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Two hybrid magnetohydrodynamic-kinetic electron models of shear Alfvén waves with different
closure schemes involving the assumption of quasineutrality are compared. One method assumes
quasineutrality directly while the other allows for a nonz&of that produces a “correcting”
electric field. The interpretation of the different closure schemes is discussed and the two methods
are shown to yield consistent results for both the cases of a constant and variable density along the
field line. In the variable density case the hybrid system with and without a shear Alfvén wave
perturbation is also contrasted. In the latter case, static parallel electric fields that increased with the
plasma temperature were generated to support the density gradients. When the system was
perturbed, a time dependent parallel electric field contribution oscillated around the static field
structure needed to support the profile. Landau damping effects were also investigated and the
energy invariant for the systems derived.2005 American Institute of Physics
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I. INTRODUCTION ratory pinch experiments® and the structure of the magneto-
spheric bow shocR.Subsequent developments have mainly
Shear Alfvén wave pulses or standing waveslled geo-  peen in multidimensional simulation modBsvith applica-
magnetic field line resonandesn closed magnetic field lines  tion to collisionless shocks;*2magnetic reconnectioft,and
are common occurrences in the earth’s magnetosphere. Tgn peam instabilities* There have been relatively few in-
lowest order, the structure of their currents can be seen as i%stigations using fluid ion and particle/kinetic electron hy-
polarization currents perpendicular to the ambient magnetigiq modeld® but as alluded to above, this type of hybrid
field closed by electron currents parallel to the field ””e’approach is needed for the study of shear Alfvén waves as-
which together maintain quasineutrality. Traditional magne-qciated with auroral arc formation. In recent years, the focus
tohydrodynamio(MHD) models(_ln the limit of m.—0, E, _ has been primarily on Alfvén wave pulses using test-particle
—0) have had much success in the study of the formationgi jjationd®~° and more self- consistent numerical hybrid
and evolution of such systems, but in order to make the lin pproaches representing the electrons in a Viasov type
to auroral arc formation, information on the parallel eIeCtrinormuIatior?O or combining MHD with a system of kinetic

field is needed to study the electron acceleration Processy o trons in a particle-in-ce(PIC) type formulatior? To a

Incorporating electron mass via the inclusion of the general: . .
) , . lesser extent, standing shear Alfvén waves have also been
ized Ohm’s law allows for the study of the parallel electric

field in the MHD descriptior;? but these studies neglect studie% in the context of a hybrid MHD-kinetic electron
potentially important effects’ such as the mirror forcemOdeF (which is a variation of the approach used in Ref. 21
contributiong* and do not elucidate anything about the as well as more analytical studies which combine MHD with

- 3,24 ST
structure of the electron distribution functiohg herefore a Vlasov equation for the eIectroﬁ%, some of which in

: 3
models incorporating a kinetic electron description andcorp:orr:tﬁa mirror force eﬁegjsz. tandi hear Alfy
wave-particle interactions are required. N this paper we consider standing shear en wave

Models using particles or direct Vlasov solution for ei- dynamics within a hybrid MHD-kinetic frameworkfluid

ther the ions or electrons while the other species is describd@": kinetic electron and compare two different closure

by fluid equations are generally known as hybrid models.SCh?meS' with and W|_thout the assumption of quasineutrality.
Such simulation models with particle ions and fluid electrons'YPical scale lengths in auroral plasmas are 1-100 km much
have been extensively used to investigate nonlinear prgdreater than the electron gyroradius and Debye length, and
cesses in laboratory and space plasmas. Some of the eadth frequencies much below the plasma frequency. There-

hydrid simulation models were applied to the study of labo-fore, we use a cold ion fluid model with electron dynamics
treated in the guiding center approximation. One approach

JElectronic mail: pdamiano@mes.st-and.ac.uk (used in R,ef. 21 for the s_tudy of electron qccelera_ltlon _by
PAlso at Department of Physics, University of Alberta. shear Alfvén wave breakingassumes quasineutrality di-
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rectly (V-j~0), and will be termed zeroth order. A first or- p), otherwise an extra term arises and the system is more
der approach was used by Ref. 22 and does not directigomplicated to deal with. The second equation is derived
assume quasineutrality but allows for a nonz&rq which ~ from Ampere’s (uoj,=dby/dx) and Faraday's lawsdb,/ it
produces a corresponding perpendicular electric field contri= ~9Ex/92) and incorporates the massless electrons response
bution. This in-turn affects the parallel electric field via the t0 Maintain quasineutrality.

generalized Ohm’s law. For limits where the plasma wants to ) ) )

maintain quasineutrality, it can be viewed as a correcting: Zéroth order hybrid approach: Direct assumption

electric field. The zeroth order model is one-dimensiona duasineutrality

(1D) field aligned while the first order model is 2D. However For the zeroth order hybrid model developed in Ref. 21,
in the 2D case, the radial density) is assumed constant and the same basic assumptioesceptm,=0) used in the MHD

the shear Alfvéen wave perturbation periodic, making itmodel hold as well. The initial equation representing ion
straightforward to draw comparisons between the two modperpendicular polarization current is the same as in the pre-
els. In addition to this comparison, the work extends theceding sectior(including built in quasineutrality condition
consideration of standing waves begun in Ref. 22 to the casginite but small electron mass yields a finitg,, however,

of nonuniform plasmas. @b < @pe Still holds and one can useé-j=0.

