scheme. At a specific timet, the integral is advanced in a
predictor step with the value of= · jW determined from the
predicted fields and then the final value of the integral is
computed using the average of the divergence in current den-
sity computed using the predicted and corrected fields. As
indicated previously, the approach is a little different than
that used in Ref. 22, but yields consistent results. Also as in
Ref. 22, the electron inertial lengthle is fixed at its equilib-
rium value.

In summary, Eqs.s4d, s5d, s7d, and s16d along with the
ideal MHD approximation for the perpendicular electric field
constitute the 2D first order hybrid model. For simplicity of
notation any future reference to the 2D hybrid model will
have the first order nature and any reference to the 1D hybrid
model will have the zeroth order nature.
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III. SIMULATIONS WITH CONSTANT DENSITY

A. Method outline

As done in Ref. 22, the first order differential equations
sdy/dt=Fd are finite differenced in time using the predictor-
corrector approach

yp
t+Dt = yt−Dt + 2DtFsytd, s17d

yt+Dt = yt +
Dt

2
fFsytd + Fsyp

t+Dtdg, s18d

where the subscriptp denotes the predictor step and the spa-
tial derivatives are calculated using the same four point finite
difference scheme as used in Ref. 22. The magnetic field is
normalized by the ambient magnetic fieldBo=10 nT, length
by an earth radiussLN=REd, density byrN=0.1mp cm−3, and
velocity by VN=ÎBo

2/ smorNd. With these definitions, time is
normalized bytN=LN/VA, electric field byEN=VNBo, and the
current density byjN=Bo/ smoLNd. All plots are done in terms
of nondimensional variables.

B. Comparison of MHD and 1D hybrid models

The system is perturbed by a sinusoidala profile at t
=0 given by

ao = A sinS2pz

L
D , s19d

whereA=1.0 andL=18 is the length of the simulation box in
nondimensional units. Most of the parameters were chosen to
be consistent with those used in Ref. 22 and periodic bound-
ary conditions were assumed. For the 2D hybrid model, pe-

riodic boundary conditions were also used inz and open
boundary conditionss] /]x=0d in x. In nondimensional units,
the background magnetic field is 1,VA=2, andro=0.25.

Figure 1 illustrates the relative evolution ofa and jz as a
function of time for the MHD system. This result is con-
trasted in Fig. 2 where the MHD and 1D hybrid models
susing vth=1.41d solutions are plotted simultaneously. Lan-
dau damping effectssas discussed in Ref. 22d are clearly
evident. In both simulations 50 grid points and a time step of
0.0014 in nondimensional units were used. The hybrid simu-
lation was done using 80 000 simulation electrons.

The energy invariant of the 1D hybrid systemssee the
Appendixd is given simply in nondimensional form by

TE1D
= −E

0

t E
0

Lz

sEZjeddzdt+
1

2
Ce1o

i
vi

2, s20d

where the first term is the Poynting flux energy entering the
1D elemental flux tube from perpendicular to the field line,
the second term is the kinetic energy of the electron motion
along the field line, andCe1 is a dimensionless constantssee
the Appendixd. The result for thevth=1.41 case is illustrated
in Fig. 3sad showing that energy is conserved between the
electrons and fluid during the Landau damping process. Fig-
ure 3sbd shows the relative numerical error in the energy as a
function of time which is well below 0.01% for the length of
the run. High frequency oscillations develop as the grid scale
noise due to the particle interpolation scheme builds up and
the overall error decreases with time as the wave amplitude
is reduced due to Landau damping. The effects of the grid
scale noise over the longer term are worse for larger grid

FIG. 1. Solution of the 1D MHD equations excluding electron inertial ef-
fects. sad Relative profiles ofa and j z as a function ofz at t=0.5. sbd
Evolution of the amplitude of botha and j z as a function of time.

FIG. 2. sad Comparison of the evolution ofj z sat L /2d in the MHD and 1D
hybrid model forvth=1.41 illustrating Landau damping effects in the latter
case.sbd Evolution of the local distribution function betweenz=9.0 andz
=9.5 for the hybrid model illustrating the accelerated electron populations at
vph=v /kz= ±2 svz is normalized byVAd. The perturbation of the accelerated
population cycles from side to side as current changes sign.
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spacings as the fluctuations represent a significant fraction of
the actual wavelength of the shear Alfvén wave. Therefore,
finer grid spacings achieve better results for longer runs but
require significantly larger numbers of particles to achieve
similar results with regards to the resolution of the parallel
electric field. For the results here, we have chosen the grid
scale and particle number to obtain the best results for the
first 3–4 Alfvén periods which is sufficient to demonstrate
the operation of the code without needing too much compu-
tational time.