The paper has four main sections. In the first section, the  \yjith m.# 0 now, Eq.(2) is replaced by an actual system
MHD and two hybrid approaches are summarized. In theyf electrons and the generalized Ohm’s law is used for com-
second section; the MHD and hybrid approaches and thepyting the parallel electric field. Since the typical electron
the two hybrid approaches themselves are contrasted f0fg§/roradius is so much smaller than typical MHD scale
constant density system. The third section considers the caggnhgths, the guiding center equations can be used for the

of inhomogeneity with a field aligned density gradient in parallel electron dynamics and the model equations can be
both the static limit and for the system with a shear Alfvéneyxpressed as

wave perturbation, where Landau damping effects will be .

examined. The fourth section contains a concluding sum- ﬁ(‘?_EX> :‘7_“:_“ \/2‘1e (3)
mary and the energy invariant for both hybrid models is de-  dt\ X it Aoz’

rived in the Appendix.

m = ek (4)
Il. DESCRIPTION OF MODELS dt ”
A. Cold plasma MHD model dr

—Z_

In the MHD limit (mMHD<wpe,L>)\D,rgi), the plasma dt ~Yz (5)

is quasineutraI(V-fzo, n,=ng) on length scaled > \p,
where L is the characteristic length scale of the systayris E=_ 1 20a . medDe ©)
the Debye length, and, is the typical ion gyroradius. The 27 1 +\4E\ "oz neaz )’

acceleration of electrons along the field line is proportional o .
to —eE,/m, and som,— 0 andE,— 0 at the same rate in the where Eqgs(4) and(5) are the guiding center equations and

MHD picture. The response of the electrons is instantaneougq',(G) Is the genergliz,ed Ohm's law. In this version, Fara-
A 1D plasma model along a magnetic field line pointing 9@'s law and Ampere’s law have been used to replace the
in the z direction is considered and assumiagey=0, a term with the partial time derivative of current density and

simple cold plasma MHD model for a shear Alfvén wave the equation is a 1D analog of the parallel electric field equa-
system is given by tion used in Refs. 21 and 22. The quantity,

) =—eEiniS(rZi,z) is the parallel current computed from the
da 20,

== - VAL (1) eIectronsDe:EivﬁiS(rzi,z) (using the notation of Ref. 21s
s Jz the second moment of the electron distribution function, and
. S(rzi,z) is the particle shape functioisee Ref. 2bwhich is
9z __10a also related to the interpolation of the moments to the grid
= : () o ———
A Mo 0Z cells. The electron inertial lengtk,=Vm./ u,n€ defines the

where a=dE,/dx and V,=B,/Vugp is the Alfvén wave fundamental length scale on which electron mass effects be-

speed. The first equation can be derived from the single flu“ﬁ?r?::fi()lnmz?r'[tﬁenteulzléﬁrltlzw b;d?ﬂ%g?gg;i@_agé(?vogiz ?)sea
momentum equation and the ideal MHD approximation =231,

the definition of the polarization currgntalong with Eon5|stent W't,h the assumption of quasmeutial(ty:ni
quasineutrality 9j,/ 9z=—dj/ ) and represents the polariza- =ne). The Alfvén speed/, similarly evolves(via p=nm).

tion current due to ions. Of course, a finifg, is needed to

balancea. However, this is on MHD time scales and the
quasineutrality condition applies on the time scale of the In the first order approach we do not fix the value of
plasma frequency. Therefore it is not contradictory to usev ., but allow for a first order correction via the perpendicu-
V-j=0 on the right-hand sidéRHS) of Eq. (1). The deriva- lar electric field contribution. If the plasma wants to be
tion assumes that there is no perpendicular gradieXhifor ~ quasineutral, but the parallel electron current differs from the

C. First order hybrid approach
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divergence free MHD solution, a correcting field is produced da - (ajx . ’12> 1)

to compensate. Therefore quasineutrality is a result rather GOE =-V.j=- X oz
than an initial assumption we impose on the model. It can be

v_|ewed as a n_umen_cal ana!og _to a physmal plasma OSCIIIal'\low, due to the low frequency nature of MHD it is custom-
tion produced in a bid to maintain quasineutrality. In Ref. 22, . L o
ary to neglect the displacement current yieldiNgjyup

this correcting electric field was introduced as a separat e ) .
9 b =0 which is one form of the statement of quasineutrality.

step, but will be reformulated here in a more self-consisten . . ) ) :
owever, imagine that at a given timh¢he electrons are in a

way as an extension of the zeroth order assumption o osition so that the electron current is not in exact agreement
quasineutrality as defined previously. p. 9

First of all, as in Ref. 22 the model consists of the coldWith the MHD current. Therefore, we can It jypp+ d)

plasma MHD equations given kgor 9/ dy=0) andv.J>V -jMHD which, via Eq.(11), yields an additional
contribution toE,. Therefore, the total value af is

au, B, [db, db,
v — - T 1 (7) — —
A mePo\ 9Z X @ = aypp + 6= aypp * ac, (12)
Ju B b where aypp=-d/ (U X By) =—(duy/ dx)B, and a; has been
Y- introduced for consistency of notation with Ref. 22. With
q - propo 92 this, Eqg.(11) becomes
abX — @ d > >
0t gz’ eoE(aMHD"'ac):_(V “imp + V - 3)), (13
by _ JE, 9B and sincedayyp/ t=V -fMHDzO this can be reduced to
a ax  az’
J > -

Gt =-V .5=-V.]. (14)

at ox ' Using Eq.(12), the expression for the parallel electric

field becomes
coupled to a system of kinetic electrons which evolve ac-

cording to the guiding center equatidiisys.(4) and(5)] and
the perpendicular electric field comes from the ideal MHD  E,= —(

approximationg, =0 x B. In Eq.(7) all variables are a func-

tion of x andz and a variable dependence of (&yy) for uy : .