C. Comparison of hybrid models

The hybrid models are contrasted by selecting an initial
uy profile periodic inx as well asz and using a profile of
]Ex/]x for a slice along a certain value ofx for the 1D
model. The initial profile chosen for the 2D model was

uy0
= 0.05 sinS2px

0.2
De−sx − 0.5d8/0.0001sinS2pz

L
D . s21d

The exponential cutoff in thex direction was used to mini-
mize any edge effects from the boundariesfwhere open
boundary conditions are assumeds] /]x=0dg. The depen-
dence as a function ofx is illustrated in Fig. 4. In terms of
the 1D model, we take the initial parameters so that it repre-
sents a line alongz at x=0.5. Therefore the initial profile for
a is given by

a0 =
]Ex

]x
= −

]uy0

]x
= − 0.05

2p

0.2
cosS2p0.5

0.2
DsinS2pz

L
D ,

s22d

whereBo=1 in nondimensional units and although not stated
explicitly in the equation, this corresponds to a value forkx

of 2p /0.2.

Figure 5 illustrates the amplitude of the electron current
density as a function of time for both the 1D and 2D models
with vth=0.71. The point of interest is the divergence be-
tween the 1D model results with and without the pressure
term. As indicated in Ref. 22, for the 2D model results, the
pressure term had insignificant contribution. The explanation
for this difference in the importance of this term in the con-
text of the 2D model will be highlighted in the following
section. For the 2D model simulations presented in this sec-
tion, 200 grid points were chosen in thex direction and 25
were chosen in thez direction, 106 simulation electrons were
usedsnpx

=1000,npz
=1000d, and the time step was 0.000 71.

The 2D MHD results were obtained using the 2D hybrid
model with the kinetic electron effects turned offfreducing
the model to Eqs.s7d and s16d without the last two termsg.

The fact that quasineutrality is maintained both in the 1D
and 2D models is illustrated in Fig. 6 with the plotting of the
divergence of the current density along with the component
terms. In the 2D model, the divergence is computed directly
from jx and jz while in the 1D modeljx is first calculated
from a using

] jx
]x

=
r

Bo
2

]

]t
S ]Ex

]x
D =

r

Bo
2

]a

]t
, s23d

which has been derived from the single fluid momentum
equation. The time derivative is calculated simply using the
present and previous time step values ofa. Although not the
most accurate method, it serves to illustrate that quasineutral-

FIG. 3. sad Total and component energies vs time for the 1D hybrid models
with vth=1.41.sbd Relative error in total energyTE as a function of time.

FIG. 4. Variation with respect tox of initial uy perturbation used in the 2D
hybrid model.

FIG. 5. Parallel current densitysat z=L /2d for the 2D MHD model, the 2D
hybrid modelsexcluding pressure term inEzd, and the 1D hybrid models
with and without pressure term forvth=0.71. The 2D model results were
taken at the grid point closest tox=0.5.
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ity is properly maintained. This is as would be expected
given the initial assumptions for the 1D model. The points
plotted for the 2D model serve to illustrate that even without
the direct assumption of quasineutrality, the use of the cor-
rection field method served to maintain quasineutrality to
good order. It should be noted that the results plotted here are
for close to maximum current density values. As these values
decrease, grid scale noise increases fluctuations in the diver-
gence calculation, but this can be lessened with increased
resolution.

The total energy invariant for the 2D hybrid model is
given by ssee the Appendixd

TE2D
= Tuy

+ Tby
+ Te =E

A

dxdz
rouy

2

2
+E

A

dxdz
by

2

2

+
1

2
Ce2o

i
vi

2 s24d

and is displayed in Fig. 7 along with the individual terms in
Eq. s24d. In this case, the error in energy as a function of
time increased almost linearly to a value of about 0.4% att
=50.