has been assumed and factored through. The?}stem is clos%rdusmg Bq.(1D) it can also be expressed as

via the expression for the parallel electric figlthere the 5 ;

difference from Ref. 22 emerges E,=- (AzaaMHD , MedDe Eﬁf qtv ;) (16)
Starting with the 2D analog of generalized Ohm’s law, ¢ oz ne dz €,dzJ '

given in Eq.(6), and with the additional assumption kﬁ

-2 ; g . . .
<% the equation for the parallel electric field reduces to \here the parallel current density used in the calculation of
) V-j is computed directly from the electrons which are again

dD
)\g—aaMHD + me_e + )\2%>

15
Jz ne oz € oz (15)

(8) advanced using the guiding center equations. The evaluation
of the integral over time is done using a simple Euler
scheme. At a specific timg the integral is advanced in a

predictor step with the value dV-f determined from the
- predicted fields and then the final value of the integral is
V X B= M f+M € JE (9) computed using the average of the divergence in current den-
° ot sity computed using the predicted and corrected fields. As
) ) _ ) indicated previously, the approach is a little different than
and taking the divergence of both sides we are left with  {hat ysed in Ref. 22, but yields consistent results. Also as in
R Ref. 22, the electron inertial lengt. is fixed at its equilib-
aV-E)_ v.i 1o (umvalue.
a B (10 In summary, Eqgs(4), (5), (7), and(16) along with the
ideal MHD approximation for the perpendicular electric field
which is the same expression as derived in Ref. 22 usingonstitute the 2D first order hybrid model. For simplicity of
Poisson’s equation and the continuity equations for the elemotation any future reference to the 2D hybrid model will
trons and ions. Sinc&,<E, andk,=0, Eq.(10) can be have the first order nature and any reference to the 1D hybrid

rewritten as model will have the zeroth order nature.

dD
dz ne oz

Now considering the full Ampeére’s law,

€
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FIG. 2. (a) Comparison of the evolution gf, (atL/2) in the MHD and 1D

FIG. 1. Solution of the 1D MHD equations excluding electron inertial ef- NyPrid model foruy,=1.41 illustrating Landau damping effects in the latter

fects. () Relative profiles ofa and j, as a function ofz at t=0.5. (b) case.(b) Evolutlo_n of the Ipcal dl_strlbutlon function betweer+9.0 and_z

Evolution of the amplitude of botlx andj, as a function of time. =9.5 for the hybrid model illustrating the accelerated electron populations at
vpn=w/k,= %2 (v, is normalized by,). The perturbation of the accelerated
population cycles from side to side as current changes sign.

I1l. SIMULATIONS WITH CONSTANT DENSITY
A. Method outline riodic boundary conditions were also usedzrand open
As done in Ref. 22, the first order differential equationsboundary conditiongd/ 9x=0) in x. In nondimensional units,
(dy/dt=F) are finite differenced in time using the predictor- the background magnetic field is ¥,=2, andp,=0.25.
corrector approach Figure 1 illustrates the relative evolution efandj, as a
tHAL _ A=At t function of time for the MHD system. This result is con-
Yp + 2AtF (YY), (17) trasted in Fig. 2 where the MHD and 1D hybrid models
At (usingvy,=1.41) solutions are plotted simultaneously. Lan-
yrA =y Ry + F(yp ™), (18  dau damping effect$as discussed in Ref. 2are clearly
2 evident. In both simulations 50 grid points and a time step of
where the subscrig denotes the predictor step and the spa-0-0014 in nondimensional units were used. The hybrid simu-
tial derivatives are calculated using the same four point finitdation was done using 80 000 Slmulatlon'electrons_
difference scheme as used in Ref. 22. The magnetic field is The energy invariant of the 1D hybrid systesee the
normalized by the ambient magnetic fi@g=10 nT, length  AppendiX is given simply in nondimensional form by
by an earth radiuéLy=Rg), density bypy=0.1m, cm 3, and t rL, 1
velocity by V= B2/ (uepy). With these definitions, time is Te, = —f f (Ezjdzdt+ EcelE v?, (20)
normalized byty=Ly/V,, electric field byEy=VyB,, and the 070 :
current density byy=B,/(uoLn)- All plots are done in terms  where the first term is the Poynting flux energy entering the

of nondimensional variables. 1D elemental flux tube from perpendicular to the field line,
the second term is the kinetic energy of the electron motion
B. Comparison of MHD and 1D hybrid models along the field line, an&,; is a dimensionless constafsee

_ _ _ _ the Appendix. The result for the),=1.41 case is illustrated
The system is perturbed by a sinusoidabrofile att iy Fig. 3(a) showing that energy is conserved between the

=0 given by electrons and fluid during the Landau damping process. Fig-
27z ure 3b) shows the relative numerical error in the energy as a
ap=A SIH<T> : (190  function of time which is well below 0.01% for the length of

the run. High frequency oscillations develop as the grid scale
whereA=1.0 andL=18 is the length of the simulation box in noise due to the particle interpolation scheme builds up and
nondimensional units. Most of the parameters were chosen tihe overall error decreases with time as the wave amplitude
be consistent with those used in Ref. 22 and periodic bounds reduced due to Landau damping. The effects of the grid
ary conditions were assumed. For the 2D hybrid model, pescale noise over the longer term are worse for larger grid
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FIG. 3. (a) Total and component energies vs time for the 1D hybrid models

with vy, =1.41.(b) Relative error in total energyg as a function of time.

spacings as the fluctuations represent a significant fraction 5
the actual wavelength of the shear Alfvén wave. Therefore
finer grid spacings achieve better results for longer runs b
require significantly larger numbers of particles to achieve
similar results with regards to the resolution of the paralle
electric field. For the results here, we have chosen the gri
scale and particle number to obtain the best results for the
first 3—4 Alfvén periods which is sufficient to demonstrate
the operation of the code without needing too much compu

tational time.

C. Comparison of hybrid models

The hybrid models are contrasted by selecting an initial

uy profile periodic inx as well asz and using a profile of
JE,/ox for a slice along a certain value of for the 1D
model. The initial profile chosen for the 2D model was

27X 8 27z
_ ; —(x - 0.58/0.0001 i
Uy, =0.05 SII'< 0.2)6 sm( i )

The exponential cutoff in th& direction was used to mini-
mize any edge effects from the boundarigghere open
boundary conditions are assuméél/ 9x=0)]. The depen-
dence as a function of is illustrated in Fig. 4. In terms of

(21)

the 1D model, we take the initial parameters so that it repre-

sents a line along at x=0.5. Therefore the initial profile for
a is given by

JEy A 2 270.5\ . (2mz
ag= —=-—2=-0.05—cod —— |sinl — |,
IxX X 0.2 0.2 L

(22

whereB,=1 in nondimensional units and although not state

explicitly in the equation, this corresponds to a value Kor
of 27/0.2.

Phys. Plasmas 12, 042105 (2005)

-1 — T T T
0 0.2 0.4 0.6 0.8 1
X

FIG. 4. Variation with respect ta of initial u, perturbation used in the 2D
hybrid model.

Figure 5 illustrates the amplitude of the electron current
density as a function of time for both the 1D and 2D models
with v,=0.71. The point of interest is the divergence be-
tween the 1D model results with and without the pressure
term. As indicated in Ref. 22, for the 2D model results, the
pressure term had insignificant contribution. The explanation
for this difference in the importance of this term in the con-
text of the 2D model will be highlighted in the following
section. For the 2D model simulations presented in this sec-
Pn, 200 grid points were chosen in tledirection and 25
were chosen in the direction, 16 simulation electrons were
sed(npleooo Np,= 1000, and the time step was 0.000 71.
he 2D MHD results were obtained using the 2D hybrid
Imodel with the kinetic electron effects turned @féducing
Hwe model to Eqs(7) and (16) without the last two termis
The fact that quasineutrality is maintained both in the 1D
and 2D models is illustrated in Fig. 6 with the plotting of the
divergence of the current density along with the component
terms. In the 2D model, the divergence is computed directly
from j, andj, while in the 1D modelj, is first calculated
from « using

ix_Pf?<&_Ex)_£&_a
ax) B2at’

= 23

ax  Biot 23
which has been derived from the single fluid momentum
equation. The time derivative is calculated simply using the
present and previous time step valuesroAlthough not the
most accurate method, it serves to illustrate that quasineutral-

1
] — mHD ()
154 — 2D hybrid (j;)
4 ——— 1D hybrid () with pressure term
1D hybrid (j,) without pressure term |

parallel current density (L/2)

IG. 5. Parallel current densitat z=L/2) for the 2D MHD model, the 2D
ybrid model(excluding pressure term i&,), and the 1D hybrid models

with and without pressure term far,=0.71. The 2D model results were
taken at the grid point closest 16=0.5.
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02 7 _:,—.,,V/J\ A B o 22051 —— 2200072 K
0.1 / —s\ | ‘5 '_\ ........ '(CD/p)aD 10z o
[ =4
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-0.1 - g
-0.2 IR 8
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z r4
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FIG. 6. Divergence of the current density and component quantities for the | — & (b)
1D hybrid model at=8 and withv=0.71. The 2D hybrid model values, se0sd T Ao da/dz |
for the slice inz closest tox=0.5, are plotted as points. Q —— A200,/02Z
‘g '-\: """ -(Cp/p)oDs/oz /—'
16-05 e -
5 & N AT
ity is properly maintained. This is as would be expected § o < i
given the initial assumptions for the 1D model. The points 3 N\
plotted for the 2D model serve to illustrate that even without 10.05 - ___,/7" \\ /’ ”‘i\_
the direct assumption of quasineutrality, the use of the cor- [~ — ‘le’ —
rection field method served to maintain quasineutrality to 0 2 4 6 8 10 12 14 16 18

z

good order. It should be noted that the results plotted here are
for close to maximum current density values. As these valuegi. 8. Siices along (closest tax=0.5) att=>5 of the terms in the equation
decrease, grid scale noise increases fluctuations in the divepr E, for the 2D hybrid model including pressuf@ and excluding pressure
gence calculation, but this can be lessened with increasef)- The curves forac/x andE, have been smoothed using the same 2D
. spectral filter as outlined in Ref. 22.

resolution.