D. Interpretation

In order to elucidate the reason as to why the pressure
term in the generalized Ohm’s law is negligible for the 2D
model we present two simulations with identical parameters
except that in the first case the pressure term is included and

in the second, it is excluded. For the following comparison, it
is convenient to rewrite Eq.s15d in nondimensional formsas
individual terms will be referenced in this notationd which is
given by

Ez = − Sle
2]a

]x
+ CD

]De

]z
+ le

2]ac

]z
D , s25d

where all variables are in nondimensional units and the nor-
malization constantCD=meVA/ seBoLd. For these simula-
tions, the parameters are the same as for the 2D model in the
preceding section except thatvth=1.41 was used to accentu-
ate the pressure contribution. Figure 8 presents slices of the
different terms in the equation forEz at t=5 for both the case
including sad and excluding plasma pressuresbd. This time
was chosen as the pressure contribution is maximum when
Ez and jz are at a minimum. The curves for theac term and
Ez have been smoothed using a postsimulation hyper-
Gaussian spectral filter given bye−si /nd20

wherei is the spec-
tral mode andn can be seen as a cutoff parameter. The filter
was applied in both thex directionswith n=80d and in thez
direction with n=4 to capture the first order Alfvén mode
clearly, but cutout higher frequency noise. The same filter
was used in Ref. 22 and more comment on its use can be
found there.

It is evident that when the pressure term is includedsad,
the curve for theac term is small relative to the pressure
term. However, when the pressure term is excludedsbd from
the calculation forEz, the ac contribution rises to take the
form of the missing pressure term. Although not shown here,
similar runs were done for the higher temperature casevth

=4.24 and the same type of behavior was observed.

FIG. 6. Divergence of the current density and component quantities for the
1D hybrid model att=8 and withvth=0.71. The 2D hybrid model values,
for the slice inz closest tox=0.5, are plotted as points.

FIG. 7. Total and component energies vs time for the 2D hybrid model with
vth=0.71.

FIG. 8. Slices alongz sclosest tox=0.5d at t=5 of the terms in the equation
for Ez for the 2D hybrid model including pressuresad and excluding pressure
sbd. The curves for]ac/]x andEz have been smoothed using the same 2D
spectral filter as outlined in Ref. 22.
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The explanation for this is that the bad guess for the
parallel electric field leaves the distribution of electrons in a
state that is not very quasineutral relative to the MHD fields.
The resulting nonzero divergence leads to an electric field
contribution which compensates for the lack of a pressure
term, thus restoring quasineutrality. Since the system wants
to be quasineutral, the algorithm allows for the creation of a
compensating perpendicular electric field which more or less
compensates for what the inclusion of a pressure term would
have provided. This can possibly be viewed as a numerically
created plasma oscillation, but since it is of much higher
frequency than the Alfvén time scales that dictate the rest of
the system, it does not affect the results in any significant
way. This methodology would not distinguish between
physical and numerical sources of quasineutrality violation
and so caution must be used in interpreting the importance of
the individual terms. As far as the algorithm is concerned,
the generalized Ohm’s law is simply an initial good guess to
the parallel electric field.

Whereas this method can be viewed to oscillate around
the proper solution, the direct assumption of quasineutrality
can be viewed as specifying exactly what the solution should
be on an instantaneous time scale. Therefore, all the infor-
mation about the parallel electric field must be contained in
the generalized Ohm’s law to be transferred instantaneously.
If a term is missing, then the physics associated with that
term is lost.

Figure 9 illustrates the components of the parallel elec-
tric field from the 1D model when the pressure term has been
included in the generalized Ohm’s law. The fact that the two
models give the same result under these conditions is empha-
sized here in comparison with Fig. 8 as the structure of the
fields are basically the same. The 1D model results have not
been filtered at all, which illustrates that the results in the 2D
model case are not a function of the filtration used. The
consistent results of the two approaches and the fact that
space plasmas are generally quasineutral suggests that the
initial direct assumption of quasineutrality might be a better
choice. However, the simplicity of the formalism of the ze-
roth order model is a result of assumingky=0 and a constant
density in the perpendicular direction. The closure in the first
order approach is not limited by these assumptions and al-
lows for a simple formulation in terms of the traditional
single fluid MHD equations. The aim here has been to con-

trast the two approaches and better understand what the clo-
sure schemes entail. The choice of approach is best decided
by the application.