The total energy invariant for the 2D hybrid model is
given by (see the Appendix

poll2 b2 in the second, it is excluded. For the following comparison, it
Te,, = Tuy+ Tby+ Te= f dxdzizM + f dxdz—2z is convenient to rewrite E15) in nondimensional fornfas
A A individual terms will be referenced in this notatjomhich is
1 given by
+Ca2ivf (24 5
i E :—<)\2&—a+c h"ﬂ\z%) (25
z ®xx  Poz Caz)

and is displayed in Fig. 7 along with the individual terms in
Eqg. (24). In this case, the error in energy as a function ofwhere all variables are in nondimensional units and the nor-
time increased almost linearly to a value of about 0.4% at malization constantCp=m.Vs/(eB,.L). For these simula-

=50. tions, the parameters are the same as for the 2D model in the
preceding section except thgt,=1.41 was used to accentu-
D. Interpretation ate the pressure contribution. Figure 8 presents slices of the

different terms in the equation f&, att=>5 for both the case
ﬁmluding (a) and excluding plasma pressuft®). This time
was chosen as the pressure contribution is maximum when
andj, are at a minimum. The curves for tlg term and
, have been smoothed using a postsimulation hyper-
. . . (i 20 ..
Gaussian spectral filter given ey/™™ wherei is the spec-
tral mode anch can be seen as a cutoff parameter. The filter
was applied in both th& direction (with n=80) and in thez
direction withn=4 to capture the first order Alfvén mode
clearly, but cutout higher frequency noise. The same filter
was used in Ref. 22 and more comment on its use can be
found there.
It is evident that when the pressure term is includad
the curve for thew, term is small relative to the pressure
term. However, when the pressure term is exclud@gdrom
the calculation fork,, the a, contribution rises to take the
form of the missing pressure term. Although not shown here,

FIG. 7. Total and component energies vs time for the 2D hybrid model withSimilar runs were done for the hig_her temperature egge
v;=0.71. =4.24 and the same type of behavior was observed.

In order to elucidate the reason as to why the pressur
term in the generalized Ohm’s law is negligible for the 2D
model we present two simulations with identical parameter
except that in the first case the pressure term is included a
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FIG. 9. Components o, from the 1D hybrid model fovy,=1.41 att=5.

trast the two approaches and better understand what the clo-
sure schemes entail. The choice of approach is best decided

The explanation for this is that the bad guess for thePy the application.
parallel electric field leaves the distribution of electrons ina I addition, as both models do not account for ion mo-
state that is not very quasineutral relative to the MHD fieldslion parallel to the field line, they are valid only in the limit
The resulting nonzero divergence leads to an electric fiel@f the plasmas on the order ofm./m; [which is the case for
contribution which compensates for the lack of a pressuréhe parameters used helé‘?ZMonkT/B§=%(n1e/mp) for vy,
term, thus restoring quasineutrality. Since the system wants1.41 where shear Alfvén waves are strongly resonant with
to be quasineutral, the algorithm allows for the creation of alectrons. In this range, the results are consistent with the
compensating perpendicular electric field which more or les@nertial Alfvén wave dispersion relation fgg<m./m, and
compensates for what the inclusion of a pressure term woulthe kinetic Alfvén wave dispersion relation fon,/m <2
have provided. This can possibly be viewed as a numerically< 1 (neglecting the ion gyroradius tejrff?® The Landau
created plasma oscillation, but since it is of much higherdamping rates predicted in this range are in agreement with
frequency than the Alfvén time scales that dictate the rest ofhe kinetic dispersion relation derived in Ref. 22. Therefore,
the system, it does not affect the results in any significanfhe model is valid for both electron inertial and thermal ef-
way. This methodology would not distinguish betweentecs in this lowg range, but of limited validity as thg gets
physical and numerical sources of quasineutrality V'Olat'onsubstantially larger tham,/m and tends toward 1 as the
and so caution must be used in interpreting the importance Qf,,ortance of the shear Alfvén wave interaction with ions
the |nd|V|dan terms. ,As far_ as the algo.nﬂ.\m is concernedgrows_ As the models were designed for study of Alfvén
the generalized Ohm’s law is simply an initial good guess tOwave effects in the electron acceleration region where the

the parallel electric field. , .
. . . < ) . 3
Whereas this method can be viewed to oscillate aroun&lasmaﬂ me/m (Refs. 26 and 2§ neglecting the ion ef

the proper solution, the direct assumption of quasineutralit ects is justified to first order.
Props A P quas y The additional advantage of these hybrid approaches is
can be viewed as specifying exactly what the solution should

be on an instantaneous time scale. Therefore, all the infort-hat by not incorporating kinetic ions, they save on the ex-

mation about the parallel electric field must be contained i€ computational time needed to consider the full ions

the generalized Ohm’s law to be transferred instantaneousl$ynamics thus making it simpler to study large scale systems

If a term is missing, then the physics associated with thaptCh @s the field line resonance. However, future compari-

term is lost. sons with fully kinetic approache@s used in Ref. 28(or
Figure 9 illustrates the components of the parallel elec€Xtending the present models to include kinetic joage

tric field from the 1D model when the pressure term has beef€cessary to more clearly elucidate the limits of the current

included in the generalized Ohm’s law. The fact that the twoaPproximation for the long term evolution of the system. As

models give the same result under these conditions is emph¥ell, although the present hybrid models do not consider ion

sized here in comparison with Fig. 8 as the structure of théinetic effects, fully kinetic PIC models are sometimes lim-

fields are basically the same. The 1D model results have ndied by the necessity to choose the rationgf m, unrealisti-

been filtered at all, which illustrates that the results in the 2Dcally low and thus the contrast of approaches is beneficial for

model case are not a function of the filtration used. Thethe overall study of the system.

consistent results of the two approaches and the fact that

space plasmas are generally quasineutral suggests that the

initial direct assumption of quasineutrality might be a better

choice. However, the simplicity of the formalism of the ze-

roth order model is a result of assumikg=0 and a constant  IV. SIMULATIONS WITH DENSITY GRADIENT

density in the perpendicular direction. The closure in the first

order approach is not limited by these assumptions and al- For the following section a symmetric density profile as

lows for a simple formulation in terms of the traditional a function ofzwas designed. This is displayed in Fig. 10 and

single fluid MHD equations. The aim here has been to conis given mathematically by
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p
Ne, if z<b
N — N N — N
612 % cog m(z-b)lal + ——2 +n,, ifb<z<a+b
ne=< Ne, ifatbh<zsL-(a+b)
Ne, —N Ne —N
912 % cog(n{z-[L - (a+b)]a-m +———2+n, if L-(a+bh)<z=L-b
e, ifL-b<z<L

where Ne, is the electron number density of the wen[,2 is

constant high density region at either end of the rangg Iin

is the length of constant regions of number denttzylanda

length fluctuations in profiles over time, they maintain the
same basic large scale length profile over the entire length of
the run. These simulatiorand those in Sec. IV Bused 50

is the length of the sloped regions connecting the areas dfrid points with a time step of 1.2610°2 and 3x 10° simu-
constant density. For the 2D model, the density was assumdaltion electrons to clearly see the parallel electric field pro-
to be constant in th& direction. The original aim for defin- files without any postsimulation filtration.

ing a profile of this nature was to consider the case along the It should be noted that to have a constant temperature
earth’s closed field lines where the density is relatively con{rofile in the presence of a density gradient is not a neces-
stant along the field line until there is a large increase towar@arily realistic situation, but the aim here is simply to exam-
the ionospheric boundaries at either end of the field lineine the operation of the models in this limit rather than ac-
Addressing this in a more complete way though is left tocurately represent a physical system. Genergdind as

future work.

Since we will be considering large values lgf corre-
sponding to small perpendicular scale lengthg,ithe term

evident in two fluid simulations the electrons would try to

adjust so tha¥ -P=0 along the field line. These hybrid mod-
els, however, do not reproduce this behavior as the MHD

dropped in Eq(16) must be retained and the expression forcomponent does not account for ion motion parallel to the
the parallel electric field becomes field line. However, the situation as presented here is not
FE, 1 J [ o, D, 14 entirely unrealistic an_d can occur wh_ere ions are gravitation-
> — 3E.= +pe— - —— ally bound (such as in the auroral ionosphgrand static
XA o 0z 9z €dz)g field aligned electric fields exist to support the electron popu-

where as in Ref. 22, is determined using a tridiagonal lation an_d maiqtain quasineutr.ality._As.well, since the re-
solver (where a three-point representation was used foPPCONS€ time of ions along the field line is much slower than

V.
x dt(Vv -j),

E,l 9x?) after the calculation of the right-hand side. For
comparisons between the 1D and 2D models, the same per-

14 1 1 1 1
turbations as outlined in Sec. Il C were used except that the 12 i
amplitude in Eq(21) [and correspondingly in Eq22)] was |
halved in order to keep the density fluctuations small. 17 B
0.8 -
A. Static parallel electric fields: No Alfvén wave 0.6 7 i
perturbation 04 () -
02

Before introducing the perturbatiam, we examine the
static case to see the structure of the parallel electric field

T T T 1T
0 2 4 6 8 1

z

0 12 14 16 18

generated to support the imposed density gradient. In Fig. 46-05 IR SN TR S T S N
11(a) is displayed the field aligned density profile for the 3e-05 e — w07 |
parametera=>5, b=1.5, N, =0.25, anchez=1.25, where the 2e-05 - ,/ ‘\‘ " EC L R
value of Ne, is the same as used for the constant density in le054 \ B
the last section. Figure (1) displays the parallel electric o) O'A""\/“
field profiles from the 1D hybrid model that support the den- “1e-05 AT

) . . o -2¢-05 ~ \ -
sity gradient for two background maxwellian distribution 20054 ® \ |
functions with thermal velocities afy,=0.71 andvy,=1.41. 40-05

As expected, fields of opposite sign support the opposing
density gradients and a significantly larger field is required in

T— T T 1
0 2 4 6 8 1

z

0 12 14 16 18

thevy,=1.41 case since the energy of the electrons is S|gn|f||—:IG_ 11. (@) Density profile constructed with=5, b=1.5, n, =0.25, and

cantly larger than in the former case. Th? profiles displayeg =125 (b) static parallel electric field needed to support the density
here are fot=5 and although there are minor shorter wave-profile for v,=0.71 (solid line) andvy,=1.41 (dashed lingatt=5.
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— sin profile
-—— exacteigenmode |
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1 1 o — sin profile L 14 -_J;:\ —_— = -
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06 L
0.4 [
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z
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time

FIG. 13. (a) Fluctuation of the parallel electric field over an Alfvén period
for the 1D hybrid model using the sin perturbation in Fig. 3. Corre-
sponding electron number density fluctuatigimcluding 2D hybrid model
comparison

FIG. 12. (a) Exact shear Alfvén wave perturbation eigenmodedddashed
line) for the density profile in Fig. 11 compared with sinusoidal perturbation
(solid line). (b) Field aligned electron current &t 2 for runs using the sin
perturbation for both the 1D hybrigolid line) and 2D hybrid(dotted ling
models and exact eigenmode perturbatidashed lingin the 1D model.