In addition, as both models do not account for ion mo-
tion parallel to the field line, they are valid only in the limit
of the plasmab on the order ofme/mi fwhich is the case for
the parameters used here,b=2monkT/Bo

2= 1
2sme/mpd for vth

=1.41g where shear Alfvén waves are strongly resonant with
electrons. In this range, the results are consistent with the
inertial Alfvén wave dispersion relation forb!me/mi and
the kinetic Alfvén wave dispersion relation forme/mi !b
!1 sneglecting the ion gyroradius termd.22,26 The Landau
damping rates predicted in this range are in agreement with
the kinetic dispersion relation derived in Ref. 22. Therefore,
the model is valid for both electron inertial and thermal ef-
fects in this lowb range, but of limited validity as theb gets
substantially larger thanme/mi and tends toward 1 as the
importance of the shear Alfvén wave interaction with ions
grows. As the models were designed for study of Alfvén
wave effects in the electron acceleration region where the
plasmab!me/mi sRefs. 26 and 27d, neglecting the ion ef-
fects is justified to first order.

The additional advantage of these hybrid approaches is
that by not incorporating kinetic ions, they save on the ex-
tensive computational time needed to consider the full ions
dynamics thus making it simpler to study large scale systems
such as the field line resonance. However, future compari-
sons with fully kinetic approachessas used in Ref. 28d sor
extending the present models to include kinetic ionsd are
necessary to more clearly elucidate the limits of the current
approximation for the long term evolution of the system. As
well, although the present hybrid models do not consider ion
kinetic effects, fully kinetic PIC models are sometimes lim-
ited by the necessity to choose the ratio ofmi /me unrealisti-
cally low and thus the contrast of approaches is beneficial for
the overall study of the system.

IV. SIMULATIONS WITH DENSITY GRADIENT

For the following section a symmetric density profile as
a function ofz was designed. This is displayed in Fig. 10 and
is given mathematically by

FIG. 9. Components ofEz from the 1D hybrid model forvth=1.41 att=5.

FIG. 10. Field aligned density profile in terms of the base parameters.
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ne =5
ne1

if z, b

ne1
− ne2

2
cosfpsz− bd/ag +

ne1
− ne2

2
+ ne2

if b , zø a + b

ne2
if a + b , zø L − sa + bd

ne1
− ne2

2
cos„pfz− fL − sa + bdgg/a − p… +

ne1
− ne2

2
+ ne2

if L − sa + bd , zø L − b

ne1
if L − b , zø L

6 ,

wherene1
is the electron number density of the well,ne2

is
constant high density region at either end of the range inz, b
is the length of constant regions of number densityne2

, anda
is the length of the sloped regions connecting the areas of
constant density. For the 2D model, the density was assumed
to be constant in thex direction. The original aim for defin-
ing a profile of this nature was to consider the case along the
earth’s closed field lines where the density is relatively con-
stant along the field line until there is a large increase toward
the ionospheric boundaries at either end of the field line.
Addressing this in a more complete way though is left to
future work.

Since we will be considering large values ofkx, corre-
sponding to small perpendicular scale lengths inx, the term
dropped in Eq.s16d must be retained and the expression for
the parallel electric field becomes

]2Ez

]x2 −
1

le
2Ez =

]

]z
S ]Ex

]x
D + moe

]De

]z
−

1

eo

]

]z
E

0

t

dts= · jWd,

where as in Ref. 22,Ez is determined using a tridiagonal
solver swhere a three-point representation was used for
]2Ez/]x2d after the calculation of the right-hand side. For
comparisons between the 1D and 2D models, the same per-
turbations as outlined in Sec. II C were used except that the
amplitude in Eq.s21d fand correspondingly in Eq.s22dg was
halved in order to keep the density fluctuations small.

A. Static parallel electric fields: No Alfvén wave
perturbation

Before introducing the perturbationao, we examine the
static case to see the structure of the parallel electric field
generated to support the imposed density gradient. In Fig.
11sad is displayed the field aligned density profile for the
parametersa=5, b=1.5, ne1

=0.25, andne2
=1.25, where the

value of ne1
is the same as used for the constant density in

the last section. Figure 11sbd displays the parallel electric
field profiles from the 1D hybrid model that support the den-
sity gradient for two background maxwellian distribution
functions with thermal velocities ofvth=0.71 andvth=1.41.
As expected, fields of opposite sign support the opposing
density gradients and a significantly larger field is required in
thevth=1.41 case since the energy of the electrons is signifi-
cantly larger than in the former case. The profiles displayed
here are fort=5 and although there are minor shorter wave-

length fluctuations in profiles over time, they maintain the
same basic large scale length profile over the entire length of
the run. These simulationssand those in Sec. IV Bd used 50
grid points with a time step of 1.25310−3 and 33105 simu-
lation electrons to clearly see the parallel electric field pro-
files without any postsimulation filtration.