Figure 13 illustrates the parallel electric field and density

the electrons. the time scale for the evolution towXrd® perturbations at three times over the first Alfvén period using
=0 can mean that quasistatic parallel electric fields must peth® 1D hybrid model with the sin perturbation. Comparison

sist for long periods relative to the electron transit timescalf Figs. 133 and. H_b) iI.Iustrates that the gross profile Of.
across the region of density gradient. the parallel electric field is the same as the static profile with

the same temperature. Therefore, the picture that emerges is
that there is time dependent parallel electric field contribu-
tion from the shear Alfvén wave perturbation that sits on top
For the constant density case, the sin profiledgused of the static field. The corresponding electron number den-
was an exact eigenmode of the system, but that is not theity fluctuations are illustrated in Fig. (9 and parallel elec-
case with the variable density profile. This is illustrated intric field profiles are generally most consistent at the begin-
Fig. 12a) where the exact eigenmode for the density profilening and end of the period when the density profile has
used in the simulations with no perturbation is plotted alongeturned more or less to its initial state. Of course, if the
with a sin profile of the same amplitude. The exact eigendensity fluctuations are too large as would happen if the am-
mode was determined from the solution of the dispersiorplitude of thea, perturbation were very strong &g were
relation using the shooting method. The two profiles do notarge, this simple picture would break down and the pertur-
strongly diverge and so it was not expected that using théations of the parallel electric field could dominate over the
exact eigenmode over a sin profile would change the evolustatic profile. Also illustrated in Fig. 1B) is the electron
tion of the system dramatically. This is confirmed in Fig. number density profile from the 2D model &7 which is
12(b) where the parallel current densitylat? is plotted as a very close to the 1D result at the same time further illustrat-
function of time for both profiles using the 1D hybrid model ing the consistency of the two approaches.
and using the sin profile in the 2D model. The results are
generally very consistent with each other, although as would
be expected the 1D and 2D models using the initial sin pers
turbation are the closest. This also confirms that both the
zeroth and first order closure schemes yield consistent results The aim of this section is to investigate how Landau
in the case where field aligned density gradients are preseriamping is affected by the presence of a field aligned density
For the 2D model calculations, 100 grid points were used irgradient. This was accomplished by doing a series of runs
each direction with a time step of 2510 and 10x 10° starting with constant electron number densiq and then
simulation electrons. The electron inertial lengthwas al-  gradually filling in the well until the second constant density
lowed to vary as a function on, as it resulted in greater system 2, was reached. This progression is illustrated in
numerical stability in the presence of the steep density graFig. 14. The wells in this case are not as deep as in the
dients under consideration here. previous examples in this section because the damping rate

B. Electric field and density perturbations

. Landau damping
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S N N N N S . A A TABLE |. Computed periods, frequencies, and damping rates from Fig. 15.
— 1)a=0,b=0
0.9 1 —— 2)a=5,b=0 B
i —— 3)a=5,b=15 R i i
08 I 4; :=3’ o Case Period Frequendw) Damping rate(y) vlw
0.7 4 —— 5)a=2,b=6 -
e 6) a=1, b=8 1 9.1 0.690 -0.017+0.002 -0.025
06 - e 7) a=1, b=18 B
&05 o 2 9.9 0.634 -0.018+0.002 -0.028
0.4 - / / = 3 10.8 0.581 -0.017+0.002 -0.029
0.3 - Y // - 4 11.8 0.532 -0.016+0.002 -0.030
0.2 - 5 12.3 0.511 -0.011+0.002 -0.022
0.1 1 B 6 12.6 0.498 -0.006+0.002 -0.011
O T T T T T T T 1" 7 12.8 0.490 —0.010+0.002 -0.020

0 2 4 6 8 10 12 14 16 18
r4

FIG. 14. Density profiles used in Landau damping study. o . .
rate slowly decreases as the well is filled, migrating from the

first constant density limit to the second. This is as would be

for n,=1.25 was too low. As is, the system progresses beexpected with the one extra interesting feature of almost no
tween two constant densities, both of which are relativelydamping in case 6 which corresponds to the situation of a
heavily damped. narrow well. Somehow, the adjacent presence of static fields
In all cases, the system was perturbed by the same sigHpporting the opposing density gradient makes less efficient
profile for a,. As with the calculations in Sec. IV B, the the wave-particle interactions upon which the damping de-
amplitude of the shear velocity in E21) was halved, but pends. It should be noted that when an additional simulation
the value ofk, was doubledk,=27/0.1) and so the ampli- Was done with the well centered at abaatl5, this feature
tude fora, was double that in Fig. 18). The value ok, was vanished and the system was damped consistent with the
increased to make the damping visible in a few Alfvén peri-others. Therefore, the relative phase between the well and
ods and the values af,, were kept small so that the pertur- Wave is important for electron phase space orbits to be ef-
bation density fluctuations would not completely dominatefected in the “correct” way to impede the damping. A more
the background profile. For these calculations, the number dietailed analysis of what is occurring in this case is beyond
grid points was increased to 100 due to the steepness of sorftée scope of this work and so will be left for future studies.
of the prof”eS, the time Step was dropped to ﬁm“ and These qualitative results are emphaSized in Table |
1x 10° simulation electrons were used. where the period, frequency and damping ratare tabu-
The evolution of the parallel current density lat2 in  lated. The damping rates were computed from the natural log

each case is illustrated in Fig 15. As is evident, the dampin@f the absolute values of the period and half period points in
Fig. 15. The profiles were first filtered to clear off the high

frequency noise and only points fo 70 were used in the

L ' L calculation. As is evident, the damping rate for case 6, is
smaller by at least of a factor of 2 from all the others. This is
J T J also the case in the last column of the table $dw. This
L I 1 ratio more or less represents the damping efficiency per
2) - . . . I