It should be noted that to have a constant temperature
profile in the presence of a density gradient is not a neces-
sarily realistic situation, but the aim here is simply to exam-
ine the operation of the models in this limit rather than ac-
curately represent a physical system. Generallysand as
evident in two fluid simulationsd, the electrons would try to

adjust so that= ·PW =0 along the field line. These hybrid mod-
els, however, do not reproduce this behavior as the MHD
component does not account for ion motion parallel to the
field line. However, the situation as presented here is not
entirely unrealistic and can occur where ions are gravitation-
ally bound ssuch as in the auroral ionosphered, and static
field aligned electric fields exist to support the electron popu-
lation and maintain quasineutrality. As well, since the re-
sponse time of ions along the field line is much slower than

FIG. 11. sad Density profile constructed witha=5, b=1.5, ne1
=0.25, and

ne2
=1.25. sbd Static parallel electric field needed to support the density

profile for vth=0.71 ssolid lined andvth=1.41 sdashed lined at t=5.
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the electrons, the time scale for the evolution toward= ·PW

=0 can mean that quasistatic parallel electric fields must per-
sist for long periods relative to the electron transit timescale
across the region of density gradient.

B. Electric field and density perturbations

For the constant density case, the sin profile forao used
was an exact eigenmode of the system, but that is not the
case with the variable density profile. This is illustrated in
Fig. 12sad where the exact eigenmode for the density profile
used in the simulations with no perturbation is plotted along
with a sin profile of the same amplitude. The exact eigen-
mode was determined from the solution of the dispersion
relation using the shooting method. The two profiles do not
strongly diverge and so it was not expected that using the
exact eigenmode over a sin profile would change the evolu-
tion of the system dramatically. This is confirmed in Fig.
12sbd where the parallel current density atL /2 is plotted as a
function of time for both profiles using the 1D hybrid model
and using the sin profile in the 2D model. The results are
generally very consistent with each other, although as would
be expected the 1D and 2D models using the initial sin per-
turbation are the closest. This also confirms that both the
zeroth and first order closure schemes yield consistent results
in the case where field aligned density gradients are present.
For the 2D model calculations, 100 grid points were used in
each direction with a time step of 2.5310−4 and 103106

simulation electrons. The electron inertial lengthle was al-
lowed to vary as a function onne as it resulted in greater
numerical stability in the presence of the steep density gra-
dients under consideration here.

Figure 13 illustrates the parallel electric field and density
perturbations at three times over the first Alfvén period using
the 1D hybrid model with the sin perturbation. Comparison
of Figs. 13sad and 11sbd illustrates that the gross profile of
the parallel electric field is the same as the static profile with
the same temperature. Therefore, the picture that emerges is
that there is time dependent parallel electric field contribu-
tion from the shear Alfvén wave perturbation that sits on top
of the static field. The corresponding electron number den-
sity fluctuations are illustrated in Fig. 13sbd and parallel elec-
tric field profiles are generally most consistent at the begin-
ning and end of the period when the density profile has
returned more or less to its initial state. Of course, if the
density fluctuations are too large as would happen if the am-
plitude of theao perturbation were very strong orkx were
large, this simple picture would break down and the pertur-
bations of the parallel electric field could dominate over the
static profile. Also illustrated in Fig. 13sbd is the electron
number density profile from the 2D model att=7 which is
very close to the 1D result at the same time further illustrat-
ing the consistency of the two approaches.

C. Landau damping

The aim of this section is to investigate how Landau
damping is affected by the presence of a field aligned density
gradient. This was accomplished by doing a series of runs
starting with constant electron number densityne1

and then
gradually filling in the well until the second constant density
system 2ne1

was reached. This progression is illustrated in
Fig. 14. The wells in this case are not as deep as in the
previous examples in this section because the damping rate

FIG. 12. sad Exact shear Alfvén wave perturbation eigenmode fora sdashed
lined for the density profile in Fig. 11 compared with sinusoidal perturbation
ssolid lined. sbd Field aligned electron current atL /2 for runs using the sin
perturbation for both the 1D hybridssolid lined and 2D hybridsdotted lined
models and exact eigenmode perturbationsdashed lined in the 1D model.