Alfvén cycle which given the range of error seems relatively
T T T constant except for the significant drop for case 6.
0 50 100 180 200 The damping rates for the two constant density cases
.W; was determined from the dispersion relation of the hybrid
] - MHD-kinetic system(see Ref. 22 For n, =0.25 andn,,
0 50 100 150 200 =0.5 the theoretical damping rates were -0.0157 and
3 —0.00989 respectively which are in good agreement with the
- numerical rates in Table | for cases 1 and 7.
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0 50 100 150 200 Although not displayed here, a series of runs was tried
1 5 | where ‘a” (the range of the gradient regipwas set to 1 and
=3 EJV\/’MWMWMZ “b” was adjusted to fill in the well. The same qualitative
0 5 100 150 200 behavior was evident as noted here. Therefore, the ratio of
= L ' L o E the areas covered by each density region is probably more
=9 E\/VV\NVWVV\MMA’\; significant to the damping behavior than the steepness of the

) ' ) gradients(with the exception of case)6

V. SUMMARY AND DISCUSSION

o
Lo
L.l

)
i
T

T .
0 50 100 150 200 We have contrasted two methods of closure for hybrid
t MHD-kinetic models of shear Alfvén waves in constant and
FIG. 15. Parallel current density atL/2 as a function of time for the Ya”able density systems and de\{e|0ped the energy invariant
density profiles illustrated in Fig. 14. in one and two dimensions. The first method used in Ref. 21

Downloaded 06 Apr 2005 to 138.251.201.60. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



042105-11  Hybrid magnetohydrodynamic-kinetic electron closure... Phys. Plasmas 12, 042105 (2005)

directly assumed quasineutrality in the foﬁ}fzo while Foundation for InnovatioCFIl) and the Province of Alberta.
the second method used in Ref. 22 allowed for a nonzer&®.D.S. acknowledges support from the Gradviertenkolleg in
divergence in the current density which in-turn produced aHochtemperatur-Plasmaphysik at the Univ. of Duesseldorf,
“correcting” electric field. In both cases, the parallel electricGermany.

field was obtained from a version of the generalized Ohm’s

law.

It was found that both models ylelded equivalent reSUltSAPPENDlX HYBRID MODEL ENERGY INVARIANT
as long as the full generalized Ohm’s law was used when
guasineutrality was assumed. Otherwise, the method used in The standard approach for the derivation of an energy
Ref. 21 strongly diverged from both the other hybrid modelinvariant for a system is to put the equations in the conser-
results and that of the cold plasma MHD illustrating that thevation form
pressure term is of significant importance. The model used in
Ref. 22, on the other hand, yielded similar results whether or d_W+ VvV .S=0 (A1)
not the pressure term was included. dt ’

The reason for the difference is that in the second R
method, the generalized Ohm’s law can be viewed as a goodhereW represents the total energy afds the energy flux.
first guess to what the parallel electric field should be and ifFor the system of MHD equations and kinetic electrons, this
the guess is not sufficiently good, the plasma is not agakes the form
quasineutral as it would like to be and consequently gener- )
ates a compensating electric field. The end result being that d (1’3 U2 + b—)dv+ EE lmev-z
quasineutrality is a consequence of the system rather than dt 2° 2o de 2
being an initial assumption. ..

Therefore, both methods are useful for the study of +f (EX b) .d3=0
standing shear Alfvén waves in magnetospheric plasmas, but Mo '
it should be clearly understood that in the method used in . .

Ref. 22 disconnecting terms alone in the generalized Ohm'SinceE andb are periodic irz, the net Poynting flux across
law does not elucidate the importance of that term to théhe boundaries cancels and so after integrating with respect
determination ofE, as it will be compensated for by the to time, the invariant becomes

closure scheme. The method does have the advantage though 5

of mcorporatmg the full set of qold plasma MHD' equations f <}p0u2+ b—)dv+ > }mevizzTEv (A3)
(which could be further generalizeds well as easily allow- vi\2 240 P 2

ing for density gradients in either the perpendicular or paral-

lel directions. whereTg is the total energy and is constant in time. Now, as

In the case of field aligned density profiles, the modelseach of the simulation electrons are “superparticles” repre-
were illustrated to produce a static parallel electric fieldsentative of a large number of electrons, the term of the
when there was no shear Alfvén wave perturbation. Theelectron kinetic energy must be appropriately scaled such
magnitude of the field increased with plasma temperaturethat
When the perturbation was applied, the parallel electric field 1 b2 N1
more or less oscillated around an average value that was very 1_= J <_pou2 + —>dv+ —Zm>, v?, (A4)
similar to the static profile. v\2 20 Np 2

In addition, a series of runs were done to study Landau .
damping in the presence of a density gradient. It was illusWhereN=/n.dV is the total number of real electrons repre-
trated, that the Landau damping was not hindered by theented in the simulation volume, is the electron number
presence of the density gradient except in the case of a nafiensity, and\, is the total number of simulation electrons.
row central well. Since the model is 2D ank,=0, a constany depen-

In this paper we have concentrated on the case of a unfence is assumed for each variable and factored out as a
form magnetic field but, as mentioned earlier, convergingength scale so that in nondimensional form the expression
magnetic field and mirror force effects are crucial to a morgepresents the energy per upit
complete understanding of the electron response in the au- 2 2

. . . o Te pou b 1
roral acceleration region. To address this, investigations are TEZD_ —= —f dxd +f dxdz—zy + 5(3622 vi2,
A A i

(A2)

currently under way using a version of the first order model Ay
in dipolar coordinate¢developed in Ref. 29 (A5)
ACKNOWLEDGMENTS where Ce,=(me/my)(fn.dxdz N,) is a constant and the fact

thatu,=b,=b,=0 has been used as well.
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