FIG. 13. sad Fluctuation of the parallel electric field over an Alfvén period
for the 1D hybrid model using the sin perturbation in Fig. 12.sbd Corre-
sponding electron number density fluctuationssincluding 2D hybrid model
comparisond.
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for ne=1.25 was too low. As is, the system progresses be-
tween two constant densities, both of which are relatively
heavily damped.

In all cases, the system was perturbed by the same sin
profile for ao. As with the calculations in Sec. IV B, the
amplitude of the shear velocity in Eq.s21d was halved, but
the value ofkx was doubledskx=2p /0.1d and so the ampli-
tude forao was double that in Fig. 12sad. The value ofkx was
increased to make the damping visible in a few Alfvén peri-
ods and the values ofuy0 were kept small so that the pertur-
bation density fluctuations would not completely dominate
the background profile. For these calculations, the number of
grid points was increased to 100 due to the steepness of some
of the profiles, the time step was dropped to 6.6310−4 and
13105 simulation electrons were used.

The evolution of the parallel current density atL /2 in
each case is illustrated in Fig 15. As is evident, the damping

rate slowly decreases as the well is filled, migrating from the
first constant density limit to the second. This is as would be
expected with the one extra interesting feature of almost no
damping in case 6 which corresponds to the situation of a
narrow well. Somehow, the adjacent presence of static fields
supporting the opposing density gradient makes less efficient
the wave-particle interactions upon which the damping de-
pends. It should be noted that when an additional simulation
was done with the well centered at aboutz=15, this feature
vanished and the system was damped consistent with the
others. Therefore, the relative phase between the well and
wave is important for electron phase space orbits to be ef-
fected in the “correct” way to impede the damping. A more
detailed analysis of what is occurring in this case is beyond
the scope of this work and so will be left for future studies.

These qualitative results are emphasized in Table I
where the period, frequency and damping rateg are tabu-
lated. The damping rates were computed from the natural log
of the absolute values of the period and half period points in
Fig. 15. The profiles were first filtered to clear off the high
frequency noise and only points fortø70 were used in the
calculation. As is evident, the damping rate for case 6, is
smaller by at least of a factor of 2 from all the others. This is
also the case in the last column of the table forg /v. This
ratio more or less represents the damping efficiency per
Alfvén cycle which given the range of error seems relatively
constant except for the significant drop for case 6.

The damping rates for the two constant density cases
was determined from the dispersion relation of the hybrid
MHD-kinetic systemssee Ref. 22d. For ne1

=0.25 andne2
=0.5 the theoretical damping rates were −0.0157 and
−0.00989 respectively which are in good agreement with the
numerical rates in Table I for cases 1 and 7.

Although not displayed here, a series of runs was tried
where “a” sthe range of the gradient regiond was set to 1 and
“b” was adjusted to fill in the well. The same qualitative
behavior was evident as noted here. Therefore, the ratio of
the areas covered by each density region is probably more
significant to the damping behavior than the steepness of the
gradientsswith the exception of case 6d.

V. SUMMARY AND DISCUSSION

We have contrasted two methods of closure for hybrid
MHD-kinetic models of shear Alfvén waves in constant and
variable density systems and developed the energy invariant
in one and two dimensions. The first method used in Ref. 21

FIG. 14. Density profiles used in Landau damping study.

FIG. 15. Parallel current density atz=L /2 as a function of time for the
density profiles illustrated in Fig. 14.

TABLE I. Computed periods, frequencies, and damping rates from Fig. 15.

Case Period Frequencysvd Damping ratesgd g /v

1 9.1 0.690 −0.017±0.002 −0.025

2 9.9 0.634 −0.018±0.002 −0.028

3 10.8 0.581 −0.017±0.002 −0.029

4 11.8 0.532 −0.016±0.002 −0.030

5 12.3 0.511 −0.011±0.002 −0.022

6 12.6 0.498 −0.006±0.002 −0.011

7 12.8 0.490 −0.010±0.002 −0.020
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directly assumed quasineutrality in the form= · jW=0 while
the second method used in Ref. 22 allowed for a nonzero
divergence in the current density which in-turn produced a
“correcting” electric field. In both cases, the parallel electric
field was obtained from a version of the generalized Ohm’s
law.

It was found that both models yielded equivalent results
as long as the full generalized Ohm’s law was used when
quasineutrality was assumed. Otherwise, the method used in
Ref. 21 strongly diverged from both the other hybrid model
results and that of the cold plasma MHD illustrating that the
pressure term is of significant importance. The model used in
Ref. 22, on the other hand, yielded similar results whether or
not the pressure term was included.

The reason for the difference is that in the second
method, the generalized Ohm’s law can be viewed as a good
first guess to what the parallel electric field should be and if
the guess is not sufficiently good, the plasma is not as
quasineutral as it would like to be and consequently gener-
ates a compensating electric field. The end result being that
quasineutrality is a consequence of the system rather than
being an initial assumption.

Therefore, both methods are useful for the study of
standing shear Alfvén waves in magnetospheric plasmas, but
it should be clearly understood that in the method used in
Ref. 22 disconnecting terms alone in the generalized Ohm’s
law does not elucidate the importance of that term to the
determination ofEz as it will be compensated for by the
closure scheme. The method does have the advantage though
of incorporating the full set of cold plasma MHD equations
swhich could be further generalizedd as well as easily allow-
ing for density gradients in either the perpendicular or paral-
lel directions.

In the case of field aligned density profiles, the models
were illustrated to produce a static parallel electric field
when there was no shear Alfvén wave perturbation. The
magnitude of the field increased with plasma temperature.
When the perturbation was applied, the parallel electric field
more or less oscillated around an average value that was very
similar to the static profile.

In addition, a series of runs were done to study Landau
damping in the presence of a density gradient. It was illus-
trated, that the Landau damping was not hindered by the
presence of the density gradient except in the case of a nar-
row central well.

In this paper we have concentrated on the case of a uni-
form magnetic field but, as mentioned earlier, converging
magnetic field and mirror force effects are crucial to a more
complete understanding of the electron response in the au-
roral acceleration region. To address this, investigations are
currently under way using a version of the first order model
in dipolar coordinatessdeveloped in Ref. 29d.
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APPENDIX: HYBRID MODEL ENERGY INVARIANT

The standard approach for the derivation of an energy
invariant for a system is to put the equations in the conser-
vation form

dW

dt
+ = ·SW = 0, sA1d

whereW represents the total energy andSW is the energy flux.
For the system of MHD equations and kinetic electrons, this
takes the form

d

dt
E S1
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DdV+
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+E SEW 3 bW
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SinceEW andbW are periodic inz, the net Poynting flux across
the boundaries cancels and so after integrating with respect
to time, the invariant becomes
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2 = TE, sA3d

whereTE is the total energy and is constant in time. Now, as
each of the simulation electrons are “superparticles” repre-
sentative of a large number of electrons, the term of the
electron kinetic energy must be appropriately scaled such
that

TE =E
V
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2
meo

i
vi

2, sA4d

whereN=enedV is the total number of real electrons repre-
sented in the simulation volume,n is the electron number
density, andNp is the total number of simulation electrons.

Since the model is 2D andky=0, a constanty depen-
dence is assumed for each variable and factored out as a
length scale so that in nondimensional form the expression
represents the energy per unity,

TE2D
=

TE

Dy
=E

A

dxdz
rouy

2

2
+E

A

dxdz
by

2

2
+

1

2
Ce2o

i
vi
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whereCe2=sme/mpdsenedxdz/Npd is a constant and the fact
that ux=bx=bz=0 has been used as well.

For the 1D system, the volume of integration in Eq.sA2d
has dimensionsDy in y, Lz in z, and extentDx stending to 0d
in x. This yields an expression for energy conservation in the
form
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where the last two terms are from the integral of the Poyn-
ting flux around a box of widthDx and lengthLz centered on
the magnetic field line.

Expanding the derivative in the last term and then using
Ampère’s laws]by/]x=mojzd this becomes
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where jz= je has been used. The magnetic field line can al-
ways be considered to be a nodal point so thatuy=by=0 and
so the total energy invariant is just a balance between the
perpendicular Poynting flux and the kinetic energy of the
electrons. With the scaling discussed previously, this is ex-
pressed in nondimensional form as
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whereCe1=sme/mpdenedz/Np.
